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HORADAM FUNCTIONS AND POWERS OF IRRATIONALS

MARTIN W. BUNDER

Abstract. This paper generalises a result of Gerdemann to show (with slight variations in
some special cases) that, for any real number m and Horadam function Hn(A, B, P, Q),

mHn(A, B, P, Q) =

kX
i=h

tiHn+i(A, B, P, Q),

for two consecutive values of n, if and only if,

m =

kX
i=h

tia
i =

kX
i=h

tib
i

where a =
P+
√

P2−4Q

2
and b =

P−
√

P2−4Q

2
.

(Horadam functions are defined by: H0(A, B, P, Q) = A, H1(A, B, P, Q) = B,
Hn+1(A, B, P, Q) = PHn(A, B, P, Q)−QHn−1(A, B, P, Q).)
Further generalizations to the solutions of arbitrary linear recurrence relations are also

considered.

1. Introduction and notation

Horadam functions were first studied by Horadam in [6] and [7]. They can be defined by:

Definition 1.1. H0(A,B, P,Q) = A, H1(A,B, P,Q) = B,
Hn+1(A,B, P,Q) = PHn(A,B, P,Q)−QHn−1(A,B, P,Q).

Special cases include the Lucas functions Un(P,Q) = Hn(0, 1, P,Q) and Vn(P,Q) = Hn(2, 1, P,Q),
the Pell polynomials Pn(x) = Un(2x,−1), the modified Pell polynomials qn(x) = Hn(1, x, 2x,−1)
and q∗n(x) = Hn(1, 1, 2x,−1) as well as the Pell numbers Un(1,−2), the Lucas numbers
Vn(1,−1), the Jacobstahl numbers Un(1,−2) and, of course, the Fibonacci numbers Fn =
Un(1,−1).

Often Hn(A,B, P,Q) will be abbreviated to Hn and Un(P,Q) to Un.
There are 84 pages on Horadam functions in OEIS, however most of the functions men-

tioned specifically have Hn = Un or Un+1. Two exceptions are Hn(1, 3,−1, 1) (A048739) and
Hn(1, 4, 2,−1) (A048654).

Usually A,B, P and Q are taken to be integers. Lehmer in [8] does allow P to be the square
root of an integer. In most of this paper A,B, P and Q can be arbitrary complex numbers.

Two important functions of P and Q, which appear in the explicit forms of Hn and Un are
now defined.

Definition 1.2. a(P,Q) and b(P,Q) are the roots of the equation x2 − Px+Q = 0.

These will usually be written as a and b.
If P 2 − 4Q is real and positive these can be written as:

a =
P +

√
P 2 − 4Q
2

, b =
P −

√
P 2 − 4Q
2

.

1



2 MARTIN W. BUNDER

2. Some properties of Horadam functions

We now list some known results. These are as in Horadam [6], except that he only gives
some special cases of (ii).

Theorem 2.1. (i) If n ≥ 0 and P 2 6= 4Q, Hn =
(
B −Ab
a− b

)
an +

(
B −Aa
b− a

)
bn.

(ii) If n ≥ 0, Hn(A,B, P, P 2/4) = nB(P/2)n−1 − (n− 1)A(P/2)n.

(iii) If n ≥ 0 and P 2 6= 4Q, Un =
an − bn

a− b
.

(iv) If n ≥ 0, Un(P, P 2/4) = n(P/2)n−1.

We also list some obvious special cases.

Corollary 2.2. (i) If P 2 6= 4Q, B = Ab and n ≥ 0, Hn = Abn.
(ii) If P 2 6= 4Q, B = Aa and n ≥ 0, Hn = Aan.
(iii) If B = (P/2)A, P 2 = 4Q and n ≥ 0, Hn = A(P/2)n = Aan = Abn.
(iv) If P = 0 and n ≥ 0, H2n = (−Q)nA and H2n+1 = (−Q)nB.
(v) If P 6= 0, Q = 0 and n > 0, Hn = BPn−1.
(vi) If P = Q = 0 and n > 1, Hn = 0.

The next theorem relates Horadam functions to Lucas and other Horadam functions. The
q=0 case of (i) also appears in Horadam [6].

Theorem 2.3. (i) If n > q ≥ 0, Hn = Uq+1Hn−q −QUqHn−q−1.
(ii) Hn(A,B, P,Q) = Hn−1(B,BP−AQ,P,Q) = Hn−i(Hi(A,B, P,Q), Hi+1(A,B, P,Q), P,Q).
(iii) Hn(A,AP, P,Q) = AUn+1(P,Q).
(iv) kHn(A,B, P,Q) = Hn(kA, kB, P,Q).
(v) knHn(A,B, P,Q) = Hn(A, kB, kP, k2Q).

Proof. (i) By induction on q.
If q = 0, Hn = 1.Hn −Q.0.Hn−1.
If the result holds for q, then
Hn = Uq+1(PHn−q−1 −QHn−q−2)−QUqHn−q−1 = Uq+2Hn−q−1 −QUq+1Hn−q−2.
So the result holds for all n > q ≥ 0.
(ii) By the recurrence relation for Un and (i),

Hn(A,B, P,Q) = (BP −AQ)Un−1 −BQUn−2

= Hn−1(H1, H2, P,Q)
= Hn−2.(H2, H3, P,Q)
= ...

= Hn−i(Hi, Hi+1, P,Q).

(iii) By (i).
(iv) By Theorem 2.1(i) and (ii).
(v)

ka(P,Q) =
kP +

√
(kP )2 − 4k2Q

2
= a(kP, k2Q).
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Similarly kb(P,Q) = b(kP, k2Q). So if P 2 6= 4Q,

Hn(A, kB, kP, k2Q) =
(

kB −Akb(P,Q)
k(a(P,Q)− b(P,Q))

)
knan(P,Q)

−
(

kB −Aka(P,Q)
k(b(P,Q)− a(P,Q)

)
knbn(P,Q))

= knHn(A,B, P,Q).
Hn(A, kB, kP, k2P 2/4) = nBkn(P/2)n−1 − (n− 1)Akn(P/2)n

= knHn(A,B, P, P 2/4).

�

The recurrence relation for Fn can be used to define Fn for n < 0. We will do the same for
Hn when this is possible.

Theorem 2.4. Hn(A,B, P,Q) can be consistently defined for n < 0 using the recurrence
relation iff

(i) Q 6= 0, as in Theorem 2.1(i) or (ii), where also,
H−n(A,B, P,Q) = Q−nHn(A,PA−B,P,Q) = Hn(A, PA−BQ ,P/Q, 1/Q).

(ii) Q = 0, B = PA; if P 6= 0 by Hn = PnA, if P = A = 0 by Hn = 0.

Proof. (i) If Q 6= 0, as P = a+ b and Q = ab, the recurrence relation gives, if P 2 6= 4Q,

Hn−1 =
Hn+1 − (a+ b)Hn

−ab
=
(
B −Ab
a− b

)
an−1 +

(
B −Aa
b− a

)
bn−1,

so, given Hn and Hn+1, Hm can be defined for all m < n, with the explicit expression of
Theorem 2.1(i).

By Theorem 2.3(v) and Theorem 2.1(i),

Q−nHn(A,PA−B,P,Q) =
(
PA−B −Ab

a− b

)
b−n +

(
PA−B −Aa

b− a

)
a−n

=
(
B −Ab
a− b

)
a−n +

(
B −Aa
b− a

)
b−n

= H−n(A,B, P,Q)

If P 2 = 4Q 6= 0, a = b = P/2 then, by the recurrence relation,

Hn−1 = 2nB(P/2)n−2 − 2(n− 1)A(P/2)n−1 − (n+ 1)B(P/2)n−2 + nA(P/2)n−1

= (n− 1)B(P/2)n−2 − (n− 2)A(P/2)n−1,

so Hm can be defined for m < n, with the explicit representation of Theorem 2.1(ii).

Q−nHn(A,PA−B,P, P 2/4) = (P/2)−2n(n(PA−B)(P/2)n−1 − (n− 1)A(P/2)n)
= −nB(P/2)−n−1 + (n+ 1)A(P/2)−n

= H−n(A,B, P,Q).

By Theorem 2.3(v), Hn(A, (PA−B)/Q, P/Q, 1/Q) = Q−nHn(A,PA−B,P,Q).
(ii) If Q = 0 and Hn is to be defined for n < 0 by the recurrence relation, we must have

B = H1 = PH0 − 0H−1 = PA.
If P 6= 0, H0 = PH−1 − 0H−2 gives H−1 = P−1A. Similarly, for any n < 0, Hn = PnA.
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If P=0, H−i = A = PH−i−1 − 0H−i−2 = 0, for i ≥ 0, so A = B = 0 and Hn = 0 for n < 0.
�

Horadam [6] also has the P 2 > 4Q and +∞ cases of the following, but gets different results!

Theorem 2.5. If P and Q are real,
(i) P 2 > 4Q and

(a) P > 0, lim
n→∞

Hn+1

Hn
= a,

and if Q 6= 0 and either A 6= 0 or B 6= 0, lim
n→−∞

Hn+1

Hn
= b.

(b) P < 0, lim
n→∞

Hn+1

Hn
= b,

and if Q 6= 0 and either A 6= 0 or B 6= 0, lim
n→−∞

Hn+1

Hn
= a.

(ii) If P 2 = Q > 0, lim
n→+±∞

Hn+1

Hn
= P/2 = a = b.

(iii) If P = 0, H2n+1
H2n

= B
A and H2n+2

H2n+1
= −QAB .

Proof. (i) If P 2 > 4Q,

Hn+1

Hn
=

(
B−Ab
a−b

)
an+1 +

(
B−Aa
b−a

)
bn+1.(

B−Ab
a−b

)
an +

(
B−Aa
b−a

)
bn

.

(a) So if P > 0, |a| > |b| and lim
n→∞

Hn+1

Hn
= a, and, provided Hn for n < 0 is defined and

not identically 0, i.e Q 6= 0 and either A 6= 0 or B 6= 0, lim
n→−∞

Hn+1

Hn
= b.

(b) If P < 0, |b| > |a| and lim
n→∞

Hn+1

Hn
= b, and, provided Hn for n < 0 is defined and not

identically 0, i.e.Q 6= 0 and either A 6= 0 or B 6= 0, lim
n→−∞

Hn+1

Hn
= a.

(ii) If P 2 = 4Q,

Hn+1

Hn
=

(n+ 1)B(P/2)n − nA(P/2)n+1.

nB(P/2)n−1 − (n− 1)A(P/2)n
=

(n+ 1)BP/2− nA(P/2)2.
nB − (n− 1)AP/2

.

So lim
n→∞

Hn+1

Hn
= P/2.

(iii) By Corollary 2.2(iv). �

Note that Horadam [6] has, for P 2 > 4Q:

lim
n→∞

Hn+1

Hn
= a, if −1 ≤ b ≤ 1, which is equivalent to −P − 1 ≤ Q and either P < 2 or

P ≥ 2 and Q ≤ P − 1,
and
lim

n→∞

Hn+1

Hn
= b, if −1 ≤ a ≤ 1, which is equivalent to P − 1 ≤ Q and either P > −2 or

Q ≤ −P − 1 and P ≤ −2.

We can have both conditions holding, for example if P = 1 and Q = 0, a = 1 and b = 0, or
neither, for example when P = 3 and Q = −5, a = 3+

√
29

2 , b = 3−
√

29
2 .
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The following theorem is needed later.

Theorem 2.6. (i) Hn − bHn−1 = (B −Ab)an−1.
(ii) Hn − aHn−1 = (B −Aa)bn−1.

Proof. (i) If P 2 6= 4Q, Hn − bHn−1 =
(
B −Ab
a− b

)
an +

(
B −Ab
b− a

)
an−1b = (B −Ab)an−1. If

P 2 = 4Q, a = b = P/2 and

Hn−bHn−1 = nB(P/2)n−1−(n−1)A(P/2)n−(n−1)B(P/2)n−1+(n−2)A(P/2)n = (B−Ab)an−1.

(ii) Similar. �

3. Generalising Gerdemann

Gerdemann’s Theorem 1.1 of [3] is a special case of:

Theorem 3.1. (i) If P,B 6= 0 and B = Aa,

mHn =
k∑

i=h

tiHn+i (3.1)

for any one value of n, iff

m =
k∑

i=h

tia
i. (3.2)

(ii) If P,B 6= 0 and B = Ab, (3.1) for any one value of n, iff

m =
k∑

i=h

tib
i (3.3)

(iii) If P,B 6= 0 and Q = 0, a = P and b = 0 or b = P and a = 0 and (3.1) for any one
value of n, iff (3.2) if a = P and (3.3) if b = P .

(iv) If P,Q 6= 0 and (3.1) holds for any two values of n then (3.2) and (3.3) hold.
(v) If P,Q 6= 0, P 2 − 4Q 6= 0 or B = AP/2, and (3.2) and (3.3) hold then (3.1) holds.

Proof. (i) If P,B 6= 0 and B = Aa, a 6= 0. If P 2 6= 4Q, by Corollary 2.2(ii) and Therem 2.4(i)
and if P 2 = 4Q (as then a = b) by Corollary 2.2(iii) and Theorem 2.4(ii), Hr = Aar whenever
Hr is defined. Clearly (3.1) iff (3.2).

(ii) As for (i) with Hr = Abr.
(iii) If P 6= 0 and Q = 0, a = P and b = 0 or a = 0 or b = P , so by Corollary 2.2(v) and

Theorem 2.4(ii), Hr = AP r−1. So (3.1) holds iff (3.2) iff a = P and b = 0 or iff (3.3) if b = P
and a = 0.

(iv) Assume that (3.1) holds for a particular n and also for some q < n. Applying Theorem
2.3(i) to (3.1) gives

Un−qmHq+1 −QUn−q+1mHq =
k∑

i=h

ji(Un−qHq+i+1 −QUn−q+1Hq+i) (3.4)

Adding QUn−q+1 times, (3.1), with q for n, to this and dividing by Un−q (which is not 0 by
Theorems 1(iii) and (iv)), gives (3.1) with q+ 1 for n. Similarly (3.1) can be derived whenever
all the Horadam functions appearing in it are definable. In particular we have (3.1) with n−1
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for n. and so, by Theorem 2.6(i), as a 6= 0, (3.2) holds. Similarly by Theorem 2.6(ii), as b 6= 0,
(3.3) holds.

(v) If If P,Q, P 2 − 4Q 6= 0, this follows by Theorem 2.1(i) and Theorem 2.4(i). If P,Q 6=
0, P 2 = 4Q and B = (AP )/2, it follows by Corollary 2.2(iii) and Theorem 2.4(i). �

If any of the conditions in the parts of Theorem 3.1 fail, we show that the results will usually
fail.

If B = 0, H1 can be added to the right of (3.1), but the corresponding a1−n or b1−n cannot
be added to the right of (3.2) or (3.3). Also with h = k = 1 − n and t1−n = a, (3.2) is
m = aa1−n, while a2−nHn 6= aH1

If P = 0, a =
√
−Q = −b, by Corollary 2.2(iv), (3.1) can be BH2n = AH2n+1. (3.2) and

(3.3) fail as B need not equal ±A
√
−Q. Also if −Q =

√
−Qa is (3.2) and (3.3) is Q =

√
−Qb,

(3.1) fails as −QHn 6= ±
√
−QHn+1.

Now we give some more specific examples.
Examples

1. If P = 5, Q = 6, a = 3, b = 2. So if B = bA 6= aA and Hn = A2n,

14Hn =
3∑

i=1

Hn+i, while 14 =
3∑

i=1

2i, but
3∑

i=1

3i = 39 6= 14.

2. If P = 1, Q = −1, a = 1+
√

5
2 , b = 1−

√
5

2 , so if B = bA 6= aA, Hn = Abn, 2Hn =
Hn+1 +Hn−2, and 2 = a+ a−2 = b+ b−2.

3. If P = Q = 4, A = 1 and B = 3, P 2 = 4Q, a = b = 2 so B 6= aP/2. We have
3H2 = H3+H1+H0 = 24, as (2.1) while (3.2) and (3.3) fail as 3 6= 2+2−1+2−2. Also (3.2) and
(3.3) can hold as 4 = 2+2.2−1+4.2−2 while (3.1) fails as 4 = 4H0 6= H1+2H−1+4H−2 = 31/2.

4. If P = 2i, Q = 31
2 , a =

(
2+3
√

2
2

)
i, b =

(
2−3
√

2
2

)
i. 71

2Hn = −Hn+2 − 7iHn−1 and

71
2 = −a2 − 7ia−1 = −b2 − 7ib−1.

Gerdemann’s version of Theorem 3.1 was as follows:

mFn =
k∑

i=h

Fn+ci <=> m =
k∑

i=h

τ ci (3.5)

where τ = 1+
√

5
2 .

Gerdemann also showed that, for any integer m, integers h, k and ch, . . . , ck, independent
of n, can be found so that the left of this equivalence holds. Hence any positive integer m can
be expressed as a sum of powers of τ .

4. Further Generalization

The anonymous referee suggested that the result could perhaps be generalized to higher
order linear recurrences such as:

Gn =
n−1∑

i=n−s

qn−iGi (4.1)

where Gi = Ai for 0 ≤ i < s.
Grabner, Tichy, Nemes and Petho [4], in fact, do just that, in the special case where Gn is

a Pisot recurrence. This requires: G0 = 0, Gk = q1Gk−1 + . . . qkG0 + 1 for 1 ≤ k < s and
q1 ≥ q2 . . . ≥ qs.



HORADAM FUNCTIONS AND POWERS OF IRRATIONALS 7

Their Lemma 1.1 states that if Gn is a Pisot recurrence,

mGn =
k∑

i=h

jiGn+i (4.2)

iff

m =
k∑

i=h

jix
i (4.3)

where x is the dominating root of the equation:

xs = q1x
s−1 + . . . qs−1x+ qs. (4.4)

Without Gn being a Pisot recurrence, we can prove the following generalization of Theorem
3.1(iv) and (v):

Theorem 4.1. (i) If (4.2) is obtained by the recurrence relation (4.1), and x is any root of
(4.4), (4.3) holds.

(ii) If the solutions x of (4.4) are all distinct and (4.3) holds for all of them, (4.2) holds.

Proof. (i) By induction on the number p of uses of (4.1) in the proof of (4.2).
If p = 0, h = k = 0 and j0 = m, so (4.3) holds. If (4.2) is obtained by p uses of (4.1) and

(4.3) holds and one further use of the recurrence relation, in the form

Gn+r =
n+r−1∑

i=n+r−s

qn+r−iGi

is used, the corresponding version of (4.3) is true as the corresponding change requires

xn+r = q1x
n+r−1 + . . . qs−1x

n+r+1−s + qsx
n+r−s.

(ii) If (4.3) holds for all solutions x1, . . . , xs of (4.4) and these solutions are distinct,

Gn = k1x
n
1 + k2x

n
2 + . . .+ ksx

n
s (4.5)

where k1, . . . , ks are functions of only G0, . . . , Gs−1, q1, . . . qs. Then

mGn =
k∑

i=h

ji(k1x
i+n
1 + . . .+ ksx

i+n
s )

which is (4.2). �

We could also prove counterparts to Theorem 3.1(i),(ii) and (iii) (where not only (4.1) is
used in the derivation of (4.2)), in the case where all the kis in (4.5), except one, are zero. In
view of the examples in Section 3, it is unlikely that much more can be proved, particularly
when the roots of (4.4) are not all distinct.

There is a lot of literature on expressing integers as sums of (generalised) Horadam func-
tions or powers of rational or irrational numbers, for example Fraenkel [2], Ambroz, Frougny,
Masakova and Pelantova [1] and Hamlin and Webb [5], but only Gerdemann [3] and Grabner,,
Tichy, Nemes and Petho [4] have results such as those in Theorems 3.1 and 4.1. The referee
provided (4.2) for m = 1 to 100, for Padovan numbers Pn = Gn, as defined above, with s = 3,
q1 = 0, q2 = q3 = A0 = A1 = A2 = 1.
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