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Abstract— In this paper, we examine the use of image segmen-
tation approaches for target detection in TWRI. The between-
class variance thresholding, entropy-based segmentation, and K-
means clustering are applied to segment target and clutter re-
gions. Real 2D polarimetric images are used to demonstrate that
simple histogram-based segmentation methods produce either
comparable or improved performance over the Likelihood Ratio
Tests (LRT) detector. Specifically, the results show that, for the
cases considered, the entropy-based segmentation outperforms
the other image segmentation methods and the LRT detector.

I. INTRODUCTION

Imaging of building interiors has recently been a subject
of interest in many applications related to rescue missions,
homeland security, and defense [1]. Indoor images are typi-
cally characterized by the presence of both spatially extended
targets, like exterior and interior walls, and compact targets,
such as humans. Also, near-field operations give rise to point
spread functions that vary in range and cross-range [2]. Ac-
cordingly, the same target can have different spatial distribu-
tion, depending on its position.

The operator of the radar imaging system is faced with
the difficult task of separating the target pixels from those of
noise and clutter. Original images produced by backprojetion
methods are often cluttered by the second and higher order
reflections including targets and walls and by antenna cross
talk. This requires the application of image segmentation
techniques to distinguish between target and non-target regions
in the image.

Detection of stationary targets in through-the-wall radar
imaging (TWRI) using statistical detectors based on likeli-
hood ratio tests (LRT) applied to the image pixels has been
discussed in [3], [4]. Specifically, a Neyman-Pearson (NP)
test was used to detect targets in indoor radar images by
defining pixel-wise null and alternative hypotheses, coupled
with a user-defined false alarm rate (FAR). The detector then
generates a binary mask that depicts the target locations in
the image as an output. However, the LRT approach also
assumes particular probability density functions (PDFs) with a

∗The work by C.H. Seng and A. Bouzerdoum has been supported in part
by the Australian Research Council.

†The work by M.G. Amin and F. Ahmad was supported in part by the US
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set of unknown test parameters. The need to define appropriate
PDFs for target and clutter in the image, and to specify an
appropriate FAR by the operator presents a shortcoming of
the LRT detector, since in most cases, neither the PDFs nor
the FAR is known a priori.

In this paper, rather than setting the threshold using LRT,
we use image segmentation methods for target detection in
TWRI. Segmentation of radar images is often performed
with the ultimate goal to improve the image quality for
subsequent analysis and scene description [5]. Generally,
radar image segmentation is essential for applications such
as target detection, classification, and identification. Hence,
we investigate image segmentation methods for TWRI, which
can also be applied for target detection. There have been a
number of survey papers on thresholding [6], [7]. We cannot
possibly apply and compare all existing thresholding methods
in this paper. Yet, we chose three commonly used image
segmentation methods for evaluation and comparison, namely,
the between-class variance (BCV) thresholding [8], entropy-
based segmentation [9], and K-means clustering [10]. All of
the above methods are object independent and expected to cast
strong target and clutter as objects. Thus, walls, together with
the targets, are expected to be highlighted. The segmentation
process associated with these techniques produces threshold
values, thus generating binary masks that are similar to that
of the LRT detector. It is noted that image segmentation
methods have been applied for object detection in Synthetic
Aperture Radar (SAR) aerial images and Ground Penetrating
Radar (GPR) images [5], [11]. They have also been considered
as a pre-processing stage for change detection and object
classification [12], [13] in radar images.

The LRT detector and the proposed segmentation methods
are evaluated and compared using real two-dimensional (2D)
polarimetric images collected at the Radar Imaging Lab,
Villanova University. Since both methods produce a binary
mask, their performance is assessed in terms of improvement
in separation of target from clutter in individual images.
We show that, for the cases considered, the entropy-based
segmentation method outperforms other image segmentation
techniques, including the LRT detector, by providing higher
clutter suppression, while successfully maintaining the tar-
get regions. The BCV thresholding and K-means clustering



methods provide similar results to those of the entropy-
based segmentation when considering target regions; however,
their respective clutter levels are much higher. Nevertheless,
the proposed methods are more advantageous than the LRT
detector since they do not require a predefined PDF and FAR.

The remainder of the paper is organized as follows.
Section II reviews the LRT target detection method proposed
in [3], [4]. The image segmentation methods, which form an
alternative to through-the-wall radar target detection is then
described in Section III. Section IV evaluates the performance
of the LRT detector and image segmentation methods using
real data, and Section V concludes the paper.

II. LIKELIHOOD RATIO TESTS DETECTOR

In this section, we review the general image domain frame-
work for LRT based target detection. Specifically, we consider
the iterative version of the pixel-wise NP detector introduced
in [3] that adapts the test parameters to the radar image
statistics.

Let Ĭj , j = 1, 2, . . . , J be the set of J magnitude images.
The pixel-wise NP test is given as

J∏
j=1

Pr(Ĭj |H1)

Pr(Ĭj |H0)
≷ γ, (1)

where H0 and H1 denote, respectively, the null (target ab-
sent) and alternative (target present) hypothesis. The functions
Pr(·|H0) and Pr(·|H1) are the conditional PDFs under the null
and alternative hypothesis, respectively, and the parameter γ
is the likelihood ratio threshold, which can be obtained by
specifying a desired FAR, α, as

α =

∫ ∞

γ

P�(�|H0)d�, (2)

where P�(�|H0) denotes the distribution of the likelihood ratio
under the null hypothesis.

Let θ̂0H0
and θ̂0H1

denote the initial estimates of the param-
eter vectors θH0

and θH1
describing the PDFs under H0 and

H1, respectively. Given a FAR α, a binary image B1
NP , where

superscript 1 represents the first iteration, can be obtained by
evaluating (1). In order to enhance and optimize the estimation
of the noise and test PDF parameters, morphological filtering
is employed to obtain the binary image B1

MF (see [4] for
details). This image can be used as a mask on the original set
of images in order to obtain the revised parameter estimates
θ̂1H0

and θ̂1H1
. These revised parameters are then fed back to the

NP test to obtain an improved detection result. The iteration
stops when convergence is achieved.

It is noted that the final output of the LRT detector described
above is a single binary image that indicates the presence of
the targets.

III. IMAGE SEGMENTATION

Image segmentation based on histogram information is a
simple technique which involves the basic assumption that the
objects and the background in the sensed image have distinct
gray level distributions. Since objects in remotely sensed

imagery are often homogeneous, threshold values separating
two or more distinct peaks in the gray level histogram can
be obtained. Threshold selection methods can be classified
into two groups, namely, global methods and local methods.
A global thresholding technique separates the entire image
into target and background regions with a single threshold
value, whereas local thresholding methods partition the given
image into a number of sub-images and determine a threshold
for each of the sub-images separately. As global thresholding
methods are computationally less intensive, they have been
more popular for radar image analysis [14]. In this paper,
we consider two of the commonly applied global thresholding
methods, namely, between-class variance (BCV) thresholding
[8] and entropy-based segmentation [9]. Since image segmen-
tation can also be viewed as the partitioning of the observed
intensities into groups, we also consider the application of K-
means clustering [10].

Consider the histogram of an input image as a discrete PDF
ρ(i):

ρ(i) = fi/N (3)

with ρ(i) ≥ 0 and
∑L−1

i=0
ρ(i) = 1, where fi is the frequency

of intensity level i and N is the total number of pixels in
the image. Each pixel in the image assumes an intensity level
from the set {0, 1, ..., L− 1}, where L denotes the number of
intensity levels or histogram bins.

A. Between-Class Variance Thresholding

The BCV thresholding method segments an image into
two near-uniform regions by maximizing the sum of class
variances [8]:

fBCV = argmax
d

{
pr1(d)

[
mr1(d)−mĬ

]2
+ pr2(d)

[
mr2(d)−mĬ

]2 }
, (4)

where mĬ is the mean image intensity. By dividing the
histogram into two regions with intensity level d, the respective
region probabilities can be expressed as

pr1(d) =
d∑

i=0

ρ(i), pr2(d) =
L∑

i=d+1

ρ(i). (5)

Similarly, the means of the respective regions are given as

mr1(d) =

d∑
i=0

i · ρ(i)

pr1(d)
, mr2(d) =

L∑
i=d+1

i · ρ(i)

pr2(d)
. (6)

All values of d = 1, 2, ..., L− 2 are considered and the corre-
sponding functions (4 - 6) are evaluated. The intensity value,
d, that produces the maximum sum of the class variances is
chosen as the threshold value TBCV .

B. Entropy-Based Segmentation

Similar to the BCV method, the entropy-based segmentation
decides on the threshold value in an exhaustive fashion. Instead
of maximizing the sum of class variances, the entropy-based
segmentation maximizes the sum of class entropies. Based on



the information derived from the image histogram, the entropy
of two regions is maximized using the following equation [9]:

fH = argmax
d

{Hr1(d) +Hr2(d)} , (7)

where Hr1(·) and Hr2(·) are the respective region entropies.
Let pi be the probability of intensity level i and Pd =

∑d
i=1

pi
is the total probability. The entropy of each region can be
expressed as

Hr1(d) = −

d∑
i=1

pi
Pd

ln
pi
Pd

(8)

Hr2(d) = −
L∑

i=d+1

pi
Pd

ln
pi
Pd

. (9)

Given that the entropy for a region can also be calculated as

Hd = −

d∑
i=1

ρ(i) ln ρ(i), (10)

the total entropy of the image can be expressed as

Htot = −

L∑
i=1

ρ(i) ln ρ(i). (11)

Thus, (8 - 9) can be simplified as follows:

Hr1(d) = −

d∑
i=1

pi
Pd

ln
pi
Pd

= ln(Pd) +
Hd

Pd

(12)

Hr2(d) = −

L∑
i=d+1

pi
Pd

ln
pi
Pd

= ln(1− Pd) +
Htot −Hd

1− Pd

(13)

Evaluating d from 1 to L − 2, the intensity value, d, that
produces the maximum sum of the distribution entropies is
chosen as the threshold value TH .

C. K-Means Clustering

Clustering methods partition the observed intensities into
classes, which are generally unknown and are explored based
on the data by using a similarity measure. Given N pixels, the
K-means clustering method partitions them into K clusters by
minimizing the sum of the within-cluster variances (WCSS)
[10]:

WCSS =
K∑

k=1

N∑
i=1

||vki − μk||
2, (14)

where vki is the i-th sample of the k-th class with centroid
μk. The pseudo-code for the K-means clustering is given as
follows:

1) Initialize the number of classes K and centroids μk.
2) Assign each pixel to the group whose centroid is the

closest.

3) After all the pixels have been assigned, re-calculate the
centroids.

4) Repeat Steps 2 and 3 until the centroids no longer
change.

Although the K-means is computationally very efficient,
the major disadvantage is the need to specify the number
of classes a priori. In the absence of this knowledge, one
may resort to measures that could estimate the number of
classes automatically [15]. This approach is not considered
here. Instead, we set the number of classes as two to ensure
consistency with the other image segmentation methods.

IV. EXPERIMENTAL RESULTS

We evaluate both the LRT detector and the image segmen-
tation methods using real 2D polarimetric images collected
at the Radar Imaging Lab, Villanova University. The scene
consists of calibrated targets, acquired from a single viewpoint
using multiple polarizations. Both co-polarization (HH and
VV) and cross-polarization (HV) data sets were collected from
the scene, containing a sphere, a top hat, a vertical dihedral,
two dihedrals rotated at 22.5 and 45 degrees, respectively, and
two trihedrals, all placed at different downranges, cross-ranges,
and elevations, as shown in Fig. 1. For each polarization
setting, the scene is imaged with a 1 GHz waveform centered
at 2.5 GHz through a non-homogeneous plywood and gypsum
board wall using a 57-element linear array with an inter-
element spacing of 22 mm. The input images obtained from
the scene are shown in Fig. 2. It can be observed that only
two targets are visible in the cross-polarization image. This is
due to the fact that the rotated dihedrals produce a stronger
cross-polarization return.

We note that all radar images presented in this Section are
plotted on a 35 dB log scale, and the vertical and the horizontal
axes represent the downrange and cross-range, respectively,
with units in meters. The FAR for the LRT detector was fixed
at 2.5%.

Antenna Array
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Fig. 1. Schematic of the scene.

After applying the LRT detector and image segmentation
methods to the input images, the generated binary images
are then used as a mask on the original images to produce
corresponding enhanced images. The image enhancements are



Fig. 2. Images acquired from the scene.

compared using the Improvement Factor of the Target-to-
Clutter Ratio, denoted as IF. Let P

R,Ĭ denotes the average

power of region R in image Ĭ . The IF is given as

IF = 10 log10

[
P
Rt,Ĭe

× P
Rc,Ĭi

P
Rt,Ĭi

× P
Rc,Ĭe

]
, (15)

where Ĭi is the input image and Ĭe is the enhanced image.
P
Rr,Ĭm

can be expressed as

P
Rr,Ĭm

=
1

NRr

∑
xq∈Rr

(Ĭm(xq))
2, (16)

where Ĭm(xq) is the q-th pixel of region Rr in image Ĭm, and
NRt

and NRc
are the number of pixels in the target region,

Rt, and clutter region, Rc, respectively.
The results of applying both methods to the input images

in Fig. 2 are presented in Fig. 3. We observe that the LRT
detector applied to the individual images did not yield image
enhancements. The noise and clutter present in the original
images persist even after application of the LRT detector.
As for the BCV thresholding, the clutter has been slightly
reduced. The K-means clustering produces a similar result to
that of the BCV. Although there were some missed detections,
visually, the entropy-based segmentation outperforms all the
other methods by producing images with low clutter levels.

The IFs for the results are provided in Table I. With
the exception of the cross-polarization case, where the BCV
thresholding and the K-means clustering removed all the
clutter to obtain the highest IF, it is evident that the entropy-
based segmentation generally outperforms the other methods
by producing enhanced images with high IF; albeit with some
missed detections.

TABLE I

IF IN TARGET-TO-CLUTTER RATIO AFTER IMAGE ENHANCEMENTS

HH HV VV
LRT Detector 2.5% FAR 1.962 2.5124 3.0411
BCV Thresholding 2.5501 17.7063 2.1898
Entropy-based Segmentation 4.3516 16.2246 6.3979
K-Means Clustering 2.571 17.7063 2.2344

From the experimental results, it can be observed that
the BCV thresholding and K-means clustering have similar
performances and their differences in the IF are almost neg-
ligible. This is due to the fact that the K-means clustering’s
minimization of the WCSS is equivalent to the BCV threshold-
ing’s maximization of the sum of class variances when there
are only two regions [8]. It can also be observed that the
BCV thresholding generally has a poorer performance than
the entropy-based segmentation. This is because the sparsity
of the high pixel values (target pixels) in a through-the-wall
radar image requires the BCV thresholding method to also
include low pixel values (clutter pixels) in its class, in order
to obtain a high class variance. This is evident from Fig. 4
that the maximum class variances for both regions in the co-
polarization and cross-polarization images are skewed towards
the lower pixel regions.

Since the maximum class variances for the second region
in the co-polarization images are also located in the lower
pixel values region, the summation of both class variances
produce a threshold value that is also located in the lower
pixel values region. As a result, the segmented co-polarization
image included most of the clutter. On the other hand, since
the maximum class variance for the second region of the cross-
polarization image is located at a much higher pixel value, its
dominance causes the summation of both class variances to
produces a much higher threshold value.

As for the entropy-based segmentation, it can be observed
from Fig. 5 that the respective class entropies are less affected
by the skewness towards the low pixel values region. As the
threshold value is increased, the entropy of one region will
generally decrease while the entropy of the other region will
increase. Thus, the maximization of the sum of class entropies
will produce a balanced threshold where the information
content in both regions are almost equal.

V. CONCLUSION

In this paper, we examined image processing approaches
for target detection in TWRI. Image segmentation techniques
are applied to enhance the images by distinguishing between
the target and clutter regions. Performance of the various



Fig. 3. Target detection and segmentation: from top to bottom, LRT detector, BCV thresholding, entropy-based segmentation, and K-means clustering.



Fig. 4. Class variances with respect to the threshold values for co-polarization images (right) and cross-polarization image (left).

Fig. 5. Class entropies with respect to the threshold values for co-polarization images (right) and cross-polarization image (left).

approaches were evaluated using real 2D polarimetric im-
ages. The results showed that the entropy-based segmentation
method outperforms the other segmentation schemes, as well
as the LRT detector. Although there were some missed de-
tections, the entropy-based segmentation consistently provided
high target and low clutter levels. While the BCV thresholding
and K-means clustering also maintained most of the targets,
the clutter levels were much higher by comparison. Compared
to the LRT detector, in addition to enhanced performance, the
image segmentation techniques do not require pre-set values
and are free from human intervention. Hence, for the cases
considered, the entropy-based segmentation is most effective
and viable alternative for target detection in TWRI.
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