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Abstract 

 
This paper evaluates the performance of the Value-at-Risk models of the foreign exchange rates at 
different time horizons. It starts with generating different returns at different time horizons from the 
USD-EUR 5-minute returns and simulates six parametric models (Normal-GARCH, Student-GARCH, 
Normal-IGARCH, Student-IGARCH, Ornstein-Uhlenbeck volatility, and jump) to assess the possible 
trading losses on 30 minutes, 6 hours, 12 hours and daily horizons. Using the variance method, Hill 
estimator, and the Generalized Pareto Distribution, VaR forecasts are obtained. The performance of 
the selected VaR models along with each VaR technique are evaluated at 1% and 5% confidence level 
by calculating the violation ratio. The results show that, at both high and low frequencies, the 
predictive power of the VaR methods display wide variation in assessing the foreign exchange risk. 
Furthermore, if a return generating process considers the tail fatness and the stochastic volatility 
structure of the exchange rate returns, the Extreme Value Theory methods will not be superior to the 
standard variance method. 
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1. Introduction 
 

The increasing popularity of Value-at-Risk (VaR) in recent years has played an important role in 

financial risk management for banks and fund managers as well as financial market regulators. The 

VaR represents a unique quantity that gives the expected maximum loss over a given planning horizon 

with a given confidence level. It serves as a tool to manage and control risk for any financial 

institution that have a trading portfolio. However, the choice of a planning horizon and a confidence 

level for VaR estimates is largely arbitrary. The time horizon used to calculate VaR should normally 

depend on the liquidity of the securities in the portfolios and how frequently they are traded.1 The 

confidence levels or the quantiles that are useful for capital requirements range between 95% and 

99%. Inside this range, many VaR values can be produced not only by using a given risk management 

system, such as RiskMetrics, but also by relying on different asset price generating processes.  

There is a general consensus in the risk management literature (e.g. Embrechts et al., 1997) that any 

question concerning financial market risk management in finance involves quantile (VaR) estimation. 

Within the tool kit on VaR estimation, we find a plethora of methods to assess the VaR of a 

distribution of losses and profits. In all these methods, the typical VaR calculation involves assessing 

the possible extreme loss resulting from holding a portfolio for a fixed period using the volatility as a 

measure of risk over a given period of time. In doing so, J.P. Morgan has introduced the RiskMetrics 

analysis in October 1994, and most companies and banks found it simple to implement empirically 

with minimum computational burden. Since then, a vast body of literature developed by comparing 

some early VaR methods (e.g. Variance-Covariance method and Historical Simulation) with each 

other or with the benchmark model of RiskMetrics (e.g. Allen, 1994). Recently, the growing need to 

evaluate extreme risk in financial markets has shifted interest to EVT (see Embrechts et al. (1997) as 

example). In fact, EVT provides a useful tool for measuring the market risk and gives information 

about the extreme outcomes. Moreover, it provides guidance on the type of distribution one should 

select. The most popular EVT models are the tail index estimator of Hill (1975) and the generalized 

                                                 
1 For an active trader who is likely to get a margin call, the current convention of 10-day horizon is hardly of any 
use. 
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Pareto distribution (GPD).2 For example, McNeil and Frey (2000) found that GPD is preferable to 

other methods such as standard GARCH model with normal and Student-t innovations, in the sense 

that it can incorporate asymmetries in the tails and therefore better estimate the tail of the distribution. 

Their approach consisted of fitting a GARCH model to various return series and using historical 

simulation and threshold methods from EVT to estimate the distribution of the residuals. Furthermore, 

with different time horizons, they used the square-root-of-time scaling of one-day VaR estimates to 

obtain estimates for longer time horizons of 5 or 10 days, and find that this procedure does not 

perform well in practice. As an alternative, they proposed using a Monte Carlo method based on the 

fitted models to obtain better results at different time intervals. According to their results, EVT-based 

methods along with two basic stylized facts, namely stochastic volatility and fat-tails, play an 

important role in the estimation of VaR. 

In the VaR literature, there are few studies that dealt with the performance of VaR models at the 

intraday level (e.g. Beltratti and Morana, 1999, and Giot, 2005) and rarely at different time scales. In 

fact, using intraday returns for risk management purposes can be significant for both internal and 

external observers of what a satisfactory market risk measure is. Internally, bank managers need a 

measure that allows efficient management of the bank's risk position. Bank regulators, on the other 

hand, want to be sure that a bank's net worth loss is accurately measured and that the bank's capital is 

sufficient to survive a loss. Therefore, both bank managers and bank regulators want up-to-date 

measures of risk. In this context, this paper tests VaR models of currency returns at different time 

horizons starting from high frequencies. Our study incorporates not only VaR methodologies that are 

prominent in the literature (Extreme Value Theory and the Variance method, in conjunction with a 

variety of volatility models) but also specific features of the currency markets, in particular the 

increasing fat-tails with the time interval of exchange rate returns and the existence of discontinuities 

in the price process.3  

                                                 
2 This is also called the exceedances over threshold model of Pickands (1975). The reader can also refer to a 
thorough analysis of the extremes of data by Davison and Smith (1990). 
3 Although we consider risk management of currency trade in this study, the methodology applies to the trade of 
other financial assets 
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Therefore, it is an important exercise to look at the effect of various return generating processes and 

VaR calculation techniques at various time horizons for the quantification of foreign exchange market 

risk, in particular the USD-EUR market which is addressed in this study. We test the performance of 

selected VaR models.  We start with simulating a random walk return model with different volatility 

specifications with both normal and Student-t distribution, and a jump model for the returns. We 

proceed by using the VaR computation methods, and testing the performance of these models at 1% 

and 5% confidence level. Finally, a reality check based on minimizing a loss function that compares 

the actual loss and profit with the forecasted VaR is performed.  

3. Market risk models 

In this section we present four basic stochastic processes that are used in the literature representing 

the exchange rate returns process. We consider ,tr Tt ...1=  as the return series where 

 or logged difference of , i.e.  stands for exchange rate.  11 /)( −−−= tttt FXFXFXr FX FX

3.1 GARCH(1,1) 

The GARCH(1,1) specification of Bollerslev (1986) for the exchange rate returns considers the 

volatility clusters observed in financial time series. It is presented as follows, 
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where ε  is assumed to follow some probability distribution with zero mean and unit variance. We 

assume two possible distributions for the error terms, namely tε  is IID N(0,1) and IID Student-t(v), 

where v represents the degrees of freedom. In most of the early papers on the intraday exchange rate 

returns, the mean has not been taken into consideration (see for example Andersen et al., 2001). In 

Nekhili et al. (2002), there are no dynamics in the mean of the intraday returns at 30 minute, 6 hours, 

12 hours, and daily horizon. The drift of the continuous time process of the returns is highly 

insignificant confirming the assumption that the expected returns are equal to zero for all time 

horizons. For this reason, we do not consider a drift in the return process and consequently in the 

calculation of the VaR. 

3.2 IGARCH(1,1) 

 4



There is now evidence that volatility has a notable degree of persistence in the returns (see for 

example Baillie and Bollerslev, 1989). This persistence has been interpreted within the context of an 

Integrated GARCH model as in Baillie et al. (1996) for the exchange rate returns. The case where 

1α in equation (1) is set equal to ζ−1 and 2α  is equal to ζ , constitutes the random walk 

IGRACH(1,1) which is presented as follows4, 
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where tε is IID N(0,1). To test for the possibility of fat tails of the return distribution, we also consider 

tε as IID t(0,1,v) with v degrees of freedom. This model is as important for practitioners as most 

companies and banks choose to implement for risk quantification. The IGARCH model can be 

equivalent to the exponentially weighted moving average model (RiskMetrics) of J.P. Morgan (1995). 

This model is in fact a simple form of the IGARCH model where the pre-specified parameter 

94.0=ζ  and the intercept  set to zero.  a

3.3 Ornstein-Uhlenbeck  

Stochastic volatility model is another important return generating process used by Heston (1993). 

The volatility of the returns is assumed to follow a mean-reverting Ornstein-Uhlenbeck process 

defined as follows, 
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where vσ  is the standard deviation of the volatility, a>0, b>0. The Wiener processes, tε and , are 

assumed to be independent. In his empirical work, Heston (1993) allow for a correlation between 

tZ

tε and . We may consider this for future research. tZ

3.4 Jump process 

                                                 
4 We consider the estimation of the parameters of the IGARCH(1,1) process for different time horizons, and do 
not consider a fixed parameter of 0.94 as it is usually done by J.P. Morgan. 
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To estimate the impact of news on traders, such as the fundamental macro-economic information or 

the intervention of domestic and foreign central banks, we consider a jump process of the exchange 

rate returns as follows, 

,)())((
1

0 0 ∑
=

+−+−−=
tn

t
tttt Lnttr κεεσλθ                         (4) 

where tκ  is the jump and assumed to be i.i.d and lognormal with mean θ  and variance , and  is 

the actual number of jumps during the interval 

2δ tn

ott − following a Poisson arrival process with 

parameter λ as a mean number of information arrivals per unit time. It is assumed that upon the arrival 

of “abnormal” information there is an instantaneous jump in the exchange rate of size tκ , independent 

of tε . The noise and the Poisson process are infinitely divisible in time, appropriately scaled, and have 

independent increments. 

5. VaR Calculations 

In this section, we show the commonly used VaR estimation techniques. In the following, we use the 

variance method and the Extreme Value Theory based methods, namely the Hill estimator and the 

Generalized Pareto Distribution. 

5.1 Variance Method 

Variance method is the variance-covariance method used in portfolio analysis, and in the case of one 

single asset, as in this case, the USD-EUR exchange rate return, it becomes the variance method. The 

variance method relates the VaR with the variance or the standard deviation of the returns and, by 

intuition, the larger the variance of the returns, the larger the VaR. For instance, in the case of 

assuming that the returns follow a martingale process without drift with tttr εσ= where tε follow a 

distribution that is either assumed as IID N(0, ) or as IID Student-t(0, ,v) with v degrees 

of freedom, the VaR for the variance method is estimated by 

(.)Φ 2
tσ 2

tσ

( ) ( ) ,1
t

H
tVaR σαα −Φ=                           (5) 
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where is the ( )α1−Φ )1( α− th quantile value of the distributionΦ . denotes the Value-at-Risk at 

time t within a certain time horizon H. For instance, if we use a Gaussian distribution for a confidence 

level 

H
tVaR

α  of 5% . For a confidence level of 1%,( ) 645.105.01 =Φ− ( ) 326.201.01 =Φ− .5

5.2 Extreme Value Theory (EVT) 

Extreme value theory has become an essential and robust framework to evaluate extreme risks in 

financial markets. The variance method displayed above shows that the extreme risk is related to the 

variance, but in the case of fat-tailed distributions variance is no longer sufficient. Since the tail fatness 

of the exchange rate return distribution is one of its attributes that characterize the extent of the risk, 

we use the tail index as a determining factor in the computation of the Value-at-Risk and contrast its 

values with those that are based on different stochastic processes. 

Generally speaking, in a model of risk, this approach consists of selecting a particular probability 

distribution for the data and estimating its parameters using empirical data. This way, the EVT acts in 

favor of providing the best tool for estimating the tail of the distribution. EVT states that the tail 

distribution of any ordered data must belong to just three possible general families, for which the 

return process r  is presented as follows: 

Gumbel: ( ) ( ) ℜ∈−=Λ − rr r  ,expexp  
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Fréchet and Weibull distributions have only one parameter to estimate, ω , which is called the tail 

index. The Student-t model and the unconditional distribution of ARCH-process both fall in the 

domain of this type of distributions. As in Gencay et al. (2003), if we set 1=ω , the density of the 

                                                 
5 Suppose we have a hypothetical portfolio consisting of $100 million position in USD-EUR market, and 
consider that the daily volatility of USD-EUR returns is 0.5%. Assuming that in the VaR calculation the error 
terms are normally distributed, the 1-day 99% VaR is $100,000,000 times 0.005 times 2.326=$1,163,000. 
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Weibull distribution is a thin-tailed distribution relative to the normal distribution. Whereas the density 

of Fréchet distribution also starts from zero but it has a heavy-tail relative to the normal distribution. 

Finally, the Gumbel distribution has a tail behavior that lies between a thin-tail and a heavy-tail 

relative to the normal distribution. 

A more general representation of these distributions is obtained by reparameterizing the tail index 

ω  to ως /1= . Therefore, a unified representation with a single parameter is well known as the 

generalized extreme value distribution (GEV) 

( ) ( )[ ]
( )[ ]⎩

⎨
⎧

=
≠+−

=
−

0, if             ,rexp-exp
0, if      ,1exp 1

ς
ςς ς

ς
rrH            (6) 

where ς  is also known as the shape parameter. The case where 0=ς  has to be interpreted as 0→ς  

(ς  tends to zero), resulting in the Gumbel distribution. When 0<ς , we obtain the Weibull 

distribution, and for 0>ς the Fréchet distribution.  

For application in insurance and finance, the Gumbel and the Fréchet family turn out to be the most 

important models for extremal events. In fact, the domain of attraction of the Weibull distribution are 

the thin-tailed distributions such as uniform and beta distribution which do not have much power in 

explaining financial time series. For the Gumbel distribution, the domain of attraction include the 

normal, exponential, gamma and lognormal distributions where only the lognormal distribution has a 

moderately heavy-tail. 

A modification of the GEV distribution, which considers the behavior of large observations that 

exceed a high threshold, is now attracting interest in the finance literature, for example McNeil (1999) 

and Bassi et al. (1998). This new class of distributions is the generalized Pareto distribution (GPD). 

The GPD is a two parameter distribution that relies on the exceedances of observations over a high 

threshold $% u$ with the following distribution function, 

( ) ( )
( )⎩

⎨
⎧

=−−
≠+−

=
0, if        ,/exp1
0, if     ,/11 -1/

, ςβ
ςβς ς

βς r
rrG            (7) 

where ς  is the shape parameter of the distribution, 0>β represents an additional scaling parameter, 

and when 0>r 0≥ς  and ςβ /0 −≤≤ r  when 0<ς . In case where the scale parameter 1=β , the 
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distribution in Equation 7 is equivalent to )(log1)(1, rHrG ςς += , when . The GPD nests 

a number of other distributions. When

1)(log −>rHς

0>ς , it becomes the ordinary Pareto distribution that is more 

relevant for financial time series analysis since it is heavy tailed. If 0=ς , the GPD corresponds to the 

exponential distribution. For 0<ς , it is well known as Pareto II type distribution. A more common 

case happens when 5.0<ς , which is valid for high-frequency foreign exchange returns (Embrechts et 

al., 1997). 

In this paper, the quantification of the USD-EUR foreign exchange market risk will be conducted 

using two approaches to calculate the VaR. The first one is the Hill estimator and the second one is the 

GPD. Both of these approaches estimate first the shape parameter ς and then find the VaR. 

5.2.1 Hill Estimator 

Let ,  be the realizations on exchange rate returns. By ordering the data in a descending 

order, where , we use the Hill (1975) estimator for the shape parameter 

tr Tt ...1=

Trrr ...21 >> ς  and is given 

by, 

m

m

t
t rr

m
lnln

1
1ˆ
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1
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⎤
⎢
⎣

⎡
−
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−

=

ς                         (8) 

where  is the number of order statistics, and m ς̂  is the estimated value ofς . The Hill estimator is 

proven to be a consistent estimator of ως /1=  for fat-tailed distributions. 

Different tail estimators work well when the sample size is large. However, the estimation of the tail 

index is dependent on the choice of the number of order statistics . In fact, the choice of 

represents a problem in that we do not know how far we can go to select the order statistic  

that is in the tails. 

m

m )(mr

In some ad-hoc methods, the threshold level  is obtained by arbitrarily considering a confidence 

level and taking the corresponding percentile. Another tool in threshold determination is the Hill-plot. 

A Hill-plot is constructed such that estimated 

m

ς̂  is plotted as a function of m  upper order statistics or 

the threshold. A threshold is selected from the plot where the parameter ς̂  is fairly stable. However, 

we find difficulty in searching for the stable portion of the shape parameters for all our simulated 
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returns at different time horizons considered. Therefore, we looked for more efficient technique to get 

optimal estimates of the order statistics . m

Our estimations are conducted for optimal values of m  obtained by the bootstrap procedure of 

Danielsson and de Vries (1997). In this technique, the fact that the estimator ς̂  is asymptotically 

normal allows us to minimize its mean squared error to determine the optimal number of order 

statistics . The optimality is in the sense that the bias and variance of the shape parameter estimate 

vanish at the same rate. The idea is to construct the bootstrap expectation of , and to minimize 

it with respect to . We employ subsample bootstrap method and take bootstrap resamples of size 

T

m

2)ˆ( ςς −

m

1=T1-s, for some 1>s>0, where T is the sample size. The reason for this sample size reduction is that it 

guarantees convergence in probability. 

Kearns and Pagan (1997), show that the convergence rate is fixed by  and that a resample size 

with s=1/4 works well. We take the same resample size to perform our estimations. The Hill 

estimators are calculated from the optimal number of order statistics obtained through the subsample 

bootstrap procedure, and using GAUSS programming language. It follows that the Hill estimator for 

Value-at-Risk for a given confidence level 

m

α  is then defined as, 

( ) ,
ς̂

α
α ⎥⎦

⎤
⎢⎣
⎡=
T
mrVar m

H
t                                        (9) 

where T is the sample size, m  is the optimal number of order statistics, α  is the confidence level, and 

ς̂  is the estimated shape parameter.6

5.2.2 Generalized Pareto Distribution (GPD) 

The shape parameter ς  can also be estimated from the GPD distribution by maximum likelihood 

method. The density of the GPD distribution is 

( ) ,11
11
−−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+=

ς

β
ς

β
rrg                         (10) 

                                                 
6 For example, suppose that in daily exchange rate returns, the sample size T=1000, the optimal number of order 
statistics  that corresponds to a return900=m 01.0)( =mr , and the estimated shape parameter 50.0ˆ =ς . At 
5% confidence level, the Value-at-Risk is VaRt (0.05) =0.0154. That is the exchange rate return will not exceed 
1.54 percent in one day 95 percent of the time. 
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and the corresponding log-likelihood function is 

( ) ,1ln11ln
1
∑
=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+−−=

T

t
trTL

β
ς

ς
β                       (11) 

where T is the sample size. 

 

For a given confidence levelα , the VaR is calculated as follows, 

( ) ( )( ),1/
ˆ
ˆ ˆ −+= −ςα
ς
βα u

H
t NTuVar                        (12) 

where  is the threshold positioned at the u )1( α− th sample percentile, T is the number of 

observations,  is the number of exceedances over the thresholdu , and  and uN β̂ ς̂  are the parameter 

estimated from the GPD distribution. McNeil and Frey (2000) argue that the issue of choosing an 

optimal threshold does not seem critical for the GPD method as it is more important for the Hill 

estimator method. In fact, the GPD quantile estimator is more stable, in terms of mean squared error, 

with respect to the choice of the threshold. 

The GPD VaR estimations are calculated using EVIS (Extreme Values in S-Plus) software of 

McNeil (1999).7 The appropriate threshold value for each return process and VaR method are chosen 

according to the confidence levels studied. For each time horizon, we take the upper 1% of the sample 

for 1% confidence level, and the upper 5% of the sample for 5% confidence level.8

In our VaR calculations, we divide the returns data, with T observations, in two sub-samples. The 

first sub-sample, SE: from 1…Tk with k the length of window used for estimating the VaR from each 

return generating process, constitutes the estimation sub-sample. The second one, SF: from Tk+1…T, 

represents the forecast sub-sample. Having obtained the simulated distributions from different return 

                                                 
7 EVIS is downloaded over the internet at http://www.math.eth.ch/~mcneil. 
8 As an example, suppose that in daily exchange rate returns, the threshold is determined as 7 percent and 

estimated parameters are  and 05.0ˆ =β 5.0ˆ =ς . Further suppose that T=10000 and . The VaR at 

1% confidence level is

500=uN

194.0]1)01.0
500

10000[(
5.0
05.007.0)01.0( 5.0 =−+= −

tVaR . That is the exchange rate 

return will not exceed 19.4 percent in one day 99 percent of the time 
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generating processes at different time horizons, the VaRs are computed using a rolling window 

procedure. 

In the case of the variance method, VaR are calculated by finding first the standard deviation of the 

simulated returns Yi with i=1…Tk and then rolling until the last T-1 observation. As Tk increases, new 

simulated returns are included but older ones are removed. Once VaR estimates are obtained, a 

performance test is run on the forecast sample of the empirical USD-EUR returns. 

6. VaR Performances 

To assess the VaR model performances, we use the standard procedure that is based on the violation 

ratio or the failure rate (see Jorion, 2000). The violation ratio is the number of times returns exceed the 

forecasted VaR divided by the number of one-period ahead forecasts of VaR. It follows that, for each 

time horizon, an indicator variable can be defined as and  otherwise. 

The fact that the actual loss does or does not exceed VaR is a sequence of successes or failures with 

probability . Since the return observations are independent, the 

indicator , where T is the total number of forecasted VaR, is a Bernoulli process that follows a 

Binomial distribution. Therefore, we can test the null hypothesis 

))((1 αH
ttt VaRrI <>= 0=tI

)](Pr[ αH
tt VaRrp <=

T
ttI 1][ =

α=pH :0 against α≠pH :1 , 

where  is the failure rate, and also construct a confidence interval for  at the confidence levelp p α . 

For instance, at the 5% level, the confidence interval is 

]/)1(96.1,/)1(96.1[ TpppTppp −+−− . 

A high violation ratio corresponds to an underestimation of the risk by the VaR model. If the 

violation ratio is less than α %, the VaR model excessively overpredict the risk. If the violation ratio 

is high than α %, it implies an excessive underprediction of risk by the VaR model. 

To compare the predictive capability of the performing VaR models, we employ a reality check 

procedure by minimizing a loss function. The loss function is calculated by weighing the difference 

between the actual loss or profit and the VaR forecast. It represents the objective of different agents in 

evaluating risk. 

 12



In fact, some agents rely on the difference between the risk forecasts and their actual profits and 

losses. Whereas, some others, like Bank of International Settlements (BIS) regulators, focus more on 

the coverage probabilities. Let's denote the loss function LF with respect to the confidence 

levelα , )(αLF  as follows; 

( ) ( ) ( )( )( )∑
−=

− −−+−=
T

lTt
tt

H
tt IIVarrlLF ,11.1 αααα                     (13) 

where  is the return, l  is the length of the window, tr α  is the confidence level, and  is the indicator 

variable. 

tI

)(αLF  represents the observed deviation from the VaR with the occurrence probabilityα . 

Therefore, for an allocated capital of C dollar, we can evaluate the expected losses at a certain trading 

horizon by multiplying the loss value )(αLF  with C. Hence, smaller loss values will indicate the best 

choice of the return process and the VaR method. 

4. Empirical Application 

As empirical returns, we use the Olsen forex data for the USD-EUR exchange rate. The sample 

consists of continuously recorded 5-minute bid and asks prices from January 2, 2003 through 

November 27, 2004 for a total of 138,816 observations. Each quote consists of a bid and an ask price 

with a time stamp to the nearest even second. The prices at each 5-minute interval are obtained by 

linearly interpolating from the logarithmic average of the bid and ask for the two closest ticks as in 

Muller et al. (1990) and Dacorogna et al. (1993). The continuously compounded prices are the average 

of the logarithm of the bid and ask prices, 

( ) ( )[ ],lnln
2
1

555 ttt askPbidPP +=   138815,...,1for 5 =t                                (14) 

Not to confound the evidence of slow trading patterns over weekends (see Bollerslev and Domowitz, 

1993), we removed the weekend quotes from Friday 22:00 GMT to Sunday 22:00 GMT. The 

continuously compounded 5-minute returns are calculated as the log difference of the prices, 

,1555 −−= ttt PPr      138815,...,1for 5 =t                   (15) 

To eliminate the seasonality, we filtered the raw 5-minute returns by removing holidays as in 

Andersen et al. (2001). Moreover and to avoid the bias that can be caused by the buying and selling 
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intentions of the quoting institutions on the price changes observed at high frequencies (see Dacorogna 

et al., 2001), we opt to work with 30-minute aggregated returns and aggregate for other frequencies, 

namely 6 hour, 12 hour and daily returns. The number of observations is respectively, 23135 for 30 

minute interval, 1927 for 6 hour interval, 963 for 12 hour interval, and 481 for daily interval. For each 

data set, we take off k=8 months from the sample size T, which constitute the forecast sample SF, and 

we perform maximum likelihood estimations of the different return models on the remaining data, 

which is the estimation subsample SE.9 For comparison purposes, we bootstrapped the same USD-

EUR returns at different time horizons in the same way as it is used in historical simulation. In 

addition, we simulated the unconditional distributions of the USD-EUR returns from the proposed 

stochastic processes.  The simulation experiments are implemented in GAUSS, where the parameters 

of each return process are fitted with the estimated ones, to obtain unconditional return distributions. 

For each simulation, we generate S=T-k independent samples with T-k observations each, and we take 

the last observation from each sample to obtain, in fact, T-k number of simulated returns. The number 

of observations T corresponds to the number of observations for the 30 minute interval, and the 

simulated 30 minute returns are aggregated for other time interval.10

7. Results 

The results of the violation ratios at 1% and 5% confidence levels for the estimated VaR using the 

variance method (Equation 5), the Hill estimator (Equation 8), and the GPD method (Equation 12) are 

reported in Tables 1-4. The simulated returns obtained from the proposed stochastic processes are used 

at 30 minutes, 6 hours, 12 hours, and daily time horizons. The number of observations is 23,135 for 

30-minute interval, 1,927 for 6-hour interval, 963 for 12-hour interval, and 481 for daily interval. For 

each data set, we take off more than 8 months from the sample size T (for instance k=180 days for 

daily intervals), which constitute the forecast sample SF. We perform maximum likelihood estimations 

                                                 
9 The GARCH estimations show that taking a forecast sample size of more than 8 months from the whole 
distribution lead to a decrease in the significance of the ARCH and the GARCH terms. The estimations are 
performed using GAUSS programming language along with TSM and MAXLIK routines. In some return 
models, we used S-Plus software. 
10 We estimated the parameters of the selected return models by rolling over the estimation sample SE and we 
found that there is no big change in the estimations. The simulation could be performed each time we estimate a 
return model but, since we aggregated to obtain empirical returns for different time horizons, we are doing the 
same technique to construct the simulated returns for each time interval. 
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of the three VaR models on the remaining data, which is the estimation subsample SE. After 

investigating the performance of various VaR models, we further present the results of the reality 

check based on the loss function )(αLF  (Equation 13) at 1% and 5% confidence levels.  

Table 1 displays the violation ratios of the daily returns for 1% and 5% confidence level. If the 

return generating process is a GARCH(1,1) with normal errors, the Hill estimator performs at 1% 

confidence level with a violation ratio of 0.5% which amounts to 0.5% risk underprediction. Some 

institutions may then not prefer such model because they would have to allocate more than necessary 

capital although they can meet their regulatory requirements. At 5% confidence level, the variance 

method performs better with a violation ratio of 3.8%, which amounts to 1.2% risk underprediction. In 

the case of assuming a GARCH(1,1) with Student-t errors as a return generating process, at both 1% 

and 5% confidence level, the variance method looks better than the other VaR methods. However, it 

overestimates the risk at 1% level and underestimates at 5% level. In using a jump process for the 

returns, at both confidence levels, GPD method is considered as the best alternative in quantifying the 

exchange rate return's risk. However, using the empirical USD-EUR daily returns, the GPD method 

performs only at 5% confidence level. In fact, at 1% confidence level and for a relatively small sample 

size as for the daily returns, it seems that there aren’t enough observations at the tail of the distribution 

for extreme events. Nevertheless, with bootstrapped returns, the GPD performs well at both 1% and 

5% confidence level.   

Table 2 displays the VaR results using the 12-hour returns. By assuming a GARCH(1,1) with 

normal errors for the return process, both the variance method and the Hill estimator at 1% confidence 

level have good performances. Although these two methods underestimate the risk, the Hill estimator 

provides the best violation ratio with 1.1%. At 5% confidence level, only the variance method 

performs with 4.1% violation ratio. In assuming a GARCH(1,1) with Student-t errors, again as with 

the daily returns the variance method performs better at both confidence levels. If the returns are 

governed by a IGARCH(1,1) with normally distributed errors, at the 1% level, the GPD performs with 

a violation ratio of 0.8%, while at 5% level, the variance method has the best performance with a 

violation ratio of 7.2%. Assuming a jump return model, the GPD performs at 5% level with a violation 

ratio of 6.3% which amounts to 1.3% risk underestimation. For an institution, this means that less 
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capital allocation is needed to meet its capital requirements. On the other hand, the GPD method does 

not perform for the empirical USD-EUR 12-hour returns as it does with the bootstrapped returns at 1% 

and 5% confidence level. Therefore, it turns out that the variance method works better when we take 

into consideration the stochastic structure of the return volatility and the tail fatness of the return 

distribution. 

Table 3 shows the violation ratios of the 6-hour returns. We notice that only the variance method 

performs the best among the other VaR methods. At 1% confidence level and assuming a 

GARCH(1,1) with normal errors for the USD-EUR returns, the variance method has a violation ratio 

of 0.8% and hence overestimates the risk by only 0.2%. Assuming a GARCH(1,1) with Student-t 

errors for the USD-EUR returns, the variance method has a violation ratio of 0.8% at 1% level, and 

5.5% at 5% level, which amounts of 0.5% of underestimation of the risk. Using the empirical USD-

EUR 6-hour returns, none of the methods perform to quantify the USD-EUR market risk at the 

considered sample period. At 5% confidence level, the violation ratios of the empirical returns and the 

simulated returns from a jump process are close to each other but both underestimate the USD-EUR 

market risk.  

In Table 4, we display the violation ratios of the 30-minute returns. The only best predictive 

performance comes from the GPD VaR method at 5% level and with assuming jump return model. 

The corresponding violation ratio is 5.8% which amounts of 0.8% underestimation of risk. It seems 

that at the highest frequency, taking the possible discontinuity in the return process, by modeling 

jumps, and the fat-tails of the distribution of the returns, by using tail estimation, plays an important 

role in evaluating the exchange rate return risk. However, using other return generating processes 

along with various VaR methods leads to an overly conservative way to estimate the risk. This fact 

comes to support the findings of Beltratti and Morana (1999) where the high-frequency data used for 

quantifying the USD-EUR market risk has led to an overestimation of risk at the 5% confidence level. 

In addition, the difference in the risk measurement obtained with daily data and high-frequency data is 

due to the difference in the return distribution at these frequencies. However, in contrast to our 

findings, they report that for the 30-minute time horizon, the GARCH(1,1) model performs better 

although it still leads to a conservative risk measurement. 
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Having investigated the VaR models, we will next look at possible extreme losses at the considered 

time horizons. This is well-known as a reality check and where a loss function is minimized. This loss 

function is based on weighing the difference between the actual loss or profit and the VaR forecast. 

Such function represents an objective for different agents in evaluating risk. Tables 5 and 6 give the 

reality check respectively at 1% and 5% confidence levels for the daily, 12-hour, and 6-hour simulated 

returns. In these tables, the return generating processes along with their VaR methods are chosen 

according to their previous performances. For example, at daily time horizon, if the return generating 

process is a GARCH(1,1) with normally distributed errors then the Hill estimator is the best VaR 

model to use as reported in Table 16. Whereas, if the return generating process is GARCH(1,1) with 

Student-t distributed errors then the variance method is the best VaR model to use. These VaR models 

are then compared according to their corresponding loss function as in Equation 13. For an allocated 

capital of C dollar, we can evaluate the expected losses at any trading horizon by multiplying the loss 

value )(αLF with C. Therefore, smaller loss values will indicate the best alternative in assuming the 

return process and in using the VaR method. 

For all the horizons considered and at both the 1% and 5% confidence levels, the bootstrapped USD-

EUR returns present the highest loss function among the other returns.  At daily horizon, at both 1% 

and 5% confidence level, a jump return model along with the GPD method presents the lowest loss 

function, which is 0.0079 for 1% level and 0.0052 for 5% level. In other words, for a capital allocation 

of $10,000, the estimated trading loss is of $78.89 at 1% level, and $52.44 at 5% level. At 12-hour 

horizon, assuming a GARCH(1,1) with normal errors for the returns along with the variance method 

provides the lowest trading loss of $75.58 at 1% level. The same method, assuming a IGARCH(1,1) 

with normal errors for return process, provides the least trading loss of $35.82 at 5% level. At 6-hour 

horizon, the lowest trading loss, at 1% level, is amounted to $53.46 by assuming a GARCH(1,1) with 

normally distributed errors for the USD-EUR returns and using the variance method. At 30-minute 

horizon, at 5% level, the least loss amount comes with assuming a jump process for the returns.  

These results present certain facts. The usual VaR results on daily data do not extend to intradaily 

returns in the sense that the predictive performance of some VaR models is unstable at different 

trading horizons. At least in our case, the EVT-based methods are highly dependent on the trading 
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horizon. There is in fact a degradation of the previous performances of some VaR models at daily and 

6 hour trading horizons by going to lower frequencies. This joins the difficulty of relying on a scaling 

law relationship between different time horizon VaRs such as the square-root-of-time scaling law. 

Moreover, we would expect that the tail index techniques that focus on the prediction of extreme 

events to perform better but it is clear that even at lower tail probabilities the results are not so 

convincing. In addition, despite the fact that the EVT-based methods has proven to be performing with 

stock market data, it seems that dealing with the foreign exchange market at high frequency represent 

a difficult empirical task to confirm some of the empirical findings obtained with stock return VaR 

models. 

8. Conclusions 

Our results document that the application of the VaR techniques on the foreign exchange market is 

highly dependent on the time horizon and the chosen tail probabilities. For instance, the variance 

technique leads to good predictive power at 6-hour horizon and less so at 12-hour horizon whereas the 

EVT-based methods are better in shorter horizons. At daily horizon, we are confronted with a variety 

of choices according to the tail probability and the loss function. In fact, with respect to the loss 

function, the GPD have the best predictive power at %1=α and 5%, and hence is the best method to 

use in the VaR estimations. At the highest frequency, the 30-minute horizon, most of the VaR 

techniques have proven to perform poorly in predicting the risk, with the notable exception of the 

GPD when assuming a jump return process. 

The VaR results obtained on daily data do not extend to intradaily returns in the sense that the 

predictive performance of some VaR models is unstable at different trading horizons. At least in our 

case, the EVT-based methods are highly sensitive to the trading horizon. There is in fact a degradation 

of the previous performances of some VaR models at daily and 6-hour trading horizons by going to 

lower frequencies. This also tells that computing daily VaR from high-frequency USD-EUR data 

using a certain scaling law relationship may be misleading. In fact, there is a debate on using a scaling 

law between different time horizon VaRs such as the square-root-of-time to generate longer horizon 

VaRs (see McNeil and Frey, 2000). Such scaling law could not work because the return distribution 

behaves differently at different time scales.  
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Moreover, we would expect that the tail index techniques that focus on the prediction of extreme 

events to perform better but it is clear that even at lower tail probabilities the results are not so 

convincing. In addition, despite the fact that the EVT-based methods has shown to be the best VaR 

methods with stock market data, it seems that dealing with the foreign exchange market at high-

frequency represent a difficult empirical task to confirm some of the empirical findings obtained with 

stock return VaR models. 
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Table 1: VaR violation ratios for daily returns 
      

1% confidence level 5% confidence level 
Returns             Variance Method     Hill Estimator     GPD Returns             Variance Method     Hill Estimator     GPD 
Empirical                   7.2                          8.8                 0.0 
Normal GARCH       0.0                          0.5*               0.0 
Student GARCH       0.5*                      13.3                 0.0 
Normal IGARCH      3.8                          0.0                 0.0 
Student IGARCH      0.0                           0.0                 0.0 
Ornstein-Uhlenbeck  38.8                        38.3               30.0 
JUMP                       13.8                         6.1                 1.7* 

Empirical                  13.3                         0.0                 2.7* 
Normal GARCH      3.8*                         0.0                 0.0 
Student GARCH      7.7*                         0.0                 1.1 
Normal IGARCH      9.4                          0.0                 1.6 
Student IGARCH      0.0                           0.0                 0.0 
Ornstein-Uhlenbeck   42.2                        11.6               34.4 
JUMP                       21.1                         0.0                  3.3* 

  * Good performance (the theoretical ratio, α , is within the confidence interval). 
 
 

Table 2: VaR violation ratios for 12 hour returns 
      

1% confidence level 5% confidence level 
Returns             Variance Method     Hill Estimator     GPD Returns             Variance Method     Hill Estimator     GPD 
Empirical                   7.7                          12.7                0.2 
Normal GARCH        1.3*                         1.1*              0.0 
Student GARCH        0.8*                         7.5                0.0 
Normal IGARCH       3.3                          4.7                0.8* 
Student IGARCH       0.0                           0.0                0.0 
Ornstein-Uhlenbeck   38.6                        43.6              12.2 
JUMP                       12.2                         8.0                 2.7 

Empirical                  13.8                         0.0                 2.5 
Normal GARCH       4.1*                         0.0                 0.0 
Student GARCH       6.3*                         0.0                 0.0 
Normal IGARCH       7.2*                         0.0                1.6 
Student IGARCH       0.0                           0.0                 0.0 
Ornstein-Uhlenbeck   43.0                        11.6               34.7 
JUMP                       19.7                         0.0                  6.3* 

  * Good performance (the theoretical ratio, α , is within the confidence interval). 
 
 

Table 3: VaR violation ratios for 6 hour returns 
      

1% confidence level 5% confidence level 
Returns             Variance Method     Hill Estimator     GPD Returns             Variance Method     Hill Estimator     GPD 
Empirical                   7.5                          9.1                 0.0 
Normal GARCH       0.8*                        3.8                 0.0 
Student GARCH       0.8*                      14.1                 0.0 
Normal IGARCH      2.9                          3.3                 0.0 
Student IGARCH      0.0                           0.0                 0.0 
Ornstein-Uhlenbeck   35.6                        34.5              24.3 
JUMP                       10.2                         9.3                 8.1 

Empirical                  12.9                        0.0                 20.8 
Normal GARCH        3.0                         0.0                 0.0 
Student GARCH         5.5                         0.0                 1.6 
Normal IGARCH        7.2                         0.0                 1.5 
Student IGARCH        0.0                          0.0                 0.0 
Ornstein-Uhlenbeck    40.0                        10.2               32.3 
JUMP                       17.9                         0.0                22.9 

  * Good performance (the theoretical ratio, α , is within the confidence interval). 
 

Table 4: VaR violation ratios for 30 minute returns 
      

1% confidence level 5% confidence level 
Returns             Variance Method     Hill Estimator     GPD Returns             Variance Method     Hill Estimator     GPD 
Empirical                   7.1                          20.8                2.7 
Normal GARCH        1.4                          2.1                 0.0 
Student GARCH        1.7                          9.5                 0.0 
Normal IGARCH       6.8                         29.0                0.1 
Student IGARCH       0.1                          23.5                0.0 
Ornstein-Uhlenbeck   37.5                        38.1              30.0 
JUMP                       10.0                        11.7                2.7 

Empirical                  12.4                         0.1                 22.5 
Normal GARCH        3.5                          0.0                 0.2 
Student GARCH        7.1                          0.1                 1.9 
Normal IGARCH      12.3                         1.7                 1.4 
Student IGARCH       1.7                          0.3                 0.0 
Ornstein-Uhlenbeck   41.0                         9.5                 24.4 
JUMP                       16.5                         0.1                 5.8* 

  * Good performance (the theoretical ratio, α , is within the confidence interval). 
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Table 5: Reality Check at 1% confidence 

level 
Table 6: Reality Check at 5% confidence 

level 
Returns             VaR Method        Loss Function*     Returns             VaR Method        Loss Function* 

Daily Horizon 
Normal GARCH               Hill                      109.90 
Student GARCH              Variance               115.00 
JUMP                               GPD                       78.89 

12 Hour Horizon 
Normal GARCH               Hill                        75.58 
Normal GARCH               Variance                87.06 
Student GARCH               Variance                91.71 
Normal IGARCH              GPD                     90.08 

6 Hour Horizon 
Normal GARCH               Variance                53.46 
Student GARCH               Variance                60.86 
 

 

Daily Horizon 
Normal GARCH            Variance                        75.00 
Student GARCH            Variance                        63.00 
JUMP                            GPD                               52.44 

12 Hour Horizon 
Normal GARCH           Variance                         50.90 
Student GARCH           Variance                         44.90 
Normal IGARCH          Variance                         35.82 
JUMP                             GPD                              37.74 

6 Hour Horizon 
Student GARCH            Variance                        30.24 

30 Minute Horizon 
JUMP                             GPD                               7.87 
 

  * This value is multiplied by 104. 
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