
University of Wollongong University of Wollongong

Research Online Research Online

University of Wollongong in Dubai - Papers University of Wollongong in Dubai

2006

A system of operations on sliding windows A system of operations on sliding windows

Anita Dani
University of Wollongong in Dubai

Janusz Getta
University of Wollongong, jrg@uow.edu.au

Follow this and additional works at: https://ro.uow.edu.au/dubaipapers

Recommended Citation Recommended Citation
Dani, Anita and Getta, Janusz: A system of operations on sliding windows 2006.
https://ro.uow.edu.au/dubaipapers/223

Research Online is the open access institutional repository for the University of Wollongong. For further information
contact the UOW Library: research-pubs@uow.edu.au

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Research Online

https://core.ac.uk/display/36993557?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://ro.uow.edu.au/
https://ro.uow.edu.au/dubaipapers
https://ro.uow.edu.au/dubai
https://ro.uow.edu.au/dubaipapers?utm_source=ro.uow.edu.au%2Fdubaipapers%2F223&utm_medium=PDF&utm_campaign=PDFCoverPages

A System Of Operations On Sliding Windows
Anita Dani 1, Janusz Getta 2

1 College Of IT, University Of Wollongong in Dubai
U.A.E., AnitaDani@uowdubai.ac.ae

2 School of Computer Science and Software Engineering,University Of Wollongong
Australia, jrg@uow.edu.au

Abstract

One of the distinguishing characteristics of a data stream
system is ’a continuous query operating on dynamic data’ as
opposed to ’static data processed by instantaneous query’ in
DBMS.

In this paper, we propose a system of operators to process
a continuous query on sliding windows over streaming data.
We use the pre-defined notion of sliding windows over a data
stream and provide an abstraction for a system of operations
that supports evaluation of a continuous query on sliding
windows. The model consists of a basic data window, a set
of transition operations, a set of processing operations and
the operation of binding number of streams together before
processing.

1. INTRODUCTION

Data streams can be observed in various fields such as network
monitoring and sensor-based monitoring [1]. Applications
of advanced sensor and radio frequency identifier (RFIDs)
technologies require implementation of specialized software
for processing long sequences of data over long periods of
time. This kind of software system is commonly known as
data stream processing system [3] or sensor database system
[4].

An interesting research problem is the construction of a
universal system of operations to process continuous queries
on sliding windows over data streams similar to the system of
relational algebra operations. Any system of this kind should
cover all stages of data stream processing, i.e. formation of
sliding windows, iterative processing of user applications,
processing of many streams within one applications.

In this paper we present an abstract model for the data
window and basic operations. The model consists of three
layers of operations required for processing a continuous
query. First layer is for data- formation, second layer is for
data-binding and the third layer is for data-processing. This
allows processing of multiple streams in the same way as
that of a single stream. Since the model separates the layer of
window formation from the layer of processing, optimization
can be done in parallel as well as jointly. Our model can
express processing of queries involving single or multiples
streams in a consistent manner.

©

In the section 2 we present a summary of related work.
Section 3 describes computations on data streams. Section
4 presents informal description of the proposed model.
Section 5 presents the proposed model formally. Section 6
shows equivalence of the proposed system with the relational
algebra operators. Section 7 is summary,conclusion and future
direction.

2. RELATED WORK

The prototypes of data stream processing systems imple-
mented in the last few years either consider a data stream as a
sequence of tuples [5], [6]or as a sequence of numeric values
[7], [8] or even as a sequence of XML documents [9]. The type
of data items in a stream determines the operations that should
be implemented to process the user applications. A couple of
formal models of data stream processing and operations on
data streams have been proposed so far. The most common
approach considers a data stream as a sequence of tuples and
a single state of a sliding window over a data stream as a
relational table. Then, an extended SQL can be used to express
queries over data streams and extended relational algebra can
be used as an implementation language [10]. Another approach
proposes a system of very basic operations on single data
items extracted from a data stream and single sliding window
on another stream or the results of intermediate computations
[13]. In this model, a user application is represented by a set
of path expressions where each expression is a sequence of
elementary operations and describes the processing of a single
data item taken from data stream and the contents of static
sliding windows over the other data streams. This model also
considers a data stream as a sequence of tuples. A denotational
semantics for the applications processing data streams has
been proposed in [11]. This approach defines semantics for a
generic continuous query language [12]. The query language
considers two types of data objects: streams and relational
tables and provides the operations that transform streams into
tables and reverse. An interesting conceptualization of data
stream processing has been proposed in [2]. This approach
treats the fixed states of sliding windows as fixed size vectors
and provides a system of operations on vectors in order to
represent a single state of computations on data streams.
Incremental computation of a typical blocking operator results
in a real time evaluation of queries over sliding windows.

1-4244-0716-8/06/$20.00 ©2006 IEEE. 595

A sufficient condition to achieve incremental evaluation of
mathematical operators is presented in [14]. This work does
not consider the effect of the sliding mechanism on evaluation
of a mathematical operator. A broader class of windows is
introduced in [16], called as predicate-windows. In this paper,
authors have defined predicate-windows using a predicate on
any attribute of data items in the stream. Our model can
represent the mechanism of forming a predicate-window as
one of the types of window-formation mechanism. A formal
framework for expressing windows in continuous queries over
data streams is presented in [15]. The framework presented in
this paper does not model processing of multiple streams. The
model presented in [19] shows only two layers of operations,
where as in this paper, we propose that the layer of data
binding is equally important to process queries on multiple
streams in the same way as the queries on a single stream.

In the next section we characterize basic difference between
instances of a data stream and instances of a database.

3. STREAM INSTANCES AND WINDOWS

A data stream is potentially infinite collection of data items.
Data items arrive into the stream continuously and hence the
size of the stream increases with time. It is not possible to
process an infinite stream in finite period of time. Due to
potentially infinite size of the stream a query is evaluated after
forming finite subsets of the data stream. Each subset is called
as an instance of the stream. Processing of data stream requires
processing of infinite number of rapidly changing instances.
These instances change only by insert operation and thus each
instance is a superset of all instances seen before. In contrast,
there are only a finite number of instances of a database. The
instances in a database, are changed due to insert, update and
delete operation. There is no obvious containment relation
between any two instances. Each instance remains static for a
longer period which allows the DBMS to create and apply
techniques such as indexing to improve performance. The
contents of the database instance do not change while a query
is running. In order to process each stream instance, a data
window must be formed from the instance of the stream before
processing.

Thus processing of a query on a data stream is done in
two stages, the stage of forming the data set and the stage of
processing the well formed data set. In queries involving non-
blocking operators data formation and data processing can be
one at the same time [20]. Example of such application is:
Convert the stock prices from one currency to another for a
particular stock; Where as in a query involving some blocking
operator output can not be produced until the entire input is
received. In such cases, the data set must be formed before
evaluating the result.

For a given query, all of the data items may not qualify
for processing. Thus we form a precise subset of the stream
instance, which is called as the window. At any given time-
instance t, the window is formed by applying some predicate
on the stream instance observed at t. The window definition

is included in the where clause of the query. In case of time-
window, the predicate is based on the time-stamp attribute,
in case of data-window, this predicate is based on the count
of data items in the window. We enhance this generalization
by allowing the attribute in the predicate-windows to be a
function of any attribute as well as a function of the window
formed from the previous stream instance. The predicate for
forming a new window from the previous one is the parameter
of window formation.

The movement of data items in and out of the window and
computation of result on the window are modeled by different
operations, which we call as low-level transformations.

4. MODELING COMPUTATIONS

The rule of forming a new data window from an existing one
is modeled by a predicate. The validity of data items at any
given instance is defined by applying this predicate.

A. Three layers of computations

We identify here that any application where the query is
continuous and data are dynamic, the following three steps
are performed in an infinite loop:

• Process the current data set to produce the required
output.

• Form a new data window from the current data window
by adding and or removing certain data items.

• In case of applications involving multiple streams, there
is an additional operation required. This operation binds
multiple streams into a single stream.

Thus we note here three layers of processing a continuous
query on sliding windows:

• Data-formation layer: This layer of computation is re-
sponsible for reshuffling the contents based on a certain
rule.

• Data-binding layer: This layer is required only in the
applications involving multiple streams. This operation
may be applied for data formation as well as for preparing
data for processing.

• Functional layer: This layer of computation is responsible
for processing the current data set statically.

Each layer is represented by sets of certain basic trans-
formations. In addition to the basic transformations data-
formation layer is controlled by rules of adding or removing
data items and predefined instances of query evaluation. We
model the functional layer as a set of output transformations.
The data-formation layer is modeled as a set of transition
transformations. The data-binding layer consists of one single
operation that operates on k-distinct windows and results into
a single window of k-tuples. [tuple as used in mathematical
terms and not as used in relational algebra terms].

1) Data-formation layer: Forming a new sliding window
from the existing data set requires adding new data items and
removing old data items.

The rules of removing data items can be classified into two
distinct categories as intrinsic or extrinsic.

596

Current Data set Processing

current data

Forming

new data set

Fig. 1: Extrinsic rule of data removal

new data set

Forming

current data

ProcessingCurrent Data set

Fig. 2: Intrinsic rule of data removal

Extrinsic rules of data removal are based on a key-qualifier
that is a property of the individual data items. Extrinsic rules
do not modify the value of the key-qualifier during processing.
(Fig-1) Example is removing data items with the least time-
stamp. The attribute time-stamp is a property of individual data
items and does not change during processing. An advantage
of having extrinsic rules for data formation is that the layer of
data formation can form the window required for the future
computation while the current window elements are being
processed.

Intrinsic rules of data removal from the current data window
are based on a key-qualifier that is a property of the current
data window. Intrinsic rules modify the value of the key-
qualifier during processing. (Fig-2) Value of the qualifier
such as the capacity of the window may change during
processing layer of computation. The data formation layer can
not form the window required for future computation until
the processing of the current window is completed. Since the
data items to be removed are determined after processing,
incremental computation in such cases may not be possible
unless supported by additional resources.

2) Data-binding Layer: This layer takes data elements
from n different windows and forms a single window of n-
tuples. Then the processing layer functions are applied on this
window.

3) Functional layer: This layer is responsible for compu-
tation of query results as well as the value of the key-qualifier
that determines the validity of the current data items for the
future computations. The components of this layer should be
able to do the processing at the data element-level as well as
at the set-level.

Any system that processes continuous queries on dynamic
data sets, must know when to change the contents of the old
data set and when to process its contents. In the next section,
we discuss this ’when’ parameter of query processing.

B. Instance of processing

Any query posed at time-instance t can process the data items
from the stream instance St, but not the data items observed
at the next successive time-instances. Thus a query on a data
stream must be repeated periodically in order to process all
new data items. The window must be formed by applying the
window-formation predicate on the new stream-instance.

In the next section we present the formal model.

5. FORMAL MODEL

A. Terms and Definitions

Let Ω denote the domain of the data items. A data item is
denoted by x. x can be structured or atomic. When data items
enter into the stream, time-stamp is recorded along with its
value.

• Data Stream at instance t:
At any point of observation, data stream instance St is
defined as St = {(x, t)|x is observed at time t and t ∈
[0, now())} If Stis a stream of values observed at t, then
St ⊇ St−1 ⊇ St−2..... ⊇ S1 ⊇ S0 If (x1, t1), (x2, t2) ∈
St then t1, t2 ≤t and (x1, t1) ≤ (x2, t2) only if t1 ≤ t2.
The time-stamp attribute provides a natural index and an
order relation ≤ for the data set. We are modeling the
stream as ’append’ only databases.

• Data Window at instance t:
Wt = {(x, t)|x ∈ St and P(x) is true at t} where P(x) is
the window-formation predicate. The window formation
predicate is of the type P (x, t) or P (x, t, θ(St)) where
θ(St) is a function of the stream instance St.

• Inductive definition of window:
W0 is the initial window. We define the window at
instance t > 0 inductively as Wt = {(x, tk)|(x, tk) ∈
Wt−1, P (x, tk, θ(Wt−1)) is true at instance tk}

• Formal Model :
Our model is given by (Wt, ℵ,�,ψ)
ℵ: is a set of output transformations
� : is a set of transition transformations together with
a rule of removal defined by the window formation
predicate. Transition transformations are defined through
set-operations union and set-difference. Output transfor-
mations are also defined by set operations. Definitions of
output transformations are domain specific.
ψ : is a binding transformation defined by the cartesian
product.

B. Formal definition - output transformations

Let Λ be a collection of windows over a data stream S. Let
F be the set of all functions defined on the domain Ω of data
items of S.

Set of output transformations is given by
ℵ={Transform,Aggregate}

• Operator transform (T): Definition of Operator
Transform is time-dependent and its contents
may change as the underlying sliding window changes.

597

Tt is defined as a set of functions {f1, f2, . . . fn} where
each fi operates on (xi, ti) in the window.
Tt(Wt) = {(fi(xi), t)|(xi, ti) ∈ Wt and fi : Ω �→ Ω′}
The size of the set Tt is equal to the size of the
sliding window Wt. This facilitates processing at the data-
element level.

• Operator aggregate (A): Let
Wt={(x1, t1), (x2, t2). . . (xn, tn)}
We define transformation A as a function defined on Ωn.
A(Wt) = Ωn : �→ Ωk

A(Wt) is the set containing the output of the query
computed at instance t.
A(Wt) = Vt where Vt is a set of values obtained
iteratively or recursively as follows:
A({x1}) = V1 defined as the initial set.
A({x1, x2}) = V1 ⊕ {x2} where ⊕ indicates adding,
removing or replacing elements from V.
. . .
A({x1, x2, . . . xn}) = Vn−1 ⊕ xn

We demonstrate the application of output transformation by
considering the following query:

Let SalesStream S be the stream of sales figures as described
in [17]. The objective query is: For SalesStream S continuously
report the total sales of a set of items with prices greater than
4 in the last hour.

Processing function is θ=
∑{x|(x, t) ∈ Wt}, which is

modeled by the transformation operator Aggregate. Evalu-
ation of the function

∑
is defined inductively as follows:

V1=
∑{x1} = x1 ; V2 =

∑
(V1, x2) = {x1 + x2} . . . Vn =∑

(Vn−1, xn) for n > 1

C. Formal definition - transition transformation

Low-level operations required for transition are expressed
set-theoretically. Our model proposes an operation Filter for
removal of data item and another operation Merge for addition
of data elements.
�= Set of transition operations = {Filter,Merge}
• Transition operation Filter is defined by the operation

of set-difference. This operation removes those elements
from the current window which make the predicate P
false.
Data items from the window which make the predicate P
false are precisely, those data items, which expire from
the current window. Some of the data items may expire
temporarily where as some of them expire permanently.
For example, in append-only data streams, where the
validity of the data item is time-stamp based, the expired
data items do not re-enter the window. In such cases,
those data items can be removed from the window.

• Transition operation Merge is a binary operation defined
by the operation set union. It forms the set union of the
current window with the set of elements arrived after
computation.

D. formal definition - binding transformation

We define an operation Zip for processing data from multiple
sliding windows. Two distinct streams may have different
values for key-predicate and instance of query evaluation. Thus
two windows may slide at different instances or one of them
may be a static window. This may result into asynchronous
movement of two windows and may require multiple scanning
over the data window in some situations.

Z(Wt,W
′
t′) = {(x, y, t)|(x, ttx

) ∈ Wt, (y, ty) ∈ W ′
t′}.

Operation Zip is defined as the Cartesian product of the
two windows subject to certain condition. Operation Zip
transforms operations on higher dimensions to operations on
one stream of higher order. This simplifies the problem of
asynchronous movement of two windows. This operation is
applied in processing data items from two windows simulta-
neously.

We demonstrate application of zip transformation for ex-
pressing the processing function expressed in the following
query.

Which pairs of stocks are correlated with a value of 0.9
over the last three hours? The user might want the answer
continuously, say every second[18].

The query involves processing of values from two streams.
Processing function is the correlation coefficient given by the
following formula: corr(s, r)=

1
w (

∑
si.ri−s.r)√∑

(si−s)2.
∑

(ri−r)2

s is modeled by A(st) where st is the window on stream s
at instance t. Similarly, r is modeled by A(rt).

Operator Aggregate in both cases is evaluated as average,
which is modeled as Tt(A(st)). Computation of average re-
quires dividing the sum by the count. The division is modeled
by Transform operator where Tt = {f |f(x) = x

n}. Computa-
tion of the expression in the denominator requires application
transform operator before summation. Transform operator T
on st is given by {fi|fi(si) = (si−s)2, i = 1, 2 . . . n}. Similar
transformation will be applied on the window rt.

Zip transformation will be applied on the two windows rt

and st for computing
∑

si.ri.
Z(st, rt) = {(si, ri)|si and ri have same time-stamp value}.

[18]. A(T(Z(st, rt))) will compute
∑

si.ri; where A is mod-
eled by

∑
and T is given by {fi(si, ri) = si.ri|i = 1, 2 . . . n}.

The result of this A(T(Z(st, rt))) is a set of single value, on
which the Transform operator is applied to obtain the result
of the expression in the numerator. Transform operator in this
case is T={f |f(x) = x

w − s.r}
6. DISCUSSION

Even though we do not discuss the implementation issues at
this point, we note here that each window can be mapped into
a relation. The operators included in the proposed model can
express all relational algebra operators as shown in Table 1.

A. Important points about the model

Operation of Filter and Merge are applicable to windows
formed from instances of the same stream.

Operations of Filter and Merge are applicable only at the
data formation layer. The output of relational operators Union

598

TABLE 1: EQUIVALENCE WITH RELATIONAL ALGEBRA OPERATORS

Relational Algebra Operator(s) Type of Operator
operator in the new system
Selection Aggregate Output transformation
Projection Transform Output transformation

Join Zip Data Binding
Min, Max, any Aggregate Output transformation

aggregate function
Union, Union All, Zip followed by Data binding followed

Minus Aggregate by output
transformation

and Minus are obtained by applying the Zip operator with
appropriate condition, followed by the Aggregate operator.

The condition applied for the Zip operation will be as
specified. If it is not specified then the following default
definitions apply:

When ’Zip’ is used for evaluating Minus operator, then the
condition for zipping is equivalent to the Outer Join as defined
in the extended relational algebra. All data items from first
window are included allowing ’null’ values for the second set.
Then the operator aggregate is applied for selecting ordered
pairs where the second element is null. These are the elements
present in the first window but not in the second window.

When ’Zip’ is used for evaluating Union or Union All, then
the condition for zipping is equivalent to the Full Outer Join
as defined in the extended relational algebra. Application of
aggregate operator will select elements which are present in
any one of the windows.

B. Application of the model

We consider here an example of searching a pre-defined
pattern in a long sequence of characters. Let S be a stream
of characters from domain Ω and P be a finite sequence of
characters from the same domain.

Let P={y[1],y[2],. . .,y[n]}
S={(x, t)|x ∈ Ω t∈[0,now())} represents the stream of

characters observed till the current instance.
Wt = {(xi, ti)|xi is observed at ti} is the window observed

at t. Initial window W0 contains exactly n elements. In other
words, the first instance of query evaluation is the instance
when n data elements enter into the stream. After that, when-
ever a new data item enters into the stream, a new window is
formed and the data items are processed. Thus the instance of
query evaluation is the instance of arrival of a new data item
and hence is ’event’ based. The element entered currently into
the stream is added to the old window. At this instant the new
window is formed by removing the element with the least
time-stamp from the old window. Thus the rule of removal of
data item is based on the time-stamp of the data item, hence
it is extrinsic. Comparison of two strings can be done using
some distance metric, such as Hamming Distance.

D(Wt, P)=
∑

(d(xi, yi)) for i=1,2,. . . n, where
d(x,y)=1 if x=y

= 0 otherwise.
Computation of D involves data elements from two win-

dows. Operation Zip is applied first to bind these two windows

together. The result of the Zip operation is a window of n
ordered pairs. Data elements from two windows are paired if
their positions within the window are same.

Zip(Wt,P)={(x,y)| x ∈ Wt, y∈P, position of x in
Wt =position of y in P }

Initial window elements are processed for checking the
equality of each x[i] with y[i].

Initial instance: Elements of W0 can be enumerated as
{x[1], x[2], x[n]} where x[i] is observed before x[i+1] for each
i=1,2,..n-1.

Functional layer involves computation given by
A(T(Z(W0,P))). The Transform operator T is given by
the set {fi|fi(x, y) = d(x, y) for each i=1,2,. . . n}

Since range of the function d(x,y) is {0, 1}, result of
operator T on the zipped window Z(W0,P) will be a set of
n bits. Operator Aggregate in this case is given by Σ. The
output V0 is a singleton set containing the sum of n bits in the
window Z(W0,P).

At every successive instant the stream receives n + 1th

element and the window slides by 1 element.
Wt= Merge ((Wt−1 Filter {x[1]}), {x[n + 1]}).
Keeping with the same rule of enumeration, the resulting

window can be mapped to positions within the window as
{x[1], x[2], ..x[n]} where time-stamp of x[i] is less than the
time-stamp of x[i+1] for each i=1,2... . .n-1.

The output of processing is a stream of output values, which
are then used for determining occurrences of the pattern in the
stream of observed characters.

Generic definition for the data model and for the rule
of forming data set makes the model generic. Set theoretic
definition of the model makes it implementable.

7. SUMMARY CONCLUSION AND FUTURE DIRECTION

We have presented here a generic system of processing a
continuous query over sliding windows. The system is minimal
in a sense that none of its operations can be expressed as
a combination of the other operations. The operations are
orthogonal i.e. the semantics of any two operations do not
overlap. The system is computationally complete such that it is
possible to express any computable function as a combination
of its operations. The basic operations satisfy the closure
property so that output of one operation can be passed as an
input to another operation.

We conclude here that the proposed model can express
queries over sliding windows from different domains. The
main contribution of this paper is a formal model that can
express a continuous query on sliding window.

We did not address the issue of time and space complexity
of computations over sliding windows. Characterization of
window-formation predicates and their effects on optimization
will be studied in future. The concurrency issues that arise as
a result of execution of more than one query with different
sliding instances will also be studied in future.

599

REFERENCES

[1] M. Stonebraker,U.Cetinemel,S.Zdonik, ”The 8 requirements of Real-
Time Stream Processing”, SIGMOD Record,vol 34,No 4, 2005, pp
42-47.

[2] A. Dani,J.R. Getta, ”Incremental Computation Of Aggregate Operators
Over Sliding Windows”, In: Proc. of 3rd International Conference:
Sciences of Electronic,Technologies of Information and Telecommuni-
cations, 2005,Tunisia, pp 42-47.

[3] B. Babcock,S. Babu,M. Datar,R. Motwani,J. Widom, ”Models and
issues in data stream”, In: Proc. of the Twenty-first ACM SIGACT-
SIGMODSIGART Symposium on Principles of Database Systems, 2002,
Madison, Wisconsin, pp 1-16.

[4] A. Deshpande, S. Nath, P.B. Gibbons, S. Sesh, ”Cache-and-Query for
Wide Area Sensor Database Systems”, In: Proc. of ACM SIGMOD Intl.
Conf. on Management of Data, 2003, San Diego, California.

[5] A. Das, J. Gehrke,M. Riedewal, ”Approximate Join Processing Over
Data Streams”, In: Proc.of ACM SIGMOD Intl. Conf. on Management
of Data, 2003,San Diego, California.

[6] E. Vossough, ”A System for Processing Continuous Queries over Infinite
Data Streams”, In: Intl. Conference on Database and Expert Systems
Applications, 2004,Zaragoza, Spain.

[7] A. Arasu,B. Babcock,S. Babu, M. Datar, K. Ito, I. Nishizawa, J.
Rosensstein, J. Widom, ”Stream: The Stanford Stream Data Manager
(demonstration description)”, In: ACM SIGMOD Intl. Conf. on Man-
agement of Data , 2003,San Diego, California.

[8] D. Abadi,D. Carney, U. Cetintemel, M. Cherniack, C. Convey, C. Erwin,
E. Galvez, M. Hatoun, A. Maskey, A. Rasin, A. Singer, M. Stonebraker,
N. Tatbul, Y. Xing, R. Yan, S.Zdonik, ”Aurora: A Data Stream Manage-
ment System”, In: ACM SIGMOD Intl. Conf. on Management of Data
, 2003,San Diego, California.

[9] Z. Bar-Yossef, M. Fontoura, V. Josifovski, ”On the Memory Require-
ments of XPath Evaluation over XML Streams”, In: ACM SIGPODS
Intl. Symposium on Principles of Database, 2004, Paris, France.

[10] C. Luo, H. Thakkar, H. Wang, C. Zaniolo, ”A Native Extension of
SQL for Mining Data Streams”, In: ACM SIGMOD Intl. Conf. on
Management of Data, 2005,Baltimore, Maryland, pp 662-662.

[11] A. Arasu, J. Widom, ”A Denotational Semantics for Continuous Queries
over Streams and Relations”, SIGMOD Record, Vol 33, No 3,
2004,pp 6-11.

[12] A. Arasu, S. Babu, J. Widom, ”The CQL Continuous Query
Language: Semantic Foundations and Query Execution”, Stanford
University,2003,October,http://dbpubs.stanford.edu/pub/2003-67¿ .

[13] J.R. Getta,E. Vossough, ”Optimization of Data Stream Processing”,
SIGMOD Record,2004,Vol 3, No 3.

[14] A. Dani, J.R. Getta, ”Computation Of Mathematical Operators On
Sliding Windows”, In: Proceedings of the 5th International Conference
on Recent Advances in Soft Computing, 2004,Nottingham, United King-
dom.

[15] K. Patraoumpas,T. Sellis, ”Window Specification over Data Streams”,
http://sipl72.si.ehu.es/ICSNW/CP/CR-109.pdf,2006.

[16] T.M.Ghanem, W.G.Aref,A.K.Elmagarmid, ”Exploiting Predicate-
Window Queries in Data Stream Management Systems”, SIGMOD
Record,2006,Vol 35 No 3.

[17] M.A.Hammad, W.G.Aref, M.J.franklin, M.F.Mokbel, A.K.Elmagarmid,
”Efficient Execution of Sliding Window-Queries Over Data Stream”,
http://www.cs.purdue.edu/homes/aref/papers/StreamQueryProcessing-
TechReport2003.pdf, 2003.

[18] Y.Zhu, S.Sasha, ”Fast Approaches to Simple Problems in Financial Time
Series Streams”, In: Proc. Workshop on Management and Processing of
Data Streams, 2003, San Diego, CA.

[19] A. Dani, J.Getta, ”Modeling Evaluation of Continuous Queries on
Sliding Windows”, To appear in: Proc. IEEE International Workshop
on Mining Evolving and Streaming Data in conjunction with ICDM,
2006, Hongkong.

[20] Y.N.Law, H.Wang, C.Zaniolo, ”Query Language and Data Models for
Database Sequences and Data Streams”, In: 30th VLDB Conference,
Toronto, Canada, 2004.

600

	A system of operations on sliding windows
	Recommended Citation

	652.pdf

