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Abstract. Metasearch engines submit the user query to several under-
lying search engines and then merge their retrieved results to generate a
single list that is more effective to the users information needs. According
to the idea behind metasearch engines, it seems that merging the results
retrieved from different retrieval models will improve the search coverage
and precision. In this study, we have investigated the effect of fusion of
different retrieval techniques on the performance of Persian retrieval. We
use an extension of Ordered Weighted Average (OWA) operator called
IOWA and a weighting schema, NOWA for merging the results. Our ex-
perimental results show that merging by OWA operators produces better
MAP.

Key words: Information Retrieval, Information Fusion, Persian Text
Retrieval.

1 Introduction

With the rapid growth of the volume of the data, improving the effectiveness of
information retrieval systems is essential. In this study, we try to use the idea
behind metasearch engines in order to improve the results of Persian information
retrieval. We consider each retrieval model as a decision maker and then fuse
their decisions with an OWA operator in order to increase the effectiveness. This
work has been done as our first participation in the CLEF evaluation campaign
[1]. For the ad hoc Persian track we submitted eleven experiments (runs). Our
main goal was to study the effect of fusion operators and whether fusing retrieval
models can bring additional performance improvements. The collection that is
used in this study is a standard test collection of Persian text which is called
Hamshahri and was made available to CLEF by University of Tehran [2], [3].
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In Section 2, we present a brief description of the retrieval methods that have
been used in our experiments. Previous experiments have demonstrated that
these methods have good performance on Persian retrieval.In Section 3, OWA
operator and its extensions that are used for merging the results are described.
One key point in the OWA operator is to determine its associated weights. In
this study, we use a weighting model which is based on Normal distribution and
an IOWA extension. There are two approaches to fuse the retrieved lists: (1)
Combine the results of distinct retrieval methods, (2) Combine the results of the
same method but with different types of tokens. Runs that submitted to CLEF
2008 use the first approach and results show that using this approach does not
lend itself to a significant improvement. It seems although the retrieval methods
are different but their performances and result sets are similar. In another word,
those retrieval methods provide the same vision of the data. After CLEF results
were published, we tried the second approach and we were able to improve the
effectiveness up to 5.67% and reached the 45.22% MAP on the test set. Section
4 describes the experiments and their results.

2 Retrieval Methods

In this work, for the purpose of fusion, we needed different retrieval methods.
After studying different retrieval toolkits, finally we choose Terrier [4]. Different
methods have been implemented in Terrier toolkit. Among these methods, we
selected nine of them. The weighting models and a brief description of them
(from [5]) are illustrated in Table 1. Table 2 depicts the result obtained from
running the above nine methods described in Table 1 on the training set of
queries.

3 OWA Fuzzy Operator

This section describes the Order Weighted Average (OWA) operator, normal
distribution-based weighting and IOWA extension.

3.1 OWA Definition

An OWA operator of dimension n is a mapping OWA : Rn → R, that has an
associated n vector w = (w1, w2, ..., wn)T such that wj ∈ [0, 1] and

∑n
j=1 wj = 1.

Furthermore,

OWA(a1, a2, ..., an) =
n∑

j=1

bjwj (1)

where bj is the jth largest element of the collection of the aggregated objects
a1, a2, ..., an [6].
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Table 1. A description of retrieval methods

Weighting Model Description

BB2 Bose-Einstein model for randomness, the ratio of two Bernoulli’s pro-
cesses for first normalization, and Normalization 2 for term frequency
normalization

BM25 The BM25 probabilistic model
DFR BM25 This DFR model, if expanded in Taylor’s series, provides the BM25

formula, when the parameter c is set to 1.
IFB2 Inverse Term Frequency model for randomness, the ratio of two

Bernoulli’s processes for first normalization, and Normalization 2 for
term frequency normalization

In expB2 Inverse expected document frequency model for randomness, the ratio
of two Bernoulli’s processes for first normalization, and Normalization
2 for term frequency normalization

In expC2 Inverse expected document frequency model for randomness, the ratio
of two Bernoulli’s processes for first normalization, and Normalization
2 for term frequency normalization with natural logarithm

InL2 Inverse document frequency model for randomness, Laplace succession
for first normalization, and Normalization 2 for term frequency normal-
ization

PL2 Poisson estimation for randomness, Laplace succession for first normal-
ization, and Normalization 2 for term frequency normalization

TF IDF The tf*idf weighting function, where tf is given by Robertson’s tf and
idf is given by the standard Sparck Jones’ idf

3.2 IOWA

An IOWA operator is defined as follows:

IOWA(< u1, a1 >,< u2, a2 >, ..., < un, an >) =
n∑

j=1

wjbj (2)

where w = (w1, w2, ..., wn)T is a weighting vector, such that
∑n

j=1 wj = 1 ,
0 ≤ wj ≤ 1 and bj is the ai value of the OWA pair < ui, ai > having the jth

largest ui, and ui in < ui, ai > is referred to as the order inducing variable and
ai as the argument variable. It is assumed that ai is an exact numerical value
while ui can be drawn from any ordinal set Ω [7]. The weighting vector which
is used in our experiment will be defined in Section 4.

3.3 NOWA

Suppose that we want to fuse n preference values provided by n different in-
dividuals. Some individuals may assign unduly high or unduly low preference
values to their preferred or repugnant objects. In such a case, we shall assign
very low weights to these false or biased opinions, that is to say, the closer a
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Table 2. Comparison between different weighting models

Weighting Model MAP R-Precision

BB2 0.3854 0.4167
BM25 0.3562 0.4009
DFR BM25 0.3562 0.4347
IFB2 0.4017 0.4328
In expB2 0.3997 0.4329
In expC2 0.4190 0.4461
InL2 0.3832 0.4200
PL2 0.4314 0.4548
TF IDF 0.3574 0.4017

preference value (argument) is to the mid one(s), the more the weight it will
receive; conversely, the further a preference value is from the mid one(s), the less
the weight it will have.

Let w = (w1, w2, ..., wn)T be the weight vector of the OWA operator; then
we define the following [8]:

wi =
1√

2Πσn

e−[(i−µn)2/2σn
2] (3)

where µn is the mean of the collection of 1, 2, ..., n, σn, (σn > 0) is the standard
deviation of the collection of 1, 2, ..., n. µn and σn are obtained by the following
formulas, respectively:

µn =
1
n

n(n + 1)
2

(4)

σn =

√√√√ 1
n

n∑

i=1

(i− µn)2 (5)

Consider that
∑n

j=1 wj = 1 and 0 ≤ wj ≤ 1 then we have:

wi =
1√

2Πσn
e−[(i−µn)2/2σn

2]

∑n
j=1

1√
2Πσn

e−[(j−µn)2/2σn
2]

=
e−[(i−µn)2/2σn

2]

∑n
j=1 e−[(j−µn)2/2σn

2]
(6)

4 Experiment

For the experiments, CLEF has obtained the standard Persian test collection
which is called Hamshahri. Hamshahri collection is the largest test collection
of Persian text. This collection is prepared and distributed by University of
Tehran. The third version of Hamshahri collection is 660 MB in size and contains
more than 160,000 distinct textual news articles in Persian [9]. There were 50
training queries with their relevance judgments and 50 test queries prepared for
the Persian ad hoc track. For the CLEF, we choose nine methods of document
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retrieval described above and fuse the top hundred retrieved results from each
of them. The evaluation of the single IR models are depicted in Table 2.

We use OWA operator based on normal distribution weighting for merging
the lists. In this problem, we have nine decision makers, so the weighting vector
is as the following:

n = 9, µ9 = 5, σ9 =

√
20
3

, ornes(w) = 0.5, disp(w) = 2.1195, (7)

w = (0.0506, 0.0855, 0.1243, 0.1557, 0.1678, 0.1557, 0.1243, 0.0855, 0.0506)T (8)

The precision-recall diagram obtained after submitting the OWA run to CLEF
is illustrated in figure 1. IOWA extension was also tested. We used 50 training

Fig. 1. The result of running NOWA published by CLEF 2008

queries in order to calculate the weighting vector for this method. We ran the
nine selected retrieval methods on the collection. The following weighting vector
is obtained by using the average precision of each method as its weight. These
percisions are obtained from Table 2:

0.4167/3.8409, 0.4009/3.8409, 0.4347/3.8409, 0.4328/3.8409, 0.4329/3.8409,
0.4461/3.8409, 0.42/3.8409, 0.4548/3.8409, 0.402/3.8409 (3.8409 is the sum of
the obtained average precisions)

Figure 2 illustrates the precision-recall diagram of IOWA run with the above
weighting vector.
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Fig. 2. The result of running IOWA published by CLEF 2008

5 Analyzing the Results and More Experiments

We submitted top hundred retrieved documents for our runs to CLEF, while
CLEF evaluates the results by top thousand documents which decreased aver-
age precision about 10% in average. Therefore, in future we intend to calculate
our Precision-Recall charts and other measurements based on the retrieved doc-
uments. The results published by CLEF for our fusion runs show that using
fusion techniques on these methods does not yield to improved results over the
individual methods. By analyzing the lists obtained from the retrieval methods,
we observed that these result lists for these nine different methods have high
overlap among them. On the other hand, fusion methods work well when there
are significant differences between decision makers. Therefore, we have concluded
that although the methods are different they are not significantly different from
each other and basically they provide the same view of the collection.

After the CLEF results were published, we decided to investigate the second
approach for fusion and looked the effect of different tokens in retrieval. For
this purpose we chose a vector space model and ran it on the training set three
times with three different types of tokens namely 4-grams, stemmed single terms
and unstemmed single terms. To obtaining best results, we ran PL2 method of
Terrier toolkit on 4-gram terms, Indri of Lemur toolkit [10] on stemmed terms
and TF IDF of Terrier toolkit on unstemmed terms. Then we applied the above
OWA methods and as shown in Table 3, we obtained 9.97% improvements over
individual runs.

After that, we continued this approach and did more experiments with the
CLEF test set. On the test set, this approach lead only to 5.67% improvements
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Table 3. Comparison between different weighting models on the training set

Retrieval Method MAP R-Precision Dif

TF IDF with unstemmed single terms 0.4163 0.4073
PL2 with 4-gram terms 0.4100 0.3990
Indri with stemmed terms 0.4100 0.4183
IOWA 0.5160 0.4928 +9.97%
NOWA 0.5030 0.4839 +8.67%

on the average precision over individual runs using NOWA method and 5.6%
using IOWA method. Table 4 demonstrate the obtained results.

Table 4. Comparison between different weighting models on the test set

Retrieval Method MAP R-Precision Dif

TF IDF with unstemmed single terms 0.3847 0.4122
PL2 with 4-gram terms 0.3669 0.3939
Indri with stemmed terms 0.3955 0.4149
IOWA 0.4515 0.4708 +5.6%
NOWA 0.4522 0.4736 +5.67%

6 Conclusion

Our motivation for participation in the ad hoc Persian track of CLEF was to
investigate the influence of fusion techniques on the effectiveness of Persian re-
trieval methods. First we used nine retrieval methods and then fused the results
by NOWA and IOWA. The obtained results showed that although there were
some improvements on the overall performance but it was not significant. In the
second stage, we changed our approach to use different types of tokens with the
same method. To reach this goal, we focused on working with different types of
terms instead of different methods. Results indicates that fusion produces better
results under such circumstances although this improvement was under 10% on
the training set and 6% on the test set.

In future, we will continue investigating the effects of different token types
and retrieval engines on Persian retrieval and will try to fine tune an engine
based on fusion.
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