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ABSTRACT 

The size of web-graph created from crawling the web is an issue 
for every search engine. The amount of data gathered by web 
crawlers makes it impossible to load the web-graph into memory 
which increases the number of I/O operations. Compression can 
help reduce run-time of web-graph processing algorithms. We 
introduce a new algorithm for compressing the link structure of 
the web graph by grouping similar pages together and building a 
smaller representation of the graph. The resulted graph has far 
less edges than the original and the similarity between adjacency 
lists of nodes is increased dramatically which makes it more 
suitable for graph compression algorithms. The characteristics of 
the resulted graph are similar to the original. We also ensure fast 
decompression of the compressed graph. Partial decompression 
of the web-graph is also possible. The result of the pre-
compression can be loaded into memory and the increased 
similarity between adjacency nodes makes it suitable for further 
use of compression and web-algorithms. 

1. INTRODUCTION 

Web crawlers usually generate a graph structure in which pages 
are the nodes and links are the edges. This representation of the 
web graph  [4]  [7] is the base for most today’s internet algorithms. 
With ever increasing rate in the growth of WWW, it is no longer 
possible to have the whole web graph in the main memory of a 
computer. With billions of pages and billions of links, it is 
essential to provide a better use of the web graph. Since size is 
the most important issue in using web-graphs, compression 
algorithms are needed to provide more efficient presentation of 
the graph.  
Due to the size of web-graph  [4] [5] , the link structure  [11] can 
only be partially loaded into the memory which is time 
consuming and increases unnecessarily the I/O interactions. 
Compressing the graph can speed up the algorithm by removing 
those unnecessary I/O interactions. 
In this paper we focus on problem of compressing the web graph. 
 

We will introduce a new algorithm for compressing the structure 
of the web graph by removing edges in a reversible manner. Our 
tests on datasets of very large graphs, derived from crawling the 
web, have demonstrated the effectiveness of our approach. We 
have also shown significant improvements on the compression 
ratio of Huffman algorithm and the differential coding methods 
like  [5] on the web graph processed by our algorithm. 
The structure of this paper is as follows: Section 2 provides a 
history of works on web graph compression. In Section 3 we will 
introduce our algorithm, followed by experimental results. 
Afterwards, we will conclude our work with some suggestions for 
future works. 

2. RELATED WORKS 

The previous efforts on web graph compression can be divided 
into two general categories: Entropy Encoding Algorithms 
referred to as traditional methods, and new methods based on the 
nature of web graph. Entropy Encoding Algorithms will compress 
the web graph by giving smaller codes to nodes with higher in-
degrees. The new methods, however, benefit from the features of 
web graph and result in a better compression ratio. 
Web graph has two important characteristics. First, it is a sparse 
graph with dense sub-graphs in some parts. The dense sub-
graphs, or communities  [8] [13] [14], have been the subject of 
research in recent years. The other characteristic of the web graph 
is the similarity of the link adjacency list of many nodes which is 
the result of mirror pages on the internet. 
The algorithm introduced in  [5] has three basic steps: finding 
nodes with partial similarities in their adjacency lists, selecting 
one of them as a reference node and replacing the other nodes by 
their differences from the reference node. This approach results in 
a greater compression ratio compared to Entropy Encoding 
schemes. Our algorithm will benefit from this idea in a somewhat 
different approach. Unlike  [5] our algorithm will compress the 
web graph by removing some of the edges from the adjacency list 
of the nodes. 
A more recent contribution makes use of clustering algorithms for 
re-indexing the nodes with the aim of representing the link 
adjacency list of each node by differences between the 
consecutive indices of out-degree nodes  [1]. Our work has the 
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same goal but with a different approach. Unlike  [1] we will re-
index the nodes in order to give nodes with similar adjacency lists 
closer numbers. In particular, we choose a sub sample of graph or 
inverted-index and re-index it based on the method presented in 
 [1]. The re-indexed graph will be used for edge elimination and 
grouping algorithm which will produce a graph with the same 
characteristics to the original graph. 

3. WEB-GRAPH STRUCTURE 

Web graph is defined as G(V,E) where V is the set of web-pages 
and E is the set of links. Each web-page is identified by its URL 
and is represented in the web-graph by a unique index number. 
Each edge can be defined as a two-tuple that includes the index 
number of the page which contains the link and the index number 
of the page that the links points to  [6] [8] [9]. 
This structure is usually stored in Compressed Storage Formats 
like CSR (Compressed Sparse Row)  [18] which is used to store 
sparse graphs. In this format the adjacency structure of a graph 
with n vertices and m edges is represented using two arrays with 
xadj with the size of  n+1 and adjncy with the size of 2m (this 
is because for each edge between vertices v and u  both (v,u) and 
(u,v) are stored).  
The adjacency structure of the graph is stored as follows. 
Assuming that vertex numbering starts from 0, then the adjacency 
list of vertex i is stored in array adjncy starting at index 
xadj[i] and ending at (but not including) index xadj[i+1]. 
(i.e., adjncy[xadj[i]] through and including 
adjncy[xadj[i+1]-1]) [16]. 
Entropy Encoding Algorithms (e.g. Huffman Coding) try to 
reduce the size of CSR format by assigning smaller index 
numbers (containing fewer bits) to the pages with higher 
frequency.  
However by using the built-in features of the web graph 
achieving higher compression rates is possible. One of them 
being that pages with similar content are very frequent therefore 
pages with the same topic have many links to these similar pages. 
Grouping these pages together and storing only one link to the 
group can dramatically decrease the size. 

4. OUR ALGORITHM 

In this section we describe our new algorithm. This algorithm is 
based on the compression of the web graph by re-indexing the 
similar web pages and then grouping and replacing edges with a 
similar edge in a group in the link adjacency list of the nodes. The 
proposed algorithm has the following steps:  
 
First, we re-index the web-graph so that similar pages have a 
closer page number. Two pages are considered similar if there are 
a large number of other pages that have links to both of them. The 
result of this phase is used by the Grouping and Edge-Elimination 
algorithm. Since re-indexing algorithms are usually slow the 
balance between speed and compression should be determined 
based on the application requirements. If for an application the 
speed is more important than the compression ratio then this 
phase can be ignored.  
  

Second, we group similar pages together and replace their page 
numbers in the index with their group numbers. All the edges that 
point to the nodes from the same group in the link adjacency list 
of a particular node are replaced with only one edge that points to 
the group number. In order to keep track of those eliminated 
edges we use an auxiliary data structure so that we can de-
compress the web graph at a later time. Since grouping and 
decompressing should be very fast, a simple and fast grouping 
approach is to group the pages with close index numbers together. 
Since these pages are indexed based on their similarity, similar 
pages will be grouped together. Community based  [13] 
approaches that find web-communities in order to group them 
together usually suffer from very low speed due to high 
processing costs needed to find web-communities. Also since 
they usually have variable community sizes the auxiliary 
structure will take up more space and have higher access time. 
 
This algorithm preserves the overall characteristics of the graph 
and also increases similarity between link adjacency lists of nodes 
 [2]. 

4.1. Re-Indexing Algorithm 

The main aim of re-indexing is to give similar nodes closer 
document IDs. The produced IDs can dramatically improve the 
performance of the difference and entropy coding (e.g. Huffman) 
algorithms. We use a tested re-indexing algorithm to permute 
documents to create locality in the index  [1]. 
 
We use a document reordering algorithm  [1] that re-indexes the 
documents based on cosines measure for similarity. Similar 
document (that have similar links) get closer numbers. 
Conceptually the Re-Indexing algorithm is divided into three 
parts. The first part Build-Graph constructs a page-page similarity 
graph from a web-graph using cosines measure for similarity. The 
second part Split-Index makes calls to the METIS  [16] [17] graph 
partitioning package to recursively partition the graphs produced 
by Build-Graph. It uses these partitions to construct a hierarchical 
clustering tree for the web-graph. The third part of the algorithm, 
Order-Clusters applies rotations to the clustering tree to optimize 
the ordering. It then numbers the pages with simple depth first 
traversal of the clustering tree.  
 
The result of the Re-Indexing algorithm is an Index in which 
similar pages are sorted together. This helps the grouping 
algorithm to group similar pages together instead of grouping in 
the order of crawling. 
 
Since this phase of the algorithm is the most time consuming one, 
if the application’s main criterion is speed or if other compression 
algorithms will be used along with this algorithm; this phase can 
be skipped. 

4.2. Grouping and Edge Elimination Algorithm 

After reordering since similar pages are close to each other we 
can group k sequential pages together. Therefore, each node’s 

group number is ቒ
୬ౙ
୩
ቓ. Moreover, finding the group number of a 

particular page or finding members of a group is very 
straightforward. 
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The basic idea in edge elimination algorithm is to eliminate all of 
the edges in the link adjacency list of a node that point to nodes 
from the same group and instead add an edge that points to the 
group number. Since all links that were pointing to a group 
member now point to the group number the overall similarity of 
the link adjacency list of nodes will dramatically increase  [2].  
 
In order to demonstrate the increase in similarity consider page x 
in the adjacency of page P1 and page y in the adjacency list of 
page P2: 
 

ቐ
ݔ ൌ ݕ ՜ ݃ሺݔሻ ൌ ݃ሺݕሻ, ݕݐ݅ݎ݈ܽ݅݉݅ݏ ݊݅ ݄݁݃݊ܽܿ ݋ܰ

ݔ ് ݕ ՜ ൜
݃ሺݔሻ ൌ ݃ሺݕሻ, ݕݐ݅ݎ݈ܽ݅݉݅ݏ ݊݅ ݁ݏܽ݁ݎܿ݊ܫ

    ݃ሺݔሻ ് ݃ሺݕሻ, ݕݐ݅ݎ݈ܽ݅݉݅ݏ ݊݅ ݄݁݃݊ܽܿ ݋ܰ
 

 
Grouping has two major benefits: 

1- Similarity based coding methods can work more 
efficiently since the similarity between link adjacency 
lists increases. 

2- The size of graph is reduced k times which might 
enable us to load the graph to memory or at least 
simplify some of the common graph operations. 

3- The number of bits required to present each page 

number is reduced from log|ܸ| to log
|௏|

௞
 . 

 
The resulted graph can be considered an approximation of the 
original graph. It can also be used as a smaller representative 
(with similar characteristics) of the original for several web-
algorithms. These algorithms may not need to retrieve the 
original web-graph from the auxiliary data structure for their 
operations. For example, the results of the Community Detection 
algorithms  [8] on the representative graph are very similar to the 
results from the original graph; because similar nodes are already 
grouped together and now group numbers are detected as 
community members. 
 
As previously mentioned, we need to keep track of the edges that 
have been eliminated, to make the process of compression 
reversible. Since we want to make the best use of space for 
keeping these eliminated edges, we can use a bit vector of size ݇ 
in which each bit represents a node in the group.  The process is 
shown in Figure 1. Consider we chose group size 8. The 
adjacency list shown in Figure 1.a will be saved as shown in 
Figure 1.b. An 8bit vector is used to save the group members 
present in the adjacency list. As shown in Figure 1 The bits 
corresponding to 1, 2, 5, 8 are set to 1. This process is repeated 
for other groups as well. 
 

 

Figure 1. Auxiliary File Format. 

Using this structure for the auxiliary file results in consumption 
of too much space this can affect the overall compression 

efficiency. For example in Figure 1, storing group 3 takes up 
more space than storing its sole member node 17. To address this 
problem the following method is used: 
Instead of using a bit vector with the size of group we use a 
smaller bit vector that begins with the first member of the group 
and ends with the last one (we remove the 0s from the beginning 
and the end of vector).  
 
For example the second bit vector in Figure 1 becomes the 
following vector (Node numbers are from 0): 
 

 
Also we can remove the starting and ending bits of the resulted 
vector because we already know that they are 1. 
 

 
 
By using this method the size of the bit vectors will gradually 
decrease but in return we need to store the number of the first and 
the last members of the group. 
 
In a naive approach we will need 2 * logk  bits to present these 
two group members but since the second number is always bigger 
than the first one we present a scenario that only needs 

ቒlog
୩ሺ୩ାଵሻ

ଶ
ቓ bits. 

 
Consider i as the number of the first member of the group and j  
as the number of last member of the group. The goal is to 
calculate number l  (Which we call matrix indicator) from i  and j  
such that by only storing l, I and j can be extracted and l should 

only have ቒlog
୩ሺ୩ାଵሻ

ଶ
ቓ bits.  

 
In order to do this, we consider ݅ and ݆ as the rows and columns 
of a matrix and since ݆ is always bigger than ݅ we only use the 
upper triangle of the matrix. We use the following method to 
number the matrix: 
 

ۏ
ێ
ێ
ێ
ۍ
0 1
െ k ൅ 1

ڮ k െ 1
… 2k െ 1

െ    െ    
െ െ 
െ െ 

ڭ ڭ
2k 2k ൅ 1
െ k ے

ۑ
ۑ
ۑ
ې
 

 
The numbering sequence is as follow: After numbering row ݎ, 
row ݇ െ ݎ െ 1 is numbered. By using this numbering we can both 
calculate ݈ from ݅ and ݆ and also ݅ and ݆ from ݈. 
 
The ݈ can be calculated for row ݅ and column ݆ by the following 
equations: 
 

݈ ൌ ݅ ൈ ݇ ൅ ݆                                 ݂݅ ݅ ൏    ۀ2/݇ڿ
݈ ൌ ሺ݇ െ ݅ሻ ൈ ݇ െ ݅ ൅ ݆              ݂݅ ݅ ൒    ۀ2/݇ڿ

 
In reverse, we can calculate ݅ and ݆ from ݈: 
 

൜
݅ ൌ ܽ

݆ ൌ ܽ ൅ ܾ                                            ݂݅ ܾ ൏  ݇ െ ܽ 

0 0 0

1 5

1 0 10 0

1 5

i ● 1 2 5 8 10 14 17

i ● 1 2 3 

1 1 1 0 0 10 0 0 1 0 1 0 0 0 0 1 0 0 0 0 00 0

a) 

b) 
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൜
݅ ൌ ݇ – ܽ െ 1
݆ ൌ ܾ െ 1                                       ݂݅ ܾ ൒  ݇ െ ܽ 

Where ܽ and ܾ are quotient and remainder of division of ݈ to 
݇ ൅ 1 respectively: 

݈  ൌ  ܽ ൈ ሺ݇ ൅ 1ሻ ൅ ܾ 
 
Since ݅ can get values between 0 to ݇ and ݆ can get values 

between ݅ and ݇ therefore ݈ can get values between  and 
௞ሺ௞ାଵሻ

ଶ
. 

As a result l only needs ቒlog
୩ሺ୩ାଵሻ

ଶ
ቓ bits. 

 
We show that for ݇ ൐1 using ݈ instead of ݅ and ݆ takes up less 
space: 
 

2 ݃݋݈ ݇ ൐ ݃݋݈
݇ሺ݇ ൅ 1ሻ

2
 

՜ ݃݋݈
݇ሺ݇ ൅ 1ሻ
2݇ଶ

൏ 0 

՜
݇ሺ݇ ൅ 1ሻ
2݇ଶ

൏ 1 

 
՜ ݇ ൐ 1 

 
 
The following inequality shows the minimum for choosing the 
number of bits (݊) to present ݈: 
 

kሺk ൅ 1ሻ
2

൑ 2୬ 

݊ should be selected so that it is as close to ቒlog
୩ሺ୩ାଵሻ

ଶ
ቓ as 

possible. 
 
By using the above method several group sizes may need the 
same number of bit for presentation. This fact is shown in Error! 
Not a valid bookmark self-reference. for group sizes from 16 to 
22. Since bigger group sizes result in higher compression ratio 
therefore choosing the largest group sizes with the same number 
of required bits for presentation is the best choice. 

Table 1. Group size and the number of bits required to 
present the group 

Group Size 16 17 18 19 20 21 22 

ሺ࢑ሺ࢑ ൅ ૚ሻሻ/૛ 136 153 171 190 210 231 253 

bits required 8 8 8 8 8 8 8 

 

4.3. Decompression 

The compressed format of the adjacency list contains group 
numbers instead of page numbers. In order to decompress the 
adjacency list of a node we use the matrix indicator ݈ and bit 
vector from the auxiliary file. From the matrix indicator we can 
calculate the first (݅) and the last member (݆) of the group. Other 
page numbers can be calculated from the bit vector.  
 
One of the big advantages of this method is that we can partially 
decompress the web-graph meaning that we only decompress the 
adjacency lists of the pages that we require. 

 
Decompression is a much faster process than compressing the 
web graph because it doesn’t involve several time consuming 
operations such as re-ordering. Since compression is only done 
once on the web graph bearing the overhead is possible but for 
every usage of web graph we need partial or complete 
decompression of the web graph; therefore, decompression speed 
is of much more importance. 

5. COMPUTATION COMPLEXITY 

The re-ordering phase of the algorithm is the most time 
consuming part of the algorithm. For further reading we refer the 
reader to  [1]. Grouping and edge elimination process is ܱሺ|ܧ|ሻ, 
since it is done by one iteration on the web-graph.  
 
We should keep in mind that the edges in the link adjacency list 
of each node are sorted in increasing order based on the index 
value of the nodes that they are pointing to. This will reduce the 
processing time of finding edges that point to node members 
belonging to the same main group in the adjacency list of a node.  
 
In the decompression process, we can calculate the first and the 
last member of the group from matrix indicator with ܱሺ1ሻ. Other 
group members can be extracted from the bit vector which in the 
worst case is ܱሺ݇ሻ. Extraction from the auxiliary file is only 
necessary if we want the exact adjacency list which is not 
necessary for many web-graph processing purposes. 
 
In comparison to community based compression approaches 
which try to use the natural locality in web communities since in 
our algorithm similar pages are sorted together we can achieve 
the same compression rates but with much less processing time 
and space. 

6. INVERTED INDEX 

Datasets produced by crawling engines contain very large 
Inverted-Indices. These indices can also enjoy the benefit of our 
pre-compression algorithm. 
 
The inverted index data structure is a central component of a 
typical search engine indexing algorithm. One of the goals of a 
search engine implementation is to optimize the speed of the 
query; i.e. find the documents where word X occurs faster. First a 
forward index is generated, which stores lists of words per 
document; next the forward-index is inverted to create an inverted 
index. Querying the forward index would require a sequential 
pass through each document in the collection, which is not 
realistic. 
 
Inverted index ܫ is described as a set of terms ݐଵ …  ௠. For everyݐ
term ݐ௜ there is an associated list of |ݐ௜| document numbers 
݀௜,ଵ …݀௜,௧  [1] . In Inverted Index (or Index) each term-document 
(or document-term) list is very similar to the adjacency list of a 
web-graph. Two terms (or documents) are considered similar if 
they have similar documents (or terms) in their list. 
 
The pre-compression algorithm can be applied to Inverted-Index 
just as easily as it can be applied to web-graph. 
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7. TEST RESULTS 

We tested our algorithm on several datasets with very large 
graphs (e.g., millions of links) produced by UbiCrawler  [19] 
(CNR 2000, IN 2004, EU 2005) [20].  We examined the effect of 
choosing different group sizes and re-ordering on the achieved 
compression. We also compared the results without considering 
auxiliary data structures since auxiliary file is only necessary for 
complete decompression of the web-graph. 

Table 2. Size improvement and Bit per Link for CNR 
2000 with different Group Sizes and The effect of Re-
Ordering. CNR 200 Collection, 325557 Nodes, 3216152 
Edges 

CNR 
2000 

Group 
Size 30 35 40 45 50 

Not-
RO 

%Improv 65.43 65.52 67.04 66.96 66.84 

bpl 7.21 7.19 6.87 6.89 6.91 

RO 
%Improv 69.19 69.32 70.73 70.69 70.60 

bpl 6.45 6.42 6.12 6.13 6.15 

 
As seen in We tested our algorithm on several datasets with very 
large graphs (e.g., millions of links) produced by UbiCrawler  [19] 
(CNR 2000, IN 2004, EU 2005) [20].  We examined the effect of 
choosing different group sizes and re-ordering on the achieved 
compression. We also compared the results without considering 
auxiliary data structures since auxiliary file is only necessary for 
complete decompression of the web-graph. 
Table 2, increasing the group size somewhat improves the 
compression ratio. The improvement depends on the size of the 
original web-graph. Bigger and denser web-graphs achieve higher 
compression ratios. We tested our algorithm on several datasets 
with very large graphs (e.g., millions of links) produced by 
UbiCrawler  [19] (CNR 2000, IN 2004, EU 2005) [20].  We 
examined the effect of choosing different group sizes and re-
ordering on the achieved compression. We also compared the 
results without considering auxiliary data structures since 
auxiliary file is only necessary for complete decompression of the 
web-graph. 
Table 2 also demonstrates the effect of re-ordering on the 
compression ratio. It seems re-ordering produces is almost fixed 
improvement in each case. 

Table 3. Size improvement and Bit per Link for CNR 
2000 with different Group Sizes and The effect of Re-
Ordering Without considering the auxiliary file size. 

CNR 
2000 

Group 
Size 30 35 40 45 50 

Not-
RO-
W/O 
AUX 

%Improv 77.73 78.23 80.12 80.46 80.68 

bpl 4.64 4.54 4.14 4.07 4.03 

RO-
W/O 
AUX 

%Improv 80.06 80.49 82.19 82.44 82.61 

bpl 4.17 4.08 3.73 3.67 3.64 

 
In As seen in We tested our algorithm on several datasets with 
very large graphs (e.g., millions of links) produced by 

UbiCrawler  [19] (CNR 2000, IN 2004, EU 2005) [20].  We 
examined the effect of choosing different group sizes and re-
ordering on the achieved compression. We also compared the 
results without considering auxiliary data structures since 
auxiliary file is only necessary for complete decompression of the 
web-graph. 
Table 2, increasing the group size somewhat improves the 
compression ratio. The improvement depends on the size of the 
original web-graph. Bigger and denser web-graphs achieve higher 
compression ratios. We tested our algorithm on several datasets 
with very large graphs (e.g., millions of links) produced by 
UbiCrawler  [19] (CNR 2000, IN 2004, EU 2005) [20].  We 
examined the effect of choosing different group sizes and re-
ordering on the achieved compression. We also compared the 
results without considering auxiliary data structures since 
auxiliary file is only necessary for complete decompression of the 
web-graph. 
Table 2 also demonstrates the effect of re-ordering on the 
compression ratio. It seems re-ordering produces is almost fixed 
improvement in each case. 
Table 3 the size of auxiliary data structure is not considered. 
Ignoring the auxiliary file can dramatically improve the 
compression ratio achieved by algorithm. This is most suitable 
when the algorithm only needs the compressed graph for its 
operation. In this case usually the compressed graph can be 
loaded into the memory.  
 

 

Figure 1. Size improvement for CNR 2000 with different 
Group Sizes and The effect of Re-Ordering With and 
Without considering the auxiliary file size. 

Figure 1 demonstrates the algorithm’s behavior for a variety of 
group sizes. It also compares the effect of auxiliary file on the 
compression ratio. As seen in Figure 1 by increasing the group 
size, the overall compression is improved but increasing the 
group size further results in lower compression ratios. This is 
because the increment ratio of the auxiliary file size is higher than 
the decrement ratio of the compressed graph’s size. 

8. CONCLUSIONS 

In this paper we presented a very fast (without reordering) 
compression algorithm which can be used to achieve good size 
improvements. Since our algorithm provides a pre-compression 
method for similarity based compression algorithms therefore 
higher compression ratios can be achieved. This method can also 
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improve the performance of difference coding and entropy coding 
algorithms. We believe this improvement is the result of 
increased similarity between adjacency list of web-pages. Also 
the characteristics of the resulted graph are very similar to the 
original graph; Therefore, many web-algorithms can be used 
without decompression. Decompression of the graphs is very fast 
and partial decompression of the graph is also possible.  
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