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ABSTRACT 
The paper presents a comprehensive foundation and 
implementation of Algorithm Portfolios to solve Theater 
Distribution Vehicle Routing and Scheduling Problems 
(TDVRSP). In order to evaluate the performance of 
proposed approach, it has been applied to varying 
dimensions of theater distribution problem. In particular, 
eight random search metaheuristics embedded in four 
processors, packed to form different portfolios. Four basic 
algorithms- Genetic Algorithm (GA), Simulated 
Annealing (SA), Tabu Search (TS) and Artificial Immune 
System (AIS), as well as their group theoretic 
counterparts have been utilized. The proposed approach 
also takes care of platform dependence and helps evolving 
a robust solution pack. The portfolio concept is shown to 
be computationally advantageous and qualitatively 
competitive over the benchmark set of problems. The 
paper does not only provide modeling to TDVRSP, but 
also aids in developing a generic solution framework for 
other problems of its kind. 

KEY WORDS 
Metaheuristics, Vehicle Routing and Scheduling Problem  

1.  Introduction 

The paper introduces the algorithm portfolios concept to 
resolve a class of vehicle routing and scheduling problem 
known as theater distribution vehicle routing and 
scheduling problem (TDVRSP). A basic Theater 

Distribution Vehicle Routing and Scheduling Problem 
(TDVRSP) deals with finding an economically efficient 
and time-definite delivery of the flow of personnel and 
material within the theater in order to fulfill the desired 
aims [1][2]. None of the early researches did focus on 
optimizing and prescribing the routing and scheduling 
plans for the utilization of assets in the theater while 
satisfying the customer demands and time requirements. 
Initially, such an optimization attempt was introduced by 
Crino [2] in a pioneering dissertation work and was well 
established in the literature by [3]. 

Keeping the fact that even a simple vehicle routing 
problem with scheduling objectives is NP hard [6], the 
additional constraints imposed due to consideration of 
theater distribution scenario makes the problem more 
complex. The optimal strategies do find their application 
to academic toy problems of insignificant dimensions, but 
the real dimensions demand more robust heuristic and 
metaheuristic approximation approaches so that better 
decisions, if not optimal, can be made within the 
stipulated time frames. The increasing use of 
metaheristics has spectacularly reduced the time of 
response without much depreciation in terms of solution 
quality. In particular, the state of the art random 
evolutionary metaheuristics like Genetic Algorithm (GA) 
[9], Tabu Search (TS) [7], Simulated Annealing (SA) 
[10], and more recent Artificial Immune System (AIS) [8] 
have been extensively used and their robustness and 
capability to solve complex combinatorial real time 
problems is well established. There have also been 



successful instances of amalgamation of Group Theory 
with metaheuristics, in particular, TS for solving the 
underlying TDVRSP [2][3]. Till now the research focus 
was on to get a feasible and considerably good solution 
for the extremely complex TDVRSP; the upcoming 
research focus should be the quality of solution and 
response time of the methodology adopted. Hence, one of 
the focuses of the present paper is to introduce algorithm 
portfolio for the underlying TDVRSP; analyze the relative 
performance of various strategies embedded in the 
portfolio and get an insight to the solution quality with the 
increasing problem complexity. 

A portfolio of algorithms can be defined as A collection of 
different algorithms and/or different copies of the same 
algorithm running on different processors [4][5]. The 
need of portfolio for the complex combinatorial problems 
arise from the fact that neither any random search 
algorithm can guarantee to be the best suited strategy for a 
particular type of problem, nor do the algorithm 
performance remain similar for varying dimensions and 
complexities of the same problem. The importance of the 
present paper lies in introducing algorithm portfolios, for 
the first time, using the random search metaheuristics to 
solve complex real dimension TDVRSP. Keeping in view 
the success of group theory in solving the TDVRSP [3], 
the proposed portfolios integrate the aforementioned four 
basic evolutionary metaheuristics and their corresponding 
group theoretic counterparts, thus ensuring a more robust 
experimental ground. 

The remainder of the paper is organized as follows: 
Section 2 formally describes the problem statement; 
section 3 describes the algorithm portfolio concept, details 
the implementation aspects of four basic algorithms, and 
describes the experimental design utilized; section 4 
develops with critical insights to the comparative 
performance of the algorithms and analyzes functioning 
of the portfolios along with suggestions to choosing best 
portfolios; and finally, section 5 concludes the paper with 
suggested future research. 

2.  Problem Statement 

A theater distribution is defined as a flow of material, 
personnel and equipment within a theater to suit the 
intents of combatant commander. Theater distribution 
network nodes are depots, hubs and customers (for more 
information see [2]). Depots, aerial ports of debarkation 
(APODs), and seaports of debarkation (SPODs) are the 
supply nodes. Customers are the sink nodes that receive 
cargo. All the nodes have their own time window 
constraints, fuel storage capacity and maximum on 
ground (MOG) constraints. Hubs have cargo storage 

constraints and customers have cargo demand 
requirements and time definite delivery requirements.  
The TDVRSP has tiered distribution architecture. The 
first order tier contains the depots and customers/hubs 
served by the depots. Middle tiers consist of hubs that 
service customers/hubs. The last order tier consists of end 
customers served by a hub. Each tier is a self-contained 
distribution network. 

The primary objectives of TDVRSP are to minimize 
unmet customer demand defined as demand filled 
shortfall (DFS), late deliveries called Time Definite 
Delivery shortfall (TDDS), vehicle fixed costs (FC), and 
vehicle variable costs (VC). The demand shortfall is the 
difference between the customer's total demand and the 
sum total amount of demand delivered to the customer. 
The TDDS is the weighted difference between the 
customer's desired delivery time and late delivery time for 
a set amount of demand. Fixed cost is the total cost for all 
vehicles used to deliver goods and services. Variable costs 
are the total costs for vehicles to travel the prescribed 
routes. Penalty costs include parking Maximum on 
Ground violations and hub storage capacity violations 
(MOGP). Storage Penalty (SP) refers to the penalty added 
when the storage at hubs exceeds the predefined limits. 
More insights to the problem can be found in [2]. The 
objective function (OBJ) formulated consists of sum of all 
the above mentioned penalties, and is shown below: 

OBJ = DFS + TDDS + FC + VC + MOGP + SP (1) 

3. Portfolio Design

3.1 Motivation and Instances Explored 

Albeit some algorithms usually perform better than others 
on average, it is yet not possible to define a best algorithm 
for the given problem/problem set. Rather, different 
problem instances are usually associated with varying run 
time complexities [11]. Mostly, the algorithm selection 
was attempted using ``winner take all" strategy, i.e. select 
a best performing algorithm based on its performance 
over the given problem in various attempts [12]. 

Table 1: Benchmark Characteristics 
Problem

No. Size Del. 
Restrictions

Dem./Cap. 
Ratio

1 AF-MTMS - small Low Low
14 J-MTMS-Medium Medium Medium
23 J-MTMS w/hub Medium Medium

The literature pertaining to TDVRSP is not very rich and 
only a few remarkable contributions exist in this area [3]. 
In addition, only the dissertation by Crino [2] explicitly 



details the benchmark data sets used for the study of
robust performance of Group Theoretic Tabu search
(GTTS). Problem sets are characterized in low, medium
and high level hierarchy depending upon problem size, 
problem density, demand/capacity ratio, and other
defining constraints. The three TDVRSP types
characterized in the research were: Air Force Multiple
trips multiple services (MTMS) without hub, Joint MTMS 
without hub, joint MTMS with hub and other defining
constraints. In this study one problem from each category 
has been attempted i.e., Problem Number 1, 14, and 23,
which are hereafter referred as Problem 1, 2 and 3,
respectively. Such a selection of problems was intuitive
based on the problem characteristics as described in Table
1.

The actual data set used for the problem instances can be
found in [2]. The solution to these problems has been
attempted by integrating them in a algorithm portfolio that
works on the strategy of minimizing the risk in terms of
computational cost and the solution quality obtained.

3.2 The Portfolio and Algorithmic Suit

Portfolio Design basically targets to minimize the
expected risk and gain solution advantage in terms of 
computational cost and deviation from expected. The term
efficient frontier is defined for the portfolios performing
competitively on the basis of performance measures
described in the upcoming subsections. The efficient
frontier is always helpful to enhance the decision
flexibility of the system and above all maintaining a
repository of elite portfolios for future investigations.

In the present case, the paper utilizes portfolios consisting
of eight algorithms or more specifically, four
metaheuristics and their group theoretic counterparts. The
earlier attempts to solve TDVRSP were concerned to 
using group theoretic Tabu search [2], however, an 
obvious choice is to search for other strategies as well.
But, there are circumstances where one needs to just find
good solution quickly rather than getting best solution
always, thereby intensifying the need for best portfolios
with all required adaptabilities.

All the four algorithms require similar representation
schema, although the representation changes with group
theoretic counterparts. In the interest of brevity and to
avoid rephrasing the literature, the following discussion
presents a crisp overview of the implementation of
algorithms. First, the encoding schema is detailed as
follows:

3.2.1 Encoding Schema

Basic Representation: A representative solution to the
proposed TDVRSP consist of the string that contains
customer numbers C based on total services allowed and
vehicle numbers V based on the total vehicle trips, such
that any element of | | > |V |. The string also contains
the partition variable ‘ ’ that is used to distinguish one 
tier from the other. The strings/substrings before or after
‘ ’ can be treated as independent to one another.

C
#

#
Group theoretic representation: The application of group
theoretic aspects to the algorithms detailed above require
the representation of solution as elements of symmetric
group on n-letters, , which is group of all permutations
of set A, if A is the finite set . In the group
theoretic solution representation, a vehicle trip is 
formulated by the cyclic factor in solution's disjoint cyclic 
structure. For example, a solution with the trips of two
vehicles 1 and 2, i.e. 1  4  5  1 and 2  3  2 is
represented as (1, 4, 5)(2, 3). Here, the first letter in the
each tour represents the vehicle and subsequent vertices
denote the customers served by it before returning back to
the depot/hub. The tours with unit element represent non
existent routes i.e. vehicle trip idleness. Each vehicle trip
and customer service is assigned a different number. In
mathematical terms, V and C denote the disjoint vehicle
and customer sets with the condition that |V |<| |, i.e.
first all the vehicle trips are designated numbers and the
successive numbers are allocated to the customer services.
Further insights of this type of representation can be
found in Crino [2].

nS
n2,1

C

3.2.2 Schedule Generation

The vehicle schedule is always to be generated as a
measure for quality of solution. Once the schedule is
generated the objective function value is obtained from
equation 1. The Vehicle Loader/Scheduler Evaluation 
Heuristic [2] has been used to obtain the schedule.

3.2.3 Neighborhood Generation

The neighborhood generation is the most crucial stage in
the implementation of any algorithm over the TDVRSP.
Neighborhood generation scheme decides the search path
adopted by the algorithm. This section first presents the 
two types of neighborhoods that are generated for the first
four basic algorithms and later on the group theoretic
neighborhoods corresponding to further four algorithms
have been defined. These are:

Neighborhood Generation Schemes for first four
algorithms: The two neighborhood generation, which is 
adopted in this section are - within route neighborhood;



and between route neighborhoods. The first one is based
on k-opt [14] improvement for the Traveling Salesman
Problem (TSP). The second type of neighborhood
(between the routes) takes into account the exchanges of
customers or a set of customer of two routes within a tier.
Two types of between the route neighborhoods have been
used and these are - (a) String Relocation Method: This
procedure inserts a customer or a group of customers from
one route to another route within the same tier. (b) String
Exchange Method: This move exchanges two customers
or two sets of customers between every two routes within
the same tier. 

Group Theoretic Neighborhoods for the other four
algorithms: Group theoretic neighborhoods are a
collection of moves specifically designed to suit the
TDVRSP and corresponding group representation
requirements. Four group theoretic neighborhoods, each
defined for specific purposes have been utilized for this
research, these are: (a) Inter-orbital plane swap move
neighborhood: This move is similar to swap move with
two customers from disjoint sets generated in preTabu
Search phase. These moves are initially generated and
stored, and later are used when called upon. (b) Fill
demand insert move neighborhood: This move is invoked
in order to get the solution with minimized demand
shortfall. (c) Inter-conjugacy class extraction move
neighborhood: This move specifically aims to generate
neighborhood that takes care of the time definite delivery
shortfall. These neighborhoods are generated sequentially
in order to get a better and feasible solution to the
problem. These neighborhood generation schemes are
utilized by the following algorithms utilized in the 
portfolio analysis. The generation mechanism of the 
Group theoretic neighborhoods is more specifically
detailed in [2].

3.3 Evaluating a Portfolio and Performance Measures

A Portfolio is evaluated on the basis of risk associated
with it. The major aim to construct a portfolio is to gain
computational advantage and quality edge while solving
the problem at hand. The expected computational cost
associated with a portfolio is the expected value of
random variable associated with the portfolio; whereas,
standard deviation is the measure of the computational
cost obtained while using the portfolio of algorithms.
Thus, conceptually standard deviation is a measure of risk
associated with the portfolio. 

In the present case, let be the set of
random variables associated with n algorithms under
consideration. is defined on a set of discrete outcomes,
thus value of each , where b denotes
expected outcomes of different trials. Each outcome i is 

the number of function evaluations utilized to attain the
prespecified performance level.

n,,, 21

bi ,2,1

3.3.1 Mathematical & Statistical Evaluation

Let there be ||21 ,,, AAAAA  algorithms embedded
in a portfolio with P processors such that any algorithm

Ai  run over  processors. Hence,

. As defined above, a random
variable

i
pA

pA
ppp AAAP 21

is associated with the portfolio. Let R be the
combined probability distribution for all AsAi ' .
Further, for an algorithm , it can be argued thatiA

)( rP i is defined as the probability that it requires
thr outcome to attain the prescribed objective

performance [13].  The experiments can be seen as a
sequence of Bernoulli trials, which instead of counting the
number of successes in a fixed number of trials, count the
number of trials until the first success (i.e. attaining
specific performance level). If a failure be denoted by 0
and a success by 1, then the sample space S  of the
experiments consist of the set of all binary strings with an
arbitrary number of 0s followed by a single 1.

3,2,1|10 1 rS r . Again, is the random variable

such that the value assigned to the sample point  be
r. In order to obtain the pmf (Probability Mass Function)
of

i

10 1r

i , it is evident to that the event rP i  is true iff
there is a sequence of r-1 failures followed by one
success, as the case in proposed approach. If probability 
of each success is p, then the pmf of random variable i

is given by
rpprp

i
)1()(  (2)br 2,1

The probability distribution function (pdf) of i , can thus
be given by

t
t

r

r ppptF
i

)1(1)1()(
1

1  for (3)0t

Let, first the case of two algorithms  and ,

associated with random variables  and
iA jA

i j , running on 
different processors be analyzed. Let there be another
random variable , which defines the event that at least 
one algorithm reach the prescribed success level. Thus,

jimin , (4)
Lemma 4.1 
The random variable  is geometrically distributed
given the two associated random variables i  and j

are also geometrically distributed and independent.
Proof: The probability P t  can be calculated
provided the independence [13]; the independence of the



algorithms is axiomatic as the processors considered in
the paper have no interlinkage. Hence,

&i j i jP t P t t P t P t (5)

In terms of pdf,
1 1 1 1

i j
P t F t F t F t

( )
i j i j

F t F t F t F t F t   (6)

From equation 2,

0

(1 ) 1 (1 )
i

t
t r

r

F t p p p p (7)

Clearly, as per equation 6,
2( )

2 2

( ) 2 1 (1 ) 1 2(1 ) (1 )

1 (1 ) 1 (1 )

r r

rr

F t p p p

p p

r

1 )p

b

 (8)

Hence, it can be concluded that is also geometrically
distributed with the parameter .21 (

On similar grounds, let the already defined case pertaining
to overall portfolio is investigated with b processors and
|A| algorithms. The algorithm running over any processor
i is associated with a random
variable , which are geometrically
distributed and are mutually independent. Let, now the
random variable is associated with the portfolio-the
following lemma holds. 

| 1, 2, ,i i

Lemma 4.2 
The random variable associated with the portfolio of

processors is geometrically distributed with 
parameter1 ( .
b

1 )bp
Proof: Extending the case of Lemma 4.1,

1 1

( ) 1 1 ( ) 1 (1 )
i

b b
t

i i

F t F t p (9)

Thus, the random number is geometrically distributed
with parameter1 ( .1 )bp

The following lemma states that utilizing more than one
processor in a portfolio is always a better option than
relying on a single one.

Figure 1: Results with 8 Algorithm-1 Processor System
over Problem 1 (Frequency vs. Function Evaluations)

Lemma 4.3 
The number of function evaluations for a search to end up
with desired quality solution has always more probability
when used with b processors than with single processor
i.e.

( )
i

F t F (10)
Proof: Let, first the following relation be considered for
analysis

1

( ) (1 ) (1 )
i

b
t

i

f F t F p p  (11)

It can be argued that since p is the probability of success
of a single trial, thus p<1. Also, t and b are greater than
zero. Consequentially, f can be written as

1

1

(1 ) (1 ) 1
b

t

i

f p p t (12)

Again, since is bound to be

less than zero, thus making the second term of the above
product as negative. In a portfolio more than one
algorithm or processor is talked about, i.e. b>1, hence the
abovementioned fact leads to the conclusion that in all
cases a portfolio is expected to work faster than the cases
with single algorithm; hence, establishing equation 10

1

1
(1 ) 0, (1 )

bt
i

p tp

The expectation and standard deviation of a portfolio
provide the measure of efficiency. Mathematically, for the
case of single algorithm with geometrically distributed
random variable i  and pmf 1( ) (1 )

i

rp r p p , the 
expectation is given as

1

1 1

2

(1 ) ( ) (1 )

1
(1 )

r r
i

r r

dE rp p p q q
dq

p
pq

p
(13)



Similarly for the case of b algorithms,
1

1 (1 )bE
p

 (14)

Getting away in a similar fashion for variance
2( )Var also, it can be established that

2
(1 )

i
pVar

p
(15)

2

1 1 (1 )
[ ]

1 (1 )

b

b

p
Var

p

From the above expression, it is suggestive that if the
probability of success and failure at any stage be constant,
which can be logical in case of random stochastic
algorithms (like those considered in this study), the
variance of the sample can be considered as constant. In
this case, the application of Chebyshev's inequality is 
dianoetic, thus, the lemma follows.

Figure 2: Results with 8 Algorithm-1 Processor System
over Problem 2 (Frequency vs. Function Evaluations)

Lemma 4.4 
Given the non varying mean ( [ ]E ) and variance

( 2[ ]Var ), the pdf of the portfolio distribution has
the following bounds

2

2| |P t
t

(17)

Proof: Intuitive from Chebshevs inequality [13]. 

Variance can be a measure of portfolio reliability and thus 
a measure of performance. Albeit the above inequality is a 
general upper bound, the variance is also to be assessed
experimentally and statistical analysis tools must be
utilized to get the realistic outlook and evaluate the
significance of various critically connected parameters.

3.3.2 Experimental Design

In order to initiate the experiments, first all the four
algorithms and their corresponding group theoretic
counterparts have been tested on the three problems under
consideration on a single processor for 1000 runs and the
results have been reported in Figures 1, 2 and 3. 

Figure 3: Results with 8 Algorithm-1 Processor System
over Problem 3 (Frequency vs. Function Evaluations)

Table 2: Portfolio Design Scheme
(G2=GTGA; S1=SA; A1=AIS; A2=GTAIS; T1=TS;

T2=GTTS)
No of 

algorithms Case 2 Processors 4 Processors

1 G2 A2 G2 A2 - -
2 S1 T1 S1 T1 - -
3 T1 T2 T1 T2 - -

2

4 A1 A2 A1 A2 - -
1 - - A1 A2 T1 T2
2 - - G2 S1 T1 T24
3 - - S1 A2 G2 T2

For the above experiment, stopping criteria for each 
algorithm is set to be the performance level within 0.01%
of best known objective value. Results are presented in
terms of frequency of algorithm stops within a specific
range of function evaluations. Here, in order to have
better insight to the working of algorithm and to put
population based strategies and single point search
strategies on the same grounds; function evaluation is 
taken as a performance criterion instead of a more
common criterion number of generations. Based on the
figures 1, 2 and 3, it can be clearly gauged that most of
the test algorithms work in a competitive manner, thus an
obvious choice for portfolio. However, keeping in view
the consistently inferior performance of simple GA and 
group theoretic SA over the rest, they have not been



included in the further analysis and portfolio design has
been confined to the cases of upto six algorithms. Thus, 
remaining experiments have been performed with various
combinations of selected six algorithms viz. Group
Theoretic GA (GTGA), Simple SA, Tabu search (TS),
Group Theoretic TS (GTTS), simple AIS, Group
Theoretic AIS (GTAIS).

Keeping in view the above mentioned performance of
algorithms, they have been embedded into various
portfolios, designed and analyzed in the following
discussion. The tests have been performed with 2 and 4
processor systems with the designed portfolios of 2, 4 and
6 algorithms. The generalized scheme for designing
portfolios has been presented in Table 2. With the settings 
mentioned in Table 2, each portfolio has been evaluated
for different combination of selected algorithms and a '/'
notation is used to denote such combinations. For
example, the symbol 2/0 represent the case of 2
algorithms - 2 processor portfolio in which the first
algorithm is run on both the processors and the second
one is run over none. Each of such setting has been
evaluated for 100 independent runs and the results have
been analyzed on the average performance.

4. Computing with Portfolios: Results,
Discussion and Statistical Insights 

For the computational experiments, three standard
problems of TDVRSP have been taken from literature,
keeping in view their varying complexity and dimensions.
Moving up in a consecutive manner, this section is parted
in the a few subsections that sequentially present the 
theme and claims made in the paper.

4.1 Best Result

In order to have a realistic pictorial outlook of the theater
and vehicle movement, best result obtained for Problem 1 
has been plotted in a geometric coordinate plane shown in
Figure 4. The presented result has been the one best
obtained from the rigorous preliminary experimentations.

Figure 4: Route of the best solution for Problem 1

4.2 Experimental Runs

The experimentation has been divided in three parts on
the basis of number of processors used. The experimental
results have been presented as average number of
generations for the portfolio to reach required quality
level (0.01% of the best). The average has been calculated
for 100 independent runs.

2 Processor System

For the two processor system, there are four selection of
algorithms to be analyzed (Table 2). Each of the four 
cases is analyzed for the three possible combination of the
algorithms viz. [2/0], [1/1], [0,2]. The portfolio has been
tested on the three problems under consideration and the 
results obtained have been presented in Figure 5. 

4 Processor System

The four processor system is characterized by the
incorporation of 2 algorithms and 4 algorithm cases. For
the 2 algorithm case, the possible combinations explored
are [4/0], [3/1], [2,2], [1,3] [0,4]. With 4 algorithms case 
large number of combinations are possible. In order to be
concise in exhaustive computational exercise, authors 
have selected 15 combinations for the study, however, the 
selection being intuitive. The results obtained by 
simulation runs for all these cases over the three problems
are presented in Figures 6 and 7.



Figure 5: Results for Different Portfolio Cases Pertaining
to Two Algorithm-Two Processor System

The three rows present results for the three problems
considered and the columns are corresponding to different
algorithms selected. Y axis is scaled to number of
function evaluations; X axis denotes the portfolio cases 
explored.

4.2 Interpreting the Results

Best Portfolio: Having had the experimental results, the
task to be accomplished is concerned to portfolio
assessment. Generally processor availability for the
parallel runs is limited in an organization; hence the
selection strategy has to be executed separately for each
of the two types of systems (2 processor and 4 processor)
under consideration. The varying performances of
different algorithms, and eventually the portfolios, pose
enough challenge to select the best strategy among the
instances explored in order to get the quality solution with 
minimum risk. Analytical Hierarchy Process (AHP) [15]
has long been utilized as a tool to decision makers for
selecting the best alternative from the given alternatives in
such situations. AHP employs hierarchical pairwise
comparison to induce the weights of alternatives thorough
their pairwise comparison. This paper also addresses the
selection of best portfolio problem from an AHP
perspective.

Each type of portfolio is recognized as an alternative for
the particular processor system to which the portfolio
belongs to and the results over three different problems
are considered as of different attributes. In this paper, the
priority weights have been set as 1 2 each. For the two 

processor system, a total of 12 (4 algorithm
combinations 3 portfolio combinations) alternatives 
have been evaluated. Similarly, for the 4 processor case
with 65 alternatives. Figure 8 portrays corresponding final
probability vector and ranks for the different alternatives 
discussed above.

Figure 6: Results for Different Portfolio Cases Pertaining
to Two Algorithm-Four Processor System.

The three rows present results for the three problems
considered. Y axis is scaled to number of function 
evaluations; X axis denotes the portfolio cases explored.

Figure 7: Results for Different Portfolio Cases 
Pertaining to Four Algorithm-Four Processor System



For the two processor case the portfolio with algorithms
AIS-GTAIS characterized by (1/1) system is best. 
Similarly for 4 processor system, 7 cases have been found
to be the best; however all correspond to algorithm set
SA-GTAIS-GTGA-GTTS. In particular, AIS based
strategies can be treated as computationally more viable
than others under consideration. The above mentioned
chosen alternatives can be recommended as the best
suited strategies and as they are recognized as minimum
risk portfolios that competitively perform well and takes 
care of the dimensional complexities in a better manner.

Figure 8: Priority Vectors and Corresponding Ranking
for Different Alternatives Related with the

2 Processor, 4 Processor

5. Conclusions and Future Research 

This papers deals with a critical decision making
combinatorial optimization problem that aims to generate 
feasible and optimized schedules for the vehicles moving
within a theater. Portfolios are designed on the basis of
parallel run of various algorithms without any
interlinkage; absence of communication help algorithms
take the advantage of inherent search capabilities and the 

parallel implementation ameliorates any disadvantage of 
randomness in the search. Also, theoretical analysis 
validates the claim that the chances of getting the solution
faster are increased in the parallel implementation modes.
The conceptualization of portfolios to combinatorial
optimization is believed to make a step to resolving the
dilemma to choose the best search strategy among the
nimiety of the search strategies, whether random or 
deterministic. The future work on introducing practical
aspects like allowance in mobility of vehicles in different
terrain, large scale emergencies, and involvement of crew
members or human factors is going on.
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