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Abstract 

    The coercivity and exchange bias field of ferro-/antiferromagnetic Co90Fe10 / 

CoFe-oxide bilayers were studied as function of the surface morphology of the bottom 

CoFe-oxide layer. The CoFe-oxide surface structure was varied systematically by low 

energy (0 – 70 V) Argon ion-beam bombardment before subsequent deposition of the 

Co90Fe10 layer. Transmission electron microscopy results showed that the bilayer 

consisted of hcp Co90Fe10 and rock-salt CoFe-oxide. At low temperatures, enhanced 

coercivities and exchange bias fields with increasing ion-beam bombardment energy 

were observed, which are attributed to defects and uncompensated moments created near 

the CoFe-oxide surface in increasing amounts with larger ion-beam bombardment 

energies.  Magnetometry results also showed an increasing divergence of the low field 

temperature dependent magnetization [ΔM(T)] between field-cooling and 

zero-field-cooling processes, and an increasing blocking temperature with increasing 

ion-beam bombardment energy.  
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1. Introduction 

    Exchange bias [1-6], i.e., the shift of the hysteresis loop of a ferromagnetic (FM) 

material in contact with an antiferromagnetic (AFM) material after a field-cooling 

process, depends on many factors including the particular materials involved [7-10], film 

growth conditions [11-14], the structural, compositional and magnetic details of the 

interfaces [15-18], the magnetic stiffness of the AFM moments, and the field-cooling 

conditions [19-22]. 

    In this work, we varied the structural and magnetic interface between FM and AFM 

Co90Fe10 / CoFe-oxide bilayers by bombarding the surface of the bottom AFM 

CoFe-oxide layer with Argon ions of varying energy before the subsequent growth of the 

top FM Co90Fe10 layer. We observed a systematic increase of the coercivity and exchange 

bias at low temperature as function of the Ar ion-beam energy, which we attributed to an 

increase in the creation of defects and uncompensated moments in the AFM layer from 

higher ion-beam energies. 

 

2. Experimental Methods 

    The Co90Fe10 (at%) / CoFe-oxide bilayers were prepared on oxidized Si wafer 

substrates by using a dual ion-beam sputtering deposition technique [21,22]. A Kaufman 

ion source (800 V, 7.5 mA) was used to focus an Argon ion-beam onto a commercial 

Co90Fe10 target surface in order to fabricate the top Co90Fe10 layer. An End-Hall ion 

source (VEH = 100 V, 500 mA) was used to in-situ bombard the growing bottom layer 
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during deposition with a mixture of 41% O2 / Ar (O2/Ar flow rate: 1.6/2.3 sccm) in order 

to fabricate the bottom CoFe-oxide layer (17 nm nominal thickness). Before capping with 

the top Co90Fe10 layer (23 nm nominal thickness), the surface of the CoFe-oxide layer 

was bombarded by 100% Ar ions using the same End-Hall source.  The acceleration 

voltage (VEH) was varied from 40 to 70 V for different films in order to create varying 

surface microstructure on the CoFe-oxide layer. 

 

3. Results and Discussion 

    The microstructures of the Co90Fe10 (~17 nm) / CoFe-oxide (~23 nm) bilayers were 

characterized by TEM (Transmission Electron Microscopy), as shown in Fig. 1. The 

un-bombarded (VEH = 0 V) Co90Fe10 / CoFe-oxide bilayers were polycrystalline with 

grain sizes ranging from 5 to 15 nm. The respective electron diffraction patterns [Fig. 

1(a)] indicated that the bilayers consisted of hcp Co90Fe10 (a~ 2.5 Å, c~ 4.1 Å) and 

rock-salt CoFe-oxide (a~ 4.2 Å), in agreement with our previous works [22,23] on these 

CoFe-based film systems. The bombardment of the bottom CoFe-oxide layer surface with 

low-energy Ar ion-beams (VEH = 40 to 70 V) neither changed the crystal structure nor 

altered significantly the grain size distribution close to the CoFe-oxide surface, as 

revealed by the TEM images and diffraction patterns shown in Figs. 1(c) and 1(d) for 

Co90Fe10 / CoFe-oxide (VEH= 50 V) and Figs. 1(e) and 1(f) for Co90Fe10 / CoFe-oxide 

(VEH= 70 V). As can be seen in the cross-sectional TEM images in Figs. 1(b), 1(d) and 

1(f), all Co90Fe10 / CoFe-oxide bilayers exhibited a smooth interface with roughnesses 
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considerably below 2 nm. It can be concluded from the data presented in Fig. 1 that the 

low-energy ion-beam bombardment did not lead to significant microstructural and 

morphological variations (lattice constant, grain size, roughness, and interface flatness) in 

the AF CoFe-oxide layer.  

    The room temperature hysteresis loops of the different Co90Fe10 / CoFe-oxide 

bilayers made with Ar ion-beam bombardment voltages, VEH = 0 to 70 V, are shown in 

Fig. 2. Since Co90Fe10 is a ferromagnet (Tc, bulk~ 1800 K [24]) and CoFe-oxide is an 

antiferromagnet with a Néel temperature less than that of CoO (TN, bulk~ 290 K [25]), no 

exchange bias effects were expected at room temperature. The Co90Fe10 / CoFe-oxide 

bilayer without ion-beam bombardment (VEH= 0 V) exhibited a square hysteresis loop 

with a high remanence magnetization, Mr, and a coercivity of Hc ~ 15 Oe, as is shown in 

Fig. 2(a). Increasing the ion-beam bombardment energy [Fig. 2(b)] resulted in a 

systematic decrease of Mr, while Hc remained unaffected (~20 Oe).  

    The decrease in Mr with increasing VEH indicates that the ion-beam bombardment of 

the bottom CoFe-oxide layer may have created defects that influenced strongly the 

magnetization reversal processes in the Co90Fe10 layer. Since the CoFe-oxide layer is 

believed to be paramagnetic at 298 K, structural defects [26] must have been responsible 

for the low Mr values of the ion-bombarded samples. 

    To study exchange bias effects, the Co90Fe10 / CoFe-oxide bilayers were 12 kOe 

field-cooled from 350 to 50 K. The hysteresis loops for the films after field cooling are 

shown in Fig. 2(c). In contrast to the room temperature behavior, for all VEH 
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bombardment energies, a square and symmetric loop shape was present, and a high 

remanence concomitant with the square loops, i.e. Mr / Ms ~ 1. Figure 2(c) identifies 

clearly that an increasing exchange bias field (Hex) developed with increasing ion-beam 

bombardment energy. The dependence of Hc and Hex on VEH [Fig. 2(d)] shows that 

without ion-beam bombardment, Hex~ -150 Oe and Hc~ 250 Oe was measured, and for 

increasing VEH values up to 70 V a monotonic increase of Hc and Hex resulted. These 

trends contrast those observed in a previous study on films of similar composition with 

modifications of the interface [23].  Using much higher ion-beam bombardment 

energies of VEH= 70 - 150 V, caused greater damage to the AF spin configuration in the 

CoFe-oxide layer and increased in the degree of misalignment [27,28], which resulted in 

a decrease of Hex. In addition, the linear increase of Hc vs VEH in the Co90Fe10 / 

CoFe-oxide bilayers in this study indicates that an enhancement of the Co90Fe10 

anisotropy could be achieved by coupling to the defects created by ion-beam 

bombardment on the AF CoFe-oxide surface that act as pinning sites of domains during 

the magnetization reversal processes [21]. 

    Further evidence of the nature of the exchange coupling between the Co90Fe10 and 

CoFe-oxide layer is evident in the temperature dependence of the zero field-cooled (ZFC) 

and field-cooled (FC) DC susceptibility (M vs T) data measured with a Quantum Design 

VSM using 100 Oe, as shown in Fig. 3. The difference in the ZFC/FC curves is small 

(e.g., consider the ∆MFC-ZFC in Fig. 4) in Co90Fe10 / CoFe-oxide bilayers without (VEH= 0 

V) or with low energy ion-beam bombardment (VEH = 40 and 50 V). However, a 
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significant increase in the ZFC moment with increasing temperature from 50 to 300 K 

was observed for the largest VEH= 70 V [Fig. 3]. This parallels the change in the 

ferromagnetic response as a function of temperature, and is a signature of the exchange 

coupling between the Co90Fe10 and the CoFe-oxide layer, identified by its larger Hex. 

Note that a similar effect was also observed in NiFe/NiFeO thin films [29]. The blocking 

temperature, TB, estimated by the magnetization with a maximum in the ZFC scan [29], 

was found to increase with increasing VEH from 180 K (VEH = 0 V) to 230 K (VEH = 70 

V), as shown in the inset of Fig. 3.     

Our previous work on NiFe/NiO bilayers [21] has shown that the pure ferromagnetic 

(e.g., permalloy) layer usually exhibited identical ZFC and FC curve with Happ = 100 Oe 

(i.e. ΔMFC-ZFC(T)= 0), while the coupling of the FM layer with an AFM layer like NiO 

will result in a clear divergence between MZFC(T) and MFC(T). In the present study, a 

similar behavior was found in which the degree of divergence (ΔMFC-ZFC) seems to 

depend strongly on the ion-beam modification of exchange bias, as demonstrated by the 

increase of ΔMFC-ZFC (at 50 K) with increasing VEH, as shown in Fig. 4.   

    The degree of exchange coupling is qualitatively estimated by the difference in 

magnetization (Δ) [29] between FC and ZFC at 50 K, which is about 3% in a spin (or 

cluster) glass [30] and about 0.5% in a pure permalloy layer [29]. The Co90Fe10 / 

CoFe-oxide (VEH= 70 V) bilayer exhibited the largest difference in magnetic moment (Δ~ 

40%), compared to those of Δ (<10%) in the Co90Fe10 / CoFe-oxide bilayers with 

CoFe-oxide surface being bombarded by lower energies (40 and 50 V) or without 
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bombardment (Δ~ 3%). The Co90Fe10 / CoFe-oxide (VEH= 70 V) bilayer also had the 

highest exchange bias, and lowest room temperature remanence Mr. Therefore, the 

difference (Δ) in magnetic moment at 50 K between ZFC and FC curves is a measure of 

the onset of exchange coupling between FM Co90Fe10 and AFM CoFe-oxide, which 

altered the ferromagnetic properties. Moreover, it is clear that the temperature where this 

occurred depended on the ion-beam bombardment energy, implying the formation of 

differing amounts of stable uncompensated AF CoFe-oxide moments with differing ion 

doses. 

 

4. Conclusions 

    Low-energy Ar ion-beam bombardment was used to modify the exchange bias 

effects of Co90Fe10 / CoFe-oxide bilayers. At low temperature, the Co90Fe10 / CoFe-oxide 

bilayers exhibited an almost linear increase of coercivity and exchange bias field with 

increasing Ar ion-beam bombardment energy on the bottom CoFe-oxide surface. This 

indicated that the ion-beam bombardment of the CoFe-oxide surface created defects that 

acted as pinning sites to affect the magnetization reversal processes in Co90Fe10, thus 

resulting in coercivity enhancements. This process also promoted the formation of 

thermally-stable uncompensated moments near the surface of the bottom CoFe-oxide 

layer that permitted exchange bias loop shifts.  
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Figure captions 

Fig. 1. The planar-view TEM micrographs of the bottom CoFe-oxide layer with Ar 

ion-beam bombardment on the surface with different energies (VEH) of (a) 0 V, (c) 50 V, 

and (e) 70 V. The cross-sectional TEM micrographs of the Co90Fe10 / CoFe-oxide bilayer 

with the bottom layer bombarded with different VEH are shown in (b) 0 V, (d) 50 V, and 

(f) 70 V, respectively. 

Fig. 2. Hysteresis loops of Co90Fe10 / CoFe-oxide (VEH= 0, 40, 50, and 70 V) bilayers 

measured at (a) 298 K and (c) 50 K (after FC in 12 kOe). (b) Remanent magnetization Mr 

at 298 K as function of VEH. (d) Dependence of Hc and Hex on VEH at 50 K after FC. 

Fig. 3. The temperature dependence of ZFC and FC magnetization of Co90Fe10 / 

CoFe-oxide bilayers. The blocking temperature vs VEH is shown in the inset. 

Fig. 4. The temperature dependence of the difference between ZFC and FC magnetization 

(ΔMFC-ZFC) of Co90Fe10 / CoFe-oxide bilayers. The ΔMFC-ZFC at 50 K vs VEH is shown in 

the inset. 
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Fig. 1. 
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Fig. 2. 
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Fig. 3.  
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Fig. 4.  
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