
University of Wollongong University of Wollongong 

Research Online Research Online 

Faculty of Engineering and Information 
Sciences - Papers: Part A 

Faculty of Engineering and Information 
Sciences 

1-1-2012 

A low cost soft mapper for turbo equalization with high order modulation A low cost soft mapper for turbo equalization with high order modulation 

Licai Fang 
University Of Western Australia 

Qinghua Guo 
University of Wollongong, qguo@uow.edu.au 

Defeng (David) Huang 
University Of Western Australia, david.huang@uwa.edu.au 

Sven Nordholm 
Curtin University 

Follow this and additional works at: https://ro.uow.edu.au/eispapers 

 Part of the Engineering Commons, and the Science and Technology Studies Commons 

Recommended Citation Recommended Citation 
Fang, Licai; Guo, Qinghua; Huang, Defeng (David); and Nordholm, Sven, "A low cost soft mapper for turbo 
equalization with high order modulation" (2012). Faculty of Engineering and Information Sciences - 
Papers: Part A. 414. 
https://ro.uow.edu.au/eispapers/414 

Research Online is the open access institutional repository for the University of Wollongong. For further information 
contact the UOW Library: research-pubs@uow.edu.au 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Research Online

https://core.ac.uk/display/36995224?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://ro.uow.edu.au/
https://ro.uow.edu.au/eispapers
https://ro.uow.edu.au/eispapers
https://ro.uow.edu.au/eis
https://ro.uow.edu.au/eis
https://ro.uow.edu.au/eispapers?utm_source=ro.uow.edu.au%2Feispapers%2F414&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/217?utm_source=ro.uow.edu.au%2Feispapers%2F414&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/435?utm_source=ro.uow.edu.au%2Feispapers%2F414&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ro.uow.edu.au/eispapers/414?utm_source=ro.uow.edu.au%2Feispapers%2F414&utm_medium=PDF&utm_campaign=PDFCoverPages


A low cost soft mapper for turbo equalization with high order modulation A low cost soft mapper for turbo equalization with high order modulation 

Abstract Abstract 
In an MMSE based turbo equalization system, a soft mapper calculates the symbol mean and variance 
based on extrinsic Log-Likelihood-Ratios (LLRs) information coming from a Soft-Input Soft-Output (SISO) 
decoder. In this paper, we investigate the complexity of this module, and in particular, we employ a 
3-segment linear approximation approach to calculate the mean and variance of data symbols from LLRs. 
For FPGA and VLSI implementation, we propose novel piecewise linear functions which map LLR to the 
mean and variance directly without the use of any two-variable-input multipliers. Simulation results for 
16-QAM and 64-QAM show that the no multiplier approach has close BER performance to the 3-segment 
linear approximation approach with multipliers. © 2012 IEEE. 

Keywords Keywords 
order, high, equalization, turbo, modulation, mapper, low, soft, cost 

Disciplines Disciplines 
Engineering | Science and Technology Studies 

Publication Details Publication Details 
Fang, L., Guo, Q., Huang, D. & Nordholm, S. (2012). A low cost soft mapper for turbo equalization with high 
order modulation. ISOCC 2012 - 2012 International SoC Design Conference (pp. 305-308). Australia: IEEE. 

This conference paper is available at Research Online: https://ro.uow.edu.au/eispapers/414 

https://ro.uow.edu.au/eispapers/414


A Low Cost Soft Mapper for Turbo Equalization
with High Order Modulation

Licai Fang∗, Qinghua Guo∗†, Defeng (David) Huang∗, Sven Nordholm‡
∗School of EECE, the University of Western Australia, WA 6009, Australia

†School of ECTE, the University of Wollongong, NSW 2522, Australia
‡Department of ECE, Curtin University, WA 6102, Australia

Email:licaifang@gmail.com, {qinghua.guo, david.huang}@uwa.edu.au, s.nordholm@curtin.edu.au

Abstract—In an MMSE based turbo equalization system, a
soft mapper calculates the symbol mean and variance based
on extrinsic Log-Likelihood-Ratios (LLRs) information coming
from a Soft-Input Soft-Output (SISO) decoder. In this paper, we
investigate the complexity of this module, and in particular, we
employ a 3-segment linear approximation approach to calculate
the mean and variance of data symbols from LLRs. For FPGA
and VLSI implementation, we propose novel piecewise linear
functions which map LLR to the mean and variance directly
without the use of any two-variable-input multipliers. Simulation
results for 16-QAM and 64-QAM show that the no multiplier
approach has close BER performance to the 3-segment linear
approximation approach with multipliers.

I. INTRODUCTION

In an MMSE based turbo equalization receiver, there needs a
soft mapper module to calculate the symbol mean and variance
from the extrinsic Log-Likelihood-Ratios (LLRs) of code bits
coming from the Soft-Input Soft-Output (SISO) decoder [1].
Direct use of the mathematical expression for the mean and
variance of the data symbols, involves the computational
complexity 𝒪(𝑄2𝑄) per data symbol where 𝑄 is the number
of bits per symbol. For high order constellations, this may be
too high for practical implementation. Fortunately, high order
constellations normally have symmetric properties, so the real
part and imaginary part can be calculated separately. This will
reduce the complexity to 𝒪((𝑄/2)2𝑄/2). By exploring the
characteristics of constellation such as square QAM with gray
mapping, several methods have been proposed to further re-
duce the complexity [2] [3]. In [2], for 16-QAM and 64-QAM,
equations were presented to calculate the symbol mean and
variance from bit probabilities. But converting bit probabilities
from LLRs needs exponential and division operations which
are not suitable for an FPGA or VLSI based implementation.
In [3], after a complex derivation and with the aid of Maclaurin
series, equations were derived to calculate the mean from Log-
Likelihood-Ratio (LLR) directly. In this paper, by using linear
approximation to the bit probability, we get new equations
for calculating the mean and variance from LLRs. A typical
implementation of the soft mapper needs several two-variable-
input multipliers. Whereas in application of limited hardware

This work was supported by Australian Research Councils Discovery
Projects DP1093000 and DP110100736, and DECRA Grant DE120101266.
The simulations in this work was carried out using a super-computer supported
by iVEC.

Fig. 1. Turbo Equalization System Block Diagram

resource such as FPGA, the number of embedded multipliers
are limited, so it is desirable to use other resources such as
small size of distributed memory or block memory as an
alternative. Motivated by this, we propose novel piecewise
linear equations to calculate the mean and variance from LLRs
without using multipliers.

The reminder of this paper is organized as follows. Section
II describes the turbo equalization system model. Then after
analyzing the computational complexity of the soft mapper, we
propose a no multiplier version of the soft mapper in Section
III. Simulation results are shown in Section IV. Finally, we
summarize this paper in Section V.

II. SYSTEM MODEL

We consider a turbo equalization system as shown in Fig.
1. At the transmitter side, information bits {𝑎𝑛} are encoded
to a code sequence {𝑏𝑛}, which is permuted to {𝑐𝑛} by an
interleaver. {𝑐𝑛} is then grouped into length-𝑄 subsequence
[𝑐𝑛,1, 𝑐𝑛,2, ..., 𝑐𝑛,𝑄] and mapped to symbol 𝑥𝑛 ∈ 𝜒 with binary
mapping M:{0, 1}𝑄 → 𝜒, where 𝜒 = {𝛼𝑖} stands for a 2𝑄-ary

symbol alphabet with
∑2𝑄

𝑖=1 𝛼𝑖 = 0 and
∑2𝑄

𝑖=1 ∣𝛼𝑖∣2 /2𝑄 = 𝑄.
After {𝑥𝑛} is transmitted over an ISI channel and corrupted
by AWGN 𝑤𝑛, the receiver receives {𝑦′𝑛}. As shown in
Fig. 1, together with the a-priori symbol mean and variance
{𝑚𝑛, 𝑣𝑛} from a soft mapper, the received signal {𝑦′𝑛} is then
processed by the SISO equalizer, which outputs the extrinsic
symbol mean and variance {𝑚′

𝑛, 𝑣
′
𝑛}. Then the soft de-mapper

module converts {𝑚′
𝑛, 𝑣

′
𝑛} to soft bit LLR {𝐿′(𝑐𝑛)} which is

deinterleaved and sent to the SISO decoder. On the other hand,
the extrinsic information {𝐿(𝑏𝑛)} from the SISO decoder are
interleaved and sent to the soft mapper [4]. The soft mapper
converts interleaved LLR {𝐿(𝑐𝑛)} to {𝑚𝑛, 𝑣𝑛} which will be
used by the MMSE equalizer. In this paper, we will focus on
this soft mapper module.
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III. SOFT MAPPER

The soft mapper calculates {𝑚𝑛, 𝑣𝑛} based on extrinsic
LLR 𝐿(𝑐𝑛) using the following equations:

𝑚𝑛 = 𝐸(𝑥𝑛) =

2𝑄∑
𝑖=1

𝛼𝑖𝑝(𝑥𝑛 = 𝛼𝑖) (1)

𝑣𝑛 = 𝐶𝑜𝑣(𝑥𝑛, 𝑥𝑛) =

2𝑄∑
𝑖=1

∣𝛼𝑖∣2 𝑝(𝑥𝑛 = 𝛼𝑖)−𝑚2
𝑛 (2)

where each 𝛼𝑖 corresponds to a binary vector s𝑖 =
[𝑠𝑖,1, 𝑠𝑖,2, ..., 𝑠𝑖,𝑄]

𝑇 , and the symbol’s probability 𝑝(𝑥𝑛 = 𝛼𝑖)
can be calculated as:

𝑝(𝑥𝑛 = 𝛼𝑖) =

𝑄∏
𝑗=1

𝑝(𝑐𝑛,𝑗 = 𝑠𝑖,𝑗) (3)

while 𝑝(𝑐𝑛,𝑗 = 𝑠𝑖,𝑗) is the probability of a code bit, which is
normally represented by LLR:

𝐿𝑗 = 𝑙𝑛
𝑝(𝑐𝑛,𝑗 = 0)

𝑝(𝑐𝑛,𝑗 = 1)
= 𝑙𝑛

𝑝(𝑐𝑛,𝑗 = 0)

1− 𝑝(𝑐𝑛,𝑗 = 0)
. (4)

With (1) - (3), the computational complexity is 𝒪(𝑄2𝑄). Many
modulation schemes employ separable constellation structure,
for example, the square 64-QAM modulation can be treated as
two separated 8-PAM modulations for the real and imaginary
components respectively. As a result, (1) can be changed to [2]:

ℜ(𝑚𝑛) =

2𝑄/2∑
𝑖=1

𝛽𝑖𝑝
(ℜ(𝑥𝑛) = 𝛽𝑖

)
(5)

ℑ(𝑚𝑛) =

2𝑄/2∑
𝑖=1

𝛾𝑖𝑝
(ℑ(𝑥𝑛) = 𝛾𝑖

)
(6)

where ℜ(⋅) and ℑ(⋅) represent the real and imaginary parts
of a complex symbol (⋅) respectively and {𝛽𝑖} and {𝛾𝑖}
are the corresponding real and imaginary PAM constellation
alphabets. Let ℜ̃(𝑣𝑛) and ℑ̃(𝑣𝑛) denote the contributions to 𝑣𝑛
that come from symbol’s real and imaginary parts, we have:

ℜ̃(𝑣𝑛) =
2𝑄/2∑
𝑖=1

∣𝛽𝑖∣2 𝑝
(ℜ(𝑥𝑛) = 𝛽𝑖

)
(7)

ℑ̃(𝑣𝑛) =
2𝑄/2∑
𝑖=1

∣𝛾𝑖∣2 𝑝
(ℑ(𝑥𝑛) = 𝛾𝑖

)
. (8)

Using (7) and (8), (2) can then be calculated as follows:

𝑣𝑛 = ℜ̃(𝑣𝑛) + ℑ̃(𝑣𝑛)−ℜ(𝑚𝑛)
2 −ℑ(𝑚𝑛)

2. (9)

It can be seen that by using (5)-(9), the complexity is reduced
to 𝒪((𝑄/2)2𝑄/2).
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Fig. 2. 3-Segment Piecewise Linear Function

A. 3-segment Linear Approximation Approach

For QAM modulation with gray mapping, (5)-(8) can be
further simplified [2]. The following equations are for 16-
QAM with gray mapping1:

ℜ(𝑚𝑛) = (1− 2𝑝1)(1 + 2𝑝2)/
√
2.5 (10)

ℑ(𝑚𝑛) = (1− 2𝑝3)(1 + 2𝑝4)/
√
2.5 (11)

ℜ̃(𝑣𝑛) = (1 + 8𝑝2)/2.5 (12)

ℑ̃(𝑣𝑛) = (1 + 8𝑝4)/2.5 (13)

and for 64-QAM with gray mapping:

ℜ(𝑚𝑛) = (1− 2𝑝1)(3 + 2𝑝2 − 2𝑝3 + 4𝑝2𝑝3)/
√
7 (14)

ℑ(𝑚𝑛) = (1− 2𝑝4)(3 + 2𝑝5 − 2𝑝6 + 4𝑝5𝑝6)/
√
7 (15)

ℜ̃(𝑣𝑛) = (9 + 16𝑝2 − 8𝑝3 + 32𝑝2𝑝3)/7 (16)

ℑ̃(𝑣𝑛) = (9 + 16𝑝5 − 8𝑝6 + 32𝑝5𝑝6)/7 (17)

where the bit probability 𝑝𝑗 = 𝑝(𝑐𝑛,𝑗 = 0) can be easily
derived from LLR based on (4) with 𝑡𝑎𝑛ℎ(𝑥) = (𝑒𝑥 −
𝑒−𝑥)/(𝑒𝑥 + 𝑒−𝑥), as follows:

𝑝𝑗 = (1 + 𝑡𝑎𝑛ℎ(𝐿𝑗/2))/2. (18)

Typically, (18) can be implemented with a lookup table.
In this work, as an alternative, we use a piecewise linear
approximation. From Maclaurin Series, we have

𝑡𝑎𝑛ℎ(𝑥) = 𝑥− 1

3
𝑥3 +

1

15
𝑥5 − ⋅ ⋅ ⋅ . (19)

If we use the first order linear approximation 𝑡𝑎𝑛ℎ(𝑥) ≈ 𝑥,
𝑝𝑗 can be calculated by a 3-segment linear function as follows
(see Fig.2):

𝑝𝑗 =

⎧⎨
⎩
0, 𝐿𝑗 ≤ −2

(1 + 𝐿𝑗/2)/2, −2 < 𝐿𝑗 < 2

1. 𝐿𝑗 ≥ 2

(20)

1The factors in (10)-(17) are different from those in [2] because we
normalize constellation energy per symbol to Q (e.g. 4 for 16-QAM).

978-1-4673-2990-3/12/$31.00 ⓒ2012 IEEE - 306 - ISOCC 2012



B. Implementation Without Multipliers

Using (10)-(17) and (9), besides the addition operations, the
calculations of 𝑚𝑛 and 𝑣𝑛 also need several two-variable-input
multipliers, and single-variable-input multipliers (e.g., 1/

√
7,

1/7). For some applications (e.g., using VLSI and FPGA),
the resources of multipliers are too tight or too expensive
to be implemented. This motivates us to propose piecewise
linear functions without a multiplier to calculate the mean and
variance.

Obviously, we can use small lookup tables to handle single-
variable-input multiplier functions and 𝑥2 function. But there
still need several two-variable-input multipliers which are not
suitable for lookup table implementation because of too many
entries to be stored. In the following part, we propose an
approach to remove all two-variable-input multipliers.

After applying a clipping function and convert 𝐿𝑗 into 𝐿̂𝑗

as follows:

𝐿̂𝑗 =

⎧⎨
⎩
−2, 𝐿𝑗 ≤ −2

𝐿𝑗 , −2 < 𝐿𝑗 < 2 ,

2. 𝐿𝑗 ≥ 2

the 3-segment linear approximation function of (20) can be
re-written as: 𝑝𝑗 = (1 + 𝐿̂𝑗/2)/2. With this, we represent
(10)-(13) for 16-QAM in terms of 𝐿̂𝑗 as follows:

ℜ(𝑚𝑛) = (−𝐿̂1/2)(2 + 𝐿̂2/2)/
√
2.5 (21)

ℑ(𝑚𝑛) = (−𝐿̂3/2)(2 + 𝐿̂4/2)/
√
2.5 (22)

ℜ̃(𝑣𝑛) = (5 + 2𝐿̂2)/2.5 (23)

ℑ̃(𝑣𝑛) = (5 + 2𝐿̂4)/2.5 . (24)

Similarly, for 64-QAM, (14)-(17) are re-written as:

ℜ(𝑚𝑛) = (−𝐿̂1/2)(4 + 𝐿̂2 + 𝐿̂2𝐿̂3/4)/
√
7 (25)

ℑ(𝑚𝑛) = (−𝐿̂4/2)(4 + 𝐿̂5 + 𝐿̂5𝐿̂6/4)/
√
7 (26)

ℜ̃(𝑣𝑛) = (21 + 8𝐿̂2 + 2𝐿̂3 + 2𝐿̂2𝐿̂3)/7 (27)

ℑ̃(𝑣𝑛) = (21 + 8𝐿̂5 + 2𝐿̂6 + 2𝐿̂5𝐿̂6)/7 . (28)

To avoid the use of two-variable-input or multiple-variable-
input multipliers, we then impose the following approximation,

𝐿̂𝑚𝐿̂𝑛 = 0, −2 < 𝐿̂𝑚 < 2 & − 2 < 𝐿̂𝑛 < 2. (29)

As a result, we get the no multiplier version of equations
(21)-(24) for 16-QAM as follows:

ℜ̂(𝑚𝑛) =

⎧⎨
⎩
−3𝐿̂1/2, 𝐿̂2 = 2

−𝐿̂1/2, 𝐿̂2 = −2

−𝐿̂1. −2 < 𝐿̂2 < 2

ℜ(𝑚𝑛) ≈ ℜ̂(𝑚𝑛)/
√
2.5, (30)

ℑ̂(𝑚𝑛) =

⎧⎨
⎩
−3𝐿̂3/2, 𝐿̂4 = 2

−𝐿̂3/2, 𝐿̂4 = −2

−𝐿̂3. −2 < 𝐿̂4 < 2

ℑ(𝑚𝑛) ≈ ℑ̂(𝑚𝑛)/
√
2.5, (31)

ℜ̃(𝑣𝑛) = (5 + 2𝐿̂2)/2.5 (32)

ℑ̃(𝑣𝑛) = (5 + 2𝐿̂4)/2.5 (33)

and equations (25)-(28) for 64-QAM as the following:

ℜ̂(𝑚𝑛) =

⎧⎨
⎩

6 + 𝐿̂3/2, 𝐿̂1 = −2 & 𝐿̂2 = 2

2− 𝐿̂3/2, 𝐿̂1 = −2 & 𝐿̂2 = −2

4 + 𝐿̂2, 𝐿̂1 = −2 & −2 < 𝐿̂2 < 2

−6− 𝐿̂3/2, 𝐿̂1 = 2 & 𝐿̂2 = 2

−2 + 𝐿̂3/2, 𝐿̂1 = 2 & 𝐿̂2 = −2

−4− 𝐿̂2, 𝐿̂1 = 2 & −2 < 𝐿̂2 < 2

−3𝐿̂1, −2 < 𝐿̂1 < 2 & 𝐿̂2 = 2

−𝐿̂1, −2 < 𝐿̂1 < 2 & 𝐿̂2 = −2

−2𝐿̂1. −2 < 𝐿̂1 < 2 & −2 < 𝐿̂2 < 2

ℜ(𝑚𝑛) ≈ ℜ̂(𝑚𝑛)/
√
7, (34)

ℑ̂(𝑚𝑛) =

⎧⎨
⎩

6 + 𝐿̂5/2, 𝐿̂3 = −2 & 𝐿̂4 = 2

2− 𝐿̂5/2, 𝐿̂3 = −2 & 𝐿̂4 = −2

4 + 𝐿̂4, 𝐿̂3 = −2 & −2 < 𝐿̂4 < 2

−6− 𝐿̂5/2, 𝐿̂3 = 2 & 𝐿̂4 = 2

−2 + 𝐿̂5/2, 𝐿̂3 = 2 & 𝐿̂4 = −2

−4− 𝐿̂4, 𝐿̂3 = 2 & −2 < 𝐿̂4 < 2

−3𝐿̂3, −2 < 𝐿̂3 < 2 & 𝐿̂4 = 2

−𝐿̂3, −2 < 𝐿̂3 < 2 & 𝐿̂4 = −2

−2𝐿̂3. −2 < 𝐿̂3 < 2 & −2 < 𝐿̂4 < 2

ℑ(𝑚𝑛) ≈ ℑ̂(𝑚𝑛)/
√
7, (35)

ℜ̂(𝑣𝑛) =

⎧⎨
⎩

37 + 6𝐿̂3, 𝐿̂2 = 2

5− 2𝐿̂3, 𝐿̂2 = −2

25 + 12𝐿̂2, −2 < 𝐿̂2 < 2 & 𝐿̂3 = 2

17 + 4𝐿̂2, −2 < 𝐿̂2 < 2 & 𝐿̂3 = −2

21 + 8𝐿̂2 + 2𝐿̂3. −2 < 𝐿̂2 < 2 & −2 < 𝐿̂3 < 2

ℜ̃(𝑣𝑛) ≈ ℜ̂(𝑣𝑛)/7, (36)

ℑ̂(𝑣𝑛) =

⎧⎨
⎩

37 + 6𝐿̂6, 𝐿̂5 = 2

5− 2𝐿̂6, 𝐿̂5 = −2

25 + 12𝐿̂5, −2 < 𝐿̂5 < 2 & 𝐿̂6 = 2

17 + 4𝐿̂5, −2 < 𝐿̂5 < 2 & 𝐿̂6 = −2

21 + 8𝐿̂5 + 2𝐿̂6. −2 < 𝐿̂5 < 2 & −2 < 𝐿̂6 < 2

ℑ̃(𝑣𝑛) ≈ ℑ̂(𝑣𝑛)/7, (37)

We note that after using lookup table handling factors of
1/
√
2.5, 1/

√
7, 1/2.5, 1/7 and 𝑥2 function, the above equa-

tions contain only shift and addition operations2. We also note
that the method of using (29) recursively can also be extended
to other high order constellations to remove two-variable-input
or multiple-variable-input multipliers.

2Operations like 𝐿̂2/2, 3𝐿̂2, 6𝐿̂2 and 8𝐿̂2 can be implemented using shift
and addition operations. For example, 6𝐿̂2 can be implemented by 4𝐿̂2+2𝐿̂2.
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Fig. 3. Performance of MMSE Turbo Equalization System with Different Mapper

IV. SIMULATION RESULT

We consider a turbo equalization system with an MMSE
equalizer [4]. A rate-1/2 convolutional code with generator
(23, 35)8 and square 2𝑄-QAM modulation with gray map-
ping are used, and the APP decoder is implemented using
the BCJR algorithm [5]. For fading channel, we use a 16-
tap independent quasi static block fading Rayleigh channel
model, i.e., the channel taps ℎ𝑗 for 𝑗 = 0, 1, ..., 15 are
independently generated from a complex Gaussian distribution
PDF 𝒞𝒩 (ℎ𝑗 ; 0,

1
16
), and then the energy of the generated

channel taps is normalized to 1. During the simulations, we use
random symbol level interleaver 3 and assume perfect channel
information is available [1]. The frame length is 1024 and the
number of iterations is 10.

When simulating approximations (30)-(37), we use 7-bits
to represent each LLR, and lookup tables with 64 entries of
8 bits for factors 1/

√
2.5, 1/

√
7, 1/2.5, 1/7 and 𝑥2 function.

We simulate system BER performance with different mapper
equations under fading channel and also present the BER
performances under AWGN channel for reference. The exact
result denotes the performance of using equations (10)-(17)
and (18), while the 3-segment approximation result denotes
the performance of using (10)-(17) and (20).

Fig. 3(a) shows the BER performance for 16-QAM. It can
be seen that the 3-segment approximation (20) has nearly
the same performance as the exact one using (18), while
the no multipliers version of using (30)-(33) has a slightly
worse Eb/N0 performance under BER of 10−4. From Fig.
3(b), for 64-QAM, we can see that 3-segment approximation
(20) and no multiplier version have similar performance, and
they all have about 0.6dB Eb/N0 performance loss at BER
of 10−5 compared with the exact one of (18). However, our

3As shown in [6], for gray mapping, the bit level interleaver has worse BER
performance than the symbol level interleaver. Therefore, we only present
simulation results with symbol level interleaver.

approach can remove all two-variable-input multipliers (e.g. 8
multipliers in [7] for 64-QAM) in the soft mapper module.

V. CONCLUSION

In this paper, we have investigated the computational com-
plexity of the soft mapper in a turbo equalization receiver. The
use of a 3-segment linear approximation of the bit probability
enables system BER performance close to the exact one
under 16-QAM and induce small performance loss under 64-
QAM. Then, based on this 3-segment linear approximation, we
proposed a novel no multiplier approach to calculate the mean
and variance from LLRs directly. Simulations show that no
multiplier approach has similar performance as the approach
with multipliers.
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