
University of Wollongong University of Wollongong

Research Online Research Online

University of Wollongong in Dubai - Papers University of Wollongong in Dubai

1-1-2011

Enforcing quality of service within web services communities Enforcing quality of service within web services communities

Mohamed Adel Serhani
United Arab Emirates University

Abdelghani Benharref
United Arab Emirates University

Follow this and additional works at: https://ro.uow.edu.au/dubaipapers

Recommended Citation Recommended Citation
Serhani, Mohamed Adel and Benharref, Abdelghani: Enforcing quality of service within web services
communities 2011, 554-563.
https://ro.uow.edu.au/dubaipapers/538

Research Online is the open access institutional repository for the University of Wollongong. For further information
contact the UOW Library: research-pubs@uow.edu.au

https://ro.uow.edu.au/
https://ro.uow.edu.au/dubaipapers
https://ro.uow.edu.au/dubai
https://ro.uow.edu.au/dubaipapers?utm_source=ro.uow.edu.au%2Fdubaipapers%2F538&utm_medium=PDF&utm_campaign=PDFCoverPages

Enforcing Quality of Service within Web
Services Communities

Mohamed Adel Serhani

Faculty of Information Technology, Al-Ain, UAE
Email: serhanim@uaeu.ac.ae

Abdelghani Benharref

Engineering and Computer Science, Abu Dhabi University, Abu Dhabi, UAE
Email: abdelghani.benharref@adu.ac.ae

Abstract—Web services are considered as an attracting
distributed approach of application/services integration
over the Internet. As the number of Web Services is
exponentially growing and expected to do so for the next
decade, the need for categorizing and/or classifying Web
Services is very crucial for their success and the success of
the underlying Service Oriented architecture (SOA).
Categorization aims at systematizing Web Services
according to their functionalities and their Quality of
Service attributes. Communities of Web Services have been
used to gather Web Services based on their functionalities.
In fact, Web Services in a community can offer similar
and/or complementary services. In this paper, we expand
Web Services communities’ classification by adding a new
support layer for Quality of Service classification. This is
done through Quality of Services specification, monitoring,
and adaptation of Web Services within communities. A Web
Service might be admitted to a community thanks to its high
Quality of Service or might be ejected from a community
due to its low Quality of Service. The focus of this paper is
on the design and use of a managerial community to
monitor and adapt Quality of Web Services (QoWS) of
managerial Web Services for other communities, Web
Services providers, and Web Services clients.

Index Terms — Web Services, Communities of Web
Services, Quality of Web Services (QoWS), Selection of Web
Services, QoWS Monitoring, and QoWS Adaptation.

I. INTRODUCTION

The phenomenal growth of Internet technologies,
largely impacted by the eXtensible Markup Language
(XML) and its related technologies is extending the
traditional role (client-to-business) of the World Wide
Web to a better support of Business-to-Business
interactions. The future perspective of the Internet is
being driven by Web Services technologies [1].

A Web Service can be defined as an application that
exposes its functionality through an interface description
and makes it available for use by other programs. Web
Services allow computers and devices to automatically
interact with each other using the Internet to exchange
and gather data. Moreover, on one hand, a composite
Web Service can further be created by aggregating a set

of Web Services to produce a more complex Web Service
with a wide range of functionalities. On the other hand, a
set of Web Services can form and operate inside a
community.

In the Revised Webster dictionary, a community is
defined as “a body of people having common rights,
privileges, or interests, or living in the same place under
the same laws and regulations. On a similar path, a
community of Web Services can consist of Web Services
offering the same functionalities or sharing similar
concerns.

Even with a huge number of related works on Web
Services and somehow a reasonable amount on
communities of Web Services (e.g. [2], [3], [4]), there is a
lack of mechanisms and approaches to establish and
enforce inter-community and intra-community rules.

The aim of this paper is, first, to define the rights of a
community and participating Web Services, their duties
toward peers and clients, and it proposes a novel Quality
of Web Services (QoWS) management approach to
enforce QoWS-based selection, QoWS monitoring, and
QoWS adaptation. These are essential issues to protect a
community, its reputation, its interest, and those of each
individual Web Services. For example, a Web Service
that operates within a community and frequently provides
very low quality can affect the reputation of the whole
community. In this case, the community should first
monitor the QoWS to detect any QoWS violation, and
then adapt the violated QoWS so that clients do not
notice the QoWS degradation and remain loyal.

Defining and enforcing terms and regulations of/within
communities of Web Services raise a set of questions
including:
• How members of communities should distribute

the load to fairly share benefits and to guarantee a
certain QoWS?

• How a managerial community can offer
managerial services (e.g. monitoring and
adaptation) to other Web Service communities.

• How to define interactions between communities?
• As a member of a community, how to find and

select a community to get services from whenever
needed?

554 JOURNAL OF SOFTWARE, VOL. 6, NO. 4, APRIL 2011

© 2011 ACADEMY PUBLISHER
doi:10.4304/jsw.6.4.554-563

Although this paper does not answer all of these
questions, we propose a managerial community of Web
Services for management of communities of Web
Services. This managerial community is composed by
Web Services instrumented with adequate functionalities
and services to assess the QoWS of other Web Services
and react to QoWS degradations. Such a Web Service is
called Managerial Web Service (MWS). QoWS
assessment includes test, monitoring, and certification of
a Web Service as a partial-requirement to join a
community. Moreover, once Web Services are part of a
community, the managerial community can monitor,
periodically or on request, their behavior and interactions
on the fly to detect any potential violation to the terms of
their community, which might result in expulsion of the
failing Web Service from the community. Moreover, a
participating Web Service can make use of the
managerial community to show how much it is useful for
the community and get some business credit or
consideration. Finally, clients of Web Services can use
the managerial community to select a community that
suits their needs. In fact, many communities are likely to
be competing by offering similar services with different
conditions. The managerial community can advise a
client which community to join based on her/his
requirements and the status of the selected community (as
known by the managerial community).

The remaining sections of this paper are organized as
follows: next section discusses related works. Section 3
presents our managerial community and the main services
it provides (monitoring, adaptation of QoWS…) while
section 4 discusses the QoWS specification including the
description of the QoWS properties, the EFSM
specification model of Web Services, and the QoWS-
based Web Service selection approach. Section 5
describes the adopted QoWS monitoring scheme, and
section 6 details the QoWS adaptation techniques used to
adapt the QoWS in three QoWS adaptation situations. A
proof of concept summarizing our experience in using the
managerial community for selection, monitoring and
adaptation of QoWS is presented in section 7. We
conclude by conclusion and future work in section 8.

II. RELATED WORK

In general, management of Web Services as well as
their QoWS (specification, publication, and discovery)
are becoming more and more important as the number of
similar, though competing, Web Services available in the
Internet proliferates and the need for communities and
composition of Web Services increases. Management of
QoWS, as an integral part of Web Service management,
will play an important role for the success of this
paradigm. On one hand, providers of Web Services will
have to specify and guarantee QoWS to remain
competitive and achieve the highest possible returns on
investment from their businesses. On the other hand,
clients will have the possibility to look for appropriate
Web Services according to their QoWS preferences (e.g.,
highly available, and respond to client’s requests in
reasonable time).

As discussed before, works on communities of Web
Services are mostly on establishing and building
communities rather than managing communities and
enforcing appropriate rules. However, there are some
works on management of Web Services that are of
relevance to this topic. Hereafter is a short list of some
works of interest to this paper.

Managing QoWS of Web Services as component of
Web Service management was addressed by several
research initiatives. In [5], the work introduced Web
Services Performance Analysis Centre (sPAC) and shows
how customers can verify timeliness of their Web
Services semi automatically from the description of
workflow of Web Services to reports analysis and results
estimation. In [6], the paper identified a set of QoWS
metrics in the context of Web Services workflows, and
proposes a unified probabilistic model to describe QoWS
values of a broader spectrum of atomic and composite
Web Services. In [7], the paper proposed a QoWS-aware
binding approach based on Genetic Algorithms. The
approach included a feature for early run-time re-binding
whenever the actual QoWS deviates from initial
estimates, or when a service is not available.

In [8], the authors surveyed the key features of Web
Services management system (WSMS) and conducted a
comparative study on how current research approaches
and projects fit in. In [9], the authors proposed a Web
Service gateway to monitor and control Web Service
access according to SLAs and organizational policies.
The authors in [10] presented an implementation to
derive on-line monitors for Web Services automatically
from SLAs using an Eclipse plug-in.

Several works proposed broker-based architectures
for QoWS management ([11], [12], [13]). In these
architectures, a broker mediates between clients and
providers of Web Services by providing a set of QoWS
management operations such as: QoWS verification,
QoWS certification, QoWS-based Web Service selection,
QoWS negotiation, and QoWS monitoring. However, this
model is not scalable considering the number of clients
and the number of Web Services that might need to be
supported by the broker. Moreover, QoWS properties
might be managed differently due to the nature of each
property. For example, managing Web Service
availability requires a simple invocation of a Web Service
by the broker to check if it is responding over a period of
time. However, management of Web Service’s response
time requires that the broker implements or use existing
measurement and monitoring techniques to measure the
time a client’s request is sent and the time its response is
received.

Interested in Web Service management, Tosic et al.
([14]) have used the ‘class of service’ term as a discrete
variation of the complete service and QoWS. Authors
demonstrated that using classes’ specification and
management is simpler, faster and incurs less run-time
overhead than using custom-made service level
agreements (SLAs), client’s profiles, or separate Web
Services. It is then often easier and faster for a consumer
to switch to another class of service within the same Web
Service than to search for a replacement Web Service or
to renegotiate an SLA. For the sake of the formal

JOURNAL OF SOFTWARE, VOL. 6, NO. 4, APRIL 2011 555

© 2011 ACADEMY PUBLISHER

specification of various types of constraints, authors
developed the Web Service Offerings Language (WSOL)
[15]. It references one or more WSDL files and specifies
additional information. A corresponding management
infrastructure called the Web Service Offerings
Infrastructure (WSOI) was developed to manage
monitoring and dynamic manipulation of WSOL service
offerings.

With regards to QoWS adaptation, different research
works were conducted. We will discuss here only those
that are close to our work. In [16], Ming et al. proposed a
broker-based architecture for dynamic QoS monitoring
and adaptation for composite Web Services. This
approach consists of dynamically changing the execution
path of a composite Web Service in order to meet QoWS
requirements. For achieving this, ordinary Business
Process Execution Languages (BPEL) processes were
instrumented and enriched to interact with the QoWS-
aware broker.

In [17], Brogi et al. proposed a technique to adapt a
service in order to suitably overcome both semantic and
behaviour mismatches. The proposed technique relies on
inspecting service execution traces and generates a
service contract tailored to the client needs. Service
contracts include a description of the service behaviour
expressed by a workflow as well as an ontology-
annotated signature.

In [18], Nezhad et al. presented techniques and a tool
that provides semi-automated support for identification
and resolution of mismatches between service interfaces
and protocols, and for generating adapter specification.
They implemented the approach in a tool inside IBM
WebSphere Integration Developer (WID).

 In [19], Chang et al. surveyed representative software
adaptation methods, and proposed four types of service
variability that are: workflow, composition, interface, and
logic variability. They presented practical adaptation
methods for resolving the four types of service
variability. The proposed adaption methods presented can
be implemented in a typical Web Service environment
with WSDL, UDDI and BPEL.

In [20], Kongdenfha et al characterized the problem
of aligning internal service implementation to a
standardized external specification. They proposed an
Aspect oriented framework as a solution to provide
support for service adaptation. The framework consists of
taxonomy of the different possible types of mismatch
between external specification and service
implementation, a repository of aspect-based templates to
automate the task of handling mismatches, and a tool to
support template instantiation and their execution
together with the service implementation.

III. OVERALL ARCHITECTURE

A managerial community of Web Services is a
community that is composed of QoWS-management-
capable Web Services. Each of these Web Services can
assess the QoWS of a Web Service and can passively
monitor it while the latter is operating inside a community
and/or interacting with peers and/or clients. An exhaustive

list of services offered by the managerial community will
be discussed in section B.

A. Architecture Description
The core idea in our approach is the managerial

community of Web Services. Figure 1 illustrates an
environment with one managerial community, two normal
competing communities, and a client. Two
communities/Web Services are said to be competing if
they are offering same functionalities in the same market
space. Similarly, two communities/Web Services are said
to be complementary if they offer complementary non-
competitive services. For example, the Skyteam1
community consists of few airlines (Air France, KLM,
and Delta). While in the same community, those airlines
are competing with each other to attract a maximum of
passengers. However, Skyteam offers complementary
services to the American Hotel and Lodging
Associations2, that is, getting customers into and from the
hotel.

Figure 1. Managerial Community and two Normal Communities

All communities, including the managerial
community, are created and maintained by a manager. In
Figure 1, Web Services WS1-1, WS1-2, and WS1-3 offer
similar services in community 1, these Web Services are
competing with Web Services WS3-1 and WS3-2 in
community 2. Same for Web Services WS2-1 and WS2-2
in community 1 compared to Web Services WS4-1 and
WS4-2 in community 2. In the same figure, Managerial
Web Services in the managerial community are all
complementary, however, they can be competing as well
in the same community and the business model of the
community states which one to use and under which
circumstances.

Moreover, the managerial community has few
specific-purpose Web Services. The selector Web Service
helps in selecting an appropriate Web Service based on
functional (e.g. operation invocation) and non-functional
(QoWS) requirements (e.g. response time, and
availability) and based on the load of concerned Web

1 http://www.skyteam.com/
2 http://www.ahla.com/

556 JOURNAL OF SOFTWARE, VOL. 6, NO. 4, APRIL 2011

© 2011 ACADEMY PUBLISHER

Services as provided by the Load Balancing Web Service.
The load balancer collects data from Web Services, the
driver, and the monitor to establish a real-time knowledge
base containing information about Web Services load. The
driver Web Service is the main interface that the
managerial community exhibits to clients. Clients interact
with this driver for all matters. During interaction between
clients and a Web Service (from community 1 and
community 2), the monitor checks the correctness of this
interaction and reports any anomalies to the driver. A
typical flow of events involving different elements of the
architecture in Figure 1 is illustrated in Figure 2.

Figure 2. Actions Flow When Using a Managerial Community

The managerial community is intended to providers,
clients, and community managers who would like to:

1. Select and use Web Services that fulfills some
QoWS requirements,

2. Monitor (online) their interactions with these
Web Services, and

3. Adapt the QoWS once the later degrades or is no
longer provided. This does not apply to
providers of Web Services who would like to
test their own Web Services without looking for
alternative Web Services.

All the above operations are supported by the
managerial community via its driver as depicted in Figure
2. The client submits a “Select” request to the driver
specifying the desired functionality and QoWS. The
driver forwards the request to the selector who checks for
the list of appropriate Web Services within communities
being managed by the managerial community and returns
the best match. The driver connects to that Web Services
and notifies the monitor to start its online checking.
During interactions, if the monitor detects a discrepancy
of the agreed upon QoWS, it notifies the adapter. Based
on the seriousness of the discrepancy, the adapter takes
corrective measures.

Graceful degradation occurs when the observed QoWS
is slightly less than the expected one. In this case, the

adaptation is limited to informing the load balancer about
the event so that no future requests can be directed to that
Web Service until its QoWS gets back to its normal level.
Severe degradation, as a result of a considerable drop of
QoWS, requires binding to a similar Web Service for the
interaction that showed the degraded QoWS. A failure is
observed if the Web Service is completely down or
presenting very low QoWS. In this case, the adapter
informs the driver to completely switch to a similar Web
Service for the actual operation as well as all upcoming
operations requested from the failing Web Service. This
is a kind of blacklisting until the Web Service gets to its
normal status. A Web Service showing frequent severe
degradations and/or failure might be blacklisted forever
or even banned from the community. Adaptation detail
will be discussed in section VI.

The managerial architecture offers in addition to
monitoring and adaptation of QoWS, the following
services to all partners.

B. Available Services
A MWS offers services to its peers in the managerial

community, to Web Services providers, to other Web
Services communities, and to clients of Web Services.
Although, the main service offered to all of these partners
is the verification and monitoring of QoWS, QoWS-
based selection, and QoWS adaptation, a MWS offers
services to its peers as part of its duties while operating
within a community.

1) Services to peers
Cooperation between MWSs is conducted through the

MWS-MWS interface. This interface concerns three
categories of interactions: negotiation of mutual services,
validation/retrieval of information about a given Web
Service, and exchange of summary reports and status
information.

Negotiation of mutual services: MWSs negotiate the
terms and conditions of the services they deliver/receive
using SLA. An agreement specifies the kind of services a
MWS is willing to provide to other MWSs and the cost of
each of these services (if any).

MWS requests delegation: whether serving a
community, a Web Service provider, or a client, when a
MWS cannot process a request due to lack of expertise or
high load, it requests cooperation of other unloaded MWS
with appropriate expertise. In a managerial community, a
MWS may not have enough knowledge about a specific
Web Service when making decisions (e.g. selection of
potential Web Services). This is eventually the case for a
composite Web Service offering different services and
requiring different expertise domains. In this case, a
MWS may ask other MWS within its community in order
to get information about that Web Service, such as
whether its QoWS has been verified and/or monitored
before, and if any, what was the outcome/verdict of that
process.

Sharing of Web Services’ rating information. MWS
within the same managerial community may share rating
information of Web Services, in very restrained
situations, by sending reports to each other periodically or
on demand (e.g., list of top qualified Web Services, list of

JOURNAL OF SOFTWARE, VOL. 6, NO. 4, APRIL 2011 557

© 2011 ACADEMY PUBLISHER

worst qualified Web Services). These reports are dated
and updated by all MWS and made available to other
MWS belonging to that managerial community.

Sharing load. MWSs can get help from each other
when they receive a large number of requests from
clients. Thus, they need to inform each other about their
loads.

2) Services to providers of Web Services and other
communities

As part of their responsibilities and as stated by their
business models, managers of communities of Web
Services should (would like to) protect their
communities, their members, and their clients. Before
adding a Web Service to a community, the manager
should make sure the reputation of this potential member
is at an acceptable level and will improve the reputation
of the community or, at the worst case, will not
downgrade it. The reputation of a Web Service is
impacted by the QoWS properties presented in section
IV.A.

The managerial community can fully verify the QoWS
of a Web Service. This verification consists of checking
if the QoWS claimed by a Web Service is in fact
supported. This requires generation and application of
tests cases and/or passive monitoring interactions of that
Web Service with clients. Verification of QoWS might be
required in two scenarios: 1) when adding a Web Service
to a community and 2) when a provider would like to
certify the QoWS its Web Service can offer.

3) Services to clients of Web Services
Selecting suitable Web Services with regards to QoWS

provision is a determinant factor to ensure customer
satisfaction and then loyalty. Different users may have
different requirements and preferences with regards to
QoWS. For example, a client looking for a Web Service
may require minimal reputation while satisfying certain
constraints in terms of price and availability; while
another client may put more emphasis on the price rather
than the reputation; others consider more the availability
of a Web Service rather than both previous properties. As
the managerial community collects sufficient information
about Web Services (with their consent and/or the
consent of their community’s manager), it can be used for
selection of Web Services based on QoWS.

As for monitoring, each monitor, member of the
managerial community, is capable of passive monitoring
of Web Services using passive testers. This monitoring is
of prime importance to assess the QoWS of a Web
Service when serving clients and/or operating within a
community. Whenever the monitor observes a
degradation of the QoWS, it invokes the adapter to take
corrective measurement as will be discussed in section
VI.

QoWS-based selection and monitoring require a clear
and non-ambiguous specification of quality attributes and
functional aspects. In the following section, we show how
both of these aspects can be described in an Extended
Finite State Machine (EFSM).

IV. QOWS SPECIFICATION

A. QoWS properties
The set of QoWS properties (e.g. response time,

cost…) can be very large and depends widely on Web
Services and their clients. In this work, we only consider
four main properties: availability, reputation, response
time, and cost.
• Response time: this represents the time needed

between issuing a request and getting its response.
• Cost: this is the cost charged for using a Web

Service. The Web Service cost may be estimated by
operation, by volume of exchanged data, and/or a
flat rate plan.

• Availability: it represents the probability that a Web
Service is accessible (available for use) or the
percentage of time that the Web Service is
operating.

• Reputation: this is a measure of Web Service
trustworthiness. It depends on clients’ experiences
in using the Web Service.

B. Specification Model
Among all formal models that have been used to

monitor QoWS, we are going to use EFSM [21]. This
model needs first to be described in the same description
languages used in the SOA paradigm. However, there
have been many other models for monitoring functional
and non-functional behavior of Web Services for instance
FSM [21] and BPEL [22].

EFSM is a richer model than FSM since it allows the
expression of data such as variables and parameters. In an
EFSM model, input and output events are parameterized
and carry data that transitions manipulate in addition to
local variables. Figure 3 illustrates an EFSM model
described using an XML representation. EFSM has two
more attributes than FSM: predicate and assignments.
The first attribute indicates a Boolean expression that
should evaluate to TRUE in order to fire this transition.
The second attribute represents the set of data
manipulations to be performed while firing the transition.
In addition, we are instrumenting the EFSM to specify
the QoWS attributes provided by a Web Service (see
profile tag in Figure 3).

Figure 3. XML representation of EFSM machine

<efsm name="Name of EFSM/Web Service">
 <state name="State1" initial="YES">
 <transition ID="t1" input="Input1" predicate="true"
 assignments="x:=0;y:=0;z:=0" output="Output1"
 next="State2"/>
 <Profile name=”GOLD”> MnPT = NULL MxPT = 10ms
 SC= “$10”
 </Profile>
 </transition>
 <transition ID="t2" input="Input2" predicate="X<3"
 assignments="x:=2;y:=7" output="Output2" next="State3"/>
 <Profile name=”SILVER”> MnPT = 10ms MxPT = 30ms
 SC= “$5”
 </Profile>
 </transition>
 </state>
</efsm>

558 JOURNAL OF SOFTWARE, VOL. 6, NO. 4, APRIL 2011

© 2011 ACADEMY PUBLISHER

C. QoWS-based Web Service Selection

The selection feature of our architecture is QoWS driven
and handled by the QoWS selector. The role of the
selector is to retrieve the QoWS requirements from the
client’s request and match it with the QoWS specification
described in the EFSM specification of Web Services
(see Figure 3).

V. QOWS MONITORING

The managerial community promotes monitoring of
both MWSs and normal Web Services. Each MWS is
thoroughly monitored by itself, its peers, clients,
providers, and/or monitor(s). These different entities
might collect a wide range of statistics that can help in
assessing the performance of a specific MWS. These
statistics include the number of served requests per period
of time, periods of high load, periods of low load, number
of delegated requests, and number of queued requests
from peers, clients, and/or providers. All gathered
information is compiled periodically to assess
performance of MWSs and guide in deployment of new
MWSs or retrieval/replacement of existing MWSs.

Web Services are monitored whenever serving clients’
requests. The monitor Web Service conducts observation
of Web Services and MWS. This monitor Web Service is
invoked by the community driver or manager. A monitor
(also called observer) checks the interactions from/to the
MWS Under Observation (MWSUO) or Web Service
Under Observation (WSUO) during normal operations
for the purpose of detecting misbehaviors. The observer
detects a failure by analyzing traces collected from the
interactions between a client and a Web Service. It
compares this information (e.g. input and output data)
carried in each exchanged message with the expected
information of the MWSUO or WSUO as described in its
EFSM document. A failure is detected once the observer
identifies dissimilarities in the collected traces or QoWS
and the expected behavior.

A. Communication and monitoring overhead
The communication overhead introduced by the

managerial community results from requests delegations,
profiles updates and retrieval, and monitoring of Web
Services. However, the communication overhead due to
types of requests depends mainly on the nature of
parameters in a request:
1. If the request parameters are basic data structures

(e.g. integer, string, or floats), the monitors will be
communicating small messages to each others.

2. If the request parameters are complex objects (e.g.
documents, tables, collections of objects, or tables of
database), monitors will exchange quite large
messages.

Communication overhead introduced by different steps
in processing requests by a managerial community is
somehow limited and the payoff is considerable.

Monitoring the operations of Web Services requires
deep analysis of all exchanged messages. Our
architecture proposes an online monitoring system that

requires on-the-fly forward of all messages to the
monitor. This would introduce a heavy communication
overhead if these messages have to be forwarded to a far
monitor and requests carry complex data objects. Our
architecture proposes to use mobile agent monitors that
stand close to the Web Service being monitored (i.e.
WSUO). The overhead in this case relates to the cost of
moving the mobile observer to the network of the
observed Web Service. For large number of requests
and/or complex data objects, experience showed [23] that
this approach is very efficient as will be discussed
hereafter.

The communication overhead introduced by updating
and retrieving profiles might be omitted. Indeed, these
messages are very small since all attributes in profiles
records consist of simple data, many profiles can be
retrieved in one request, and compression can be
considered.

In the following section, we introduce the adaptation
scheme that is triggered once QoWS violation occurred
and detected via QoWS monitoring.

VI. QOWS ADAPTATION

An efficient solution to QoWS adaptation should
address the following questions: Who should initiate the
QoWS adaptation? When and what are the conditions that
trigger the adaptation? Which QoS parameters are the
targets for the adaptation? What adaption scheme(s)
should be used? Does what the adapted values of QoWS
are enough?

The QoWS adaptation process is triggered once QoWS
is violated. The role of QoWS adaptation is to maintain,
as much as possible, the continuity of provisioning the
Web Service when the initially contracted QoWS is no
longer guaranteed.

The adaptation scheme we are proposing provides the
following features:
• It is QoWS-driven, in a sense that it does not rely

only on guaranteeing the functional behavior of a
Web Service but in addition guaranteeing the
provisioned QoWS.

• Relies on a continuous monitoring of QoWS and
trace inspection.

• Adaptation can be done by delegation to services
from the same community.

• Web Service execution is modeled as EFSM
represented as set of states linked via transitions (to
keep track of execution states of a MWS)

An adapter component is responsible for QoWS
adaptation and Web Service replacement. The following
are the steps the adapter executes once a violation of
QoWS occurred in order to guarantee QoWS of
provisioned Web Services. Three adaptation solutions are
considered depending on the gravity of the degradation:

1. Graceful QoWS degradation: no need for service
replacement, the adaptation is performed by

JOURNAL OF SOFTWARE, VOL. 6, NO. 4, APRIL 2011 559

© 2011 ACADEMY PUBLISHER

means of reducing the load on the monitored Web
Service.

2. Severe QoWS degradation: affected QoWS
operations are substituted by operations from other
Web Services offering the same functionalities.

3. Service fails to provide QoWS: the QoWS
degrades dramatically until it becomes impossible
to adapt it; therefore the Web Service is replaced.

Figure 4 QoWS Adaptation Algorithm

A. Graceful QoWS adaptation
Figure 5 illustrates the main components involved in
adapting the QoWS once it degrades gracefully. The
sequences of adaptation operations are enumerated. The
QoWS monitor triggers an event to the adapter notifying
that the QoWS is gracefully degrading (1), once the
adapter receives the notification message, it takes the
appropriate action and notifies the load balancer to stop
forwarding requests to that Web Services (2). The load
balancer sends a confirmation message to the adapter (3),
and then the adapter notifies the monitor to continue the
monitoring of that Web Service.

Figure 5 Graceful QoWS Adaptation

B. Severe QoWS adaptation
Figure 6 illustrates the main components involved in the
adaptation of QoWS once the later degrades severely.
The QoWS monitor first triggers an event to the adapter
notifying that the QoWS is severely degrading (1), then
the adapter checks the QoS contract and compare the
contracted QoWS against the observed one (2).
Afterwards, the adapter enables the workflow execution
engine to call the interface matching component of the
adapter (3) to look for operations that substitute the
current operation whose QoWS is severely degraded from
other services offering the same functionalities (4). Then,
the interface matcher provides the workflow execution
engine with the list of Web Services offering the same
operations (5). Finally, the adapter informs the driver to
switch to the same operation of another service (6.1) and
the monitor to start monitoring the new Web Service
(6.2). In this work, all Web Services offering the same
operations are semantically and syntactically equivalent.
Therefore, the interface matcher does not look at the
syntactical and semantic mismatch, as they are the same.

Figure 6 Severe QoWS Adaptation

C. QoWS adaptation through service replacement
Figure 7 illustrates the main components involved in
adapting the QoWS using Web Service replacement. The
monitor triggers an event to the adapter notifying that the
Web Service has failed (1), the adapter then checks the
QoWS contract and compare the contracted QoWS
against the observed once (2), afterward the adapter
informs the driver to select an appropriated Web Service
replacement (3). The driver communicates with the
selector to look for equivalent Web Services (4), the
selector search for Web Services providing the same
features of the failing Web Services from the Web
Service Registry (5) and sends back a list of equivalent
Web Services to the driver (6). The driver select among
the list the best match Web Service and sends it to the
adapter, the later notifies the monitor to start monitoring
the equivalent new Web Service.

560 JOURNAL OF SOFTWARE, VOL. 6, NO. 4, APRIL 2011

© 2011 ACADEMY PUBLISHER

Figure 7 QoWS adaptation through Service replacement

VII. CASE STUDY AND ANALYSIS

To demonstrate the feasibility of our proposed
architecture, we have developed a proof of concept (case
study) of our proposed architecture. Using this case
study, we have conducted a series of experiments in order
to evaluate QoWS-aware Web Service monitoring and
adaptation schemes supported by our architecture.
Scenarios in which all components of the architecture are
involved have been considered.

Three adaptation schemes of the adapter were
evaluated and applied. In addition, a clients’ generator
application has been developed so that a large number of
requests can be sent to the managerial community of Web
Services.

Three scenarios have been conducted to evaluate the
adaptation schemes we have proposed. Two QoWS
properties namely Response Time (RT) and availability
were considered. We have used a number of partner Web
Services belonging to the same community.

A. Scenarios
We collected monitoring resulted from the observation

of a couple of Web Services’ QoWS in two situations:
before QoWS adaptation is triggered and after QoWS
adaption is triggered on the same Web Services.

1) Before Adaptation
Figure 8 exhibits the result of monitoring the RT over a

period of time measured in minutes. We can see that
without adaptation, the QoWS contract with regards to
RT has been violated frequently. The same applies to the
availability of Web Service that degrades and changes
very often as shown in Figure 9.

2) After Adaptation
The rest of scenarios are conducted after considering

the three QoWS adaptation schemes. Figure 10 shows
that the RT has been adapted to a level agreed in the
QoWS contract after the severe RT adaptation is applied.
By comparing the results above, we can see that our
proposed severe adaptation scheme works as expected
and the RT is maintained within a range agreed on in the
QoWS contract.

Figure 8. Observed RT before adaptation

Figure 9. Observed Availability before adaptation

Figure 10. Observed RT after severe QoWS adaptation

Figure 11 presents the result using Web Service
availability after we adapt the QoWS via Web Service
replacement. By comparing the results before adaptation
(Figure 9) Web Service availability increases
significantly and stays generally above the pre-agreed
QoWS values stated in the QoWS contract.

Figure 11. Observed Availability after service replacement adaptation

JOURNAL OF SOFTWARE, VOL. 6, NO. 4, APRIL 2011 561

© 2011 ACADEMY PUBLISHER

Figure 12 presents the results of adapting RT using
graceful adaption scheme. Compared to the results
obtained before adaptation (Figure 8), the RT is improved
a bit and maintained more stable and we can now hardly
see RT contract violation.

Figure 12. Observed RT after graceful QoWS adaptation

B. Analysis
By comparing the results above, we can see that our

proposed adaptation architecture works as expected when
an appropriate adaptation scheme is selected. Moreover,
the QoWS is adapted and maintained to a contractual
level.

 We can conclude from the preliminary
experimentations that it is critical to adapt the QoWS to a
certain threshold. In case a service replacement scheme is
used, the selection of the best much Web Services is very
critical since you cannot assure that what have been
chosen yet is the best much selection. The newly selected
Web Service, as a replacement of a failing Web Service
might fail as well in providing the required QoWS. Also,
in the case of graceful degradation, stopping forwards of
requests to the failing Web Service does not guarantee it
will be back to business as usual quickly. For example, if
that Web Service has a big requests buffer, it will take
long time to process pending requests, therefore, the
QoWS will take time to adapt.

VIII. CONCLUSION

Nowadays, Web Services providers are trying to
maximize their revenues by creating and/or joining
appropriate communities. In a community, a Web Service
has better visibility and benefits from cooperation of
other members when it is overloaded or lacking expertise
in a requested domain. Furthermore, owners or members
of communities of Web Services would like to protect
their communities and its benefits.

In this paper, we proposed a managerial community of
Web Services to help in selecting, assessing, monitoring
and adapting the quality of service provided by a Web
Service. The managerial community is useful before
adding a Web Service to a community or to monitor and
adapt the QoS of a Web Service operating within a
community. Such monitoring gives communities’

managers very important and sensitive information about
behaviors of different Web Services in their respective
communities.

We have proposed and tested three QoWS adaptation
schemes of RT and availability properties of Web
Services. We currently handle only these two QoWS
parameters and we believe they are the most important
QoWS parameters that might be subject to degradation.
We are planning to extend our work to handle other
QoWS and non-functional parameters such as cost and
reputation.

As a proof of concept, we implemented a case study
and we conducted a series of experiments to evaluate our
monitoring and adaptation techniques. The preliminary
results are very promising and prove that our monitoring
and adaptation approaches perform very well in detecting
QoWS violation and adapting their values to match those
in the QoWS contract.

In our ongoing and future work, we plan to conduct a
complete evaluation and analysis of the architecture. We
are working currently on the implementation and tuning
of other functionalities. We will eventually try to tackle
various business rules in creating and managing
communities including the managerial community.

REFERENCES

[1] W3C, “Web Services Architecture,” 2006;
http://www.w3.org/TR/2004/NOTE-ws-arch-20040211/.

[2] B. Benatallah, et al., “Facilitating the rapid development
and scalable orchestration of composite web services,”
Distributed and Parallel Databases, vol. 17, no. 1, 2005,
pp. 5-37.

[3] Z. Maamar, et al., “Web Services Communities-Concepts
& Operations,” The 3rd international conference on Web
information systems and technologies, 2007.

[4] B. Medjahed and Y. Atif, “Context-based matching for
Web service composition,” Distributed and Parallel
Databases, vol. 21, no. 1, 2007, pp. 5-37.

[5] H. Song and K. Lee, “sPAC (Web Services Performance
Analysis Center): Performance analysis and estimation
tool of web services,” Lecture notes in computer science,
vol. 3649, 2005, pp. 109.

[6] S. Hwang, et al., “A probabilistic approach to modeling
and estimating the QoS of web-services-based
workflows,” Information Sciences, vol. 177, no. 23, 2007,
pp. 5484-5503.

[7] G. Canfora, et al., “A framework for QoS-aware binding
and re-binding of composite web services,” The Journal of
Systems & Software, vol. 81, no. 10, 2008, pp. 1754-
1769.

[8] Q. Yu, et al., “Deploying and managing Web services:
issues, solutions, and directions,” The VLDB Journal, vol.
17, no. 3, 2008, pp. 537-572.

[9] B. Overeinder, et al., “Web service access management
for integration with agent systems,” ACM New York,
NY, USA, 2008, pp. 1854-1860.

[10] F. Raimondi and W. Emmerich, “Efficient online
monitoring of web-service SLAs,” ACM New York, NY,
USA, 2008, pp. 170-180.

[11] M.A. Serhani, et al., “VAQoS: architecture for end-to-end
QoS management of value added Web services,”
International Journal of Intelligent Information
Technologies, IGI-Global, vol. 2, no. 4, 2006, pp. 37-56.

562 JOURNAL OF SOFTWARE, VOL. 6, NO. 4, APRIL 2011

© 2011 ACADEMY PUBLISHER

[12] M.A. Serhani, et al., “CompQoS: Towards an
Architecture for QoS composition and monitoring
(validation) of composite Web Services,” International
Conference on Web Technologies, Application, and
Services “WTAS”, 2006, pp. 78-83.

[13] S. Kalepu, et al., “Verity: a QoS metric for selecting Web
services and providers,” Fourth International Conference
on Web Information Systems Engineering Workshops,
IEEE Computer Society, 2004, pp. 131-139.

[14] V. Tosic, et al., “Web Service Offerings Infrastructure
(WSOI) - A management infrastructure for XML Web
Services,” IEEE Symposium Record on Network
Operations and Management Symposium, Institute of
Electrical and Electronics Engineers Inc., Piscataway, NJ
08855-1331, United States, 2004, pp. 817-830.

[15] V. Tosic, et al., “Web Service Offerings Infrastructure
(WSOI)-a management infrastructure for XML Web
services,” Network Operations and Management
Symposium1, IEEE/IFIP, 2004, pp. 817-830.

[16] M. Qiao, et al., “An Architecture for Automatic QoS
Adaptation for Composite Web Services,” International
Journal of Web Services Practices, vol. 4, no. 1, 2009, pp.
18-27.

[17] A. Brogi and R. Popescu, “Service adaptation through
trace inspection,” International Journal of Business
Process Integration and Management, vol. 2, no.
Copyright 2008, The Institution of Engineering and
Technology, 2007, pp. 9-16.

[18] H.R. Motahari Nezhad, et al., “Semi-automated adaptation
of service interactions,” 16th International World Wide
Web Conference, WWW2007, May 8, 2007 - May 12,
2007, 16th International World Wide Web Conference,
WWW2007, Association for Computing Machinery,
2007, pp. 993-1002.

[19] C. Soo Ho, et al., “A comprehensive approach to service
adaptation,” IEEE International Conference on Service-
Oriented Computing and Applications (SOCA '07), 19-20
June 2007, IEEE International Conference on Service-
Oriented Computing and Applications (SOCA '07), IEEE,
2007, pp. 191-198.

[20] W. Kongdenfha, et al., “An aspect-oriented framework for
service adaptation,” 4th International Conference on
Service-Oriented Computing, ICSOC 2006, December 4,
2006 - December 7, 2006, Lecture Notes in Computer
Science (including subseries Lecture Notes in Artificial
Intelligence and Lecture Notes in Bioinformatics) 4294
LNCS, Springer Verlag, 2006, pp. 15-26.

[21] R. Dssouli, et al., “Test development for communication
protocols: towards automation,” Computer Networks, vol.
31, no. 17, 1999, pp. 1835-1872.

[22] T. Andrews, et al., “BPEL4WS Version 1.1
specification,” 2003; ftp://www6.software.ibm.com/
software/developer/library/ws-bpel.pdf.

[23] A. Benharref, et al., “Efficient Traces' Collection
Mechanisms for Passive Testing of Web Services,”
Information and Software Technology; Elsevier, vol. 51,
no. 2, 2009, pp. 362-374.

Mohamed Adel Serhani holds a Ph.D.
degree in Computer Engineering from,
Concordia University, Canada (August
2006). He is currently an Assistant
Professor in the Faculty of Information
Technology, U.A.E University, Al Ain,
U.A.E. His research area is on web
services computing that includes
service selection and discovery, service

lifecycle, QoS integration in SOA, End-to-End QoS
management for web services, QoS and web services
composition. He also worked on the application of artificial
intelligence techniques mainly fuzzy logic to software
engineering, object-oriented metrics, and software quality. He
served on several Organizing and Technical Program
Committees, including the IEEE DEST, IEEE WiMob, IEEE
IWCMC, IIT’09, etc. He also served as guest editor for
International Journal of Web Service Practices. He has
published one book, around 40 papers in conferences, journals
and three book chapters. He has been involved/supervised many
projects during the last 6 years on the area of Software
Engineering, E-commerce, and Web services.

Abdelghani Benharref received a Ph.D.
in Computer Engineering from Concordia
University (Canada) in 2007, Master in
Network and Telecommnication from
Ecole Nationale Superieure

d’Informatique et d’Analyse des
Systemes (Morocco) in 2000, and
bachelor in Computer Science from Cadi

Ayyad University (Morocco) in 1998. Since January 2009, he is
an Assistant Professor of computer science at Abu Dhabi
University, UAE. His interest domains include but not limited
to: Web Services, Web Services composition, management of

 Web Service, QoS of Web Services, software testing, protocl

design and validation.

JOURNAL OF SOFTWARE, VOL. 6, NO. 4, APRIL 2011 563

© 2011 ACADEMY PUBLISHER

	Enforcing quality of service within web services communities
	Recommended Citation

	jsw0604554563.pdf

