
University of Wollongong University of Wollongong

Research Online Research Online

University of Wollongong in Dubai - Papers University of Wollongong in Dubai

2009

Web-graph pre-compression for similarity based algorithms Web-graph pre-compression for similarity based algorithms

Hamid Khalili
University of Tehran

Amir Yahyavi
University of Tehran

Farhad Oroumchian
University of Wollongong in Dubai, farhado@uow.edu.au

Follow this and additional works at: https://ro.uow.edu.au/dubaipapers

Recommended Citation Recommended Citation
Khalili, Hamid; Yahyavi, Amir; and Oroumchian, Farhad: Web-graph pre-compression for similarity based
algorithms 2009.
https://ro.uow.edu.au/dubaipapers/55

Research Online is the open access institutional repository for the University of Wollongong. For further information
contact the UOW Library: research-pubs@uow.edu.au

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Research Online

https://core.ac.uk/display/36993424?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://ro.uow.edu.au/
https://ro.uow.edu.au/dubaipapers
https://ro.uow.edu.au/dubai
https://ro.uow.edu.au/dubaipapers?utm_source=ro.uow.edu.au%2Fdubaipapers%2F55&utm_medium=PDF&utm_campaign=PDFCoverPages

Proceedings of the Third International Conference on Modeling, Simulation and Applied Optimization
Sharjah,U.A.E January 20-22 2009

 ICMSAO/09-1

WEB-GRAPH PRE-COMPRESSION FOR SIMILARITY BASED
ALGORITHMS

Hamid Khalili Amir Yahyavi Farhad Oroumchian

University of Tehran University of Tehran University of Wollongong in
Dubai

Electrical and Computer
Engineering Department

P.O.Box 14395-515, Tehran,
Iran

Electrical and Computer
Engineering Department

P.O.Box 14395-515, Tehran,
Iran

College of Informatics and
Computer Science

P.O.Box 20183, Dubai,UAE

h.khalily@ece.ut.ac.ir a.yahyavi@ece.ut.ac.ir FarhadO@uow.edu.au

ABSTRACT

The size of web-graph created from crawling the web is an issue
for every search engine. The amount of data gathered by web
crawlers makes it impossible to load the web-graph into memory
which increases the number of I/O operations. Compression can
help reduce run-time of web-graph processing algorithms. We
introduce a new algorithm for compressing the link structure of
the web graph by grouping similar pages together and building a
smaller representation of the graph. The resulted graph has far
less edges than the original and the similarity between adjacency
lists of nodes is increased dramatically which makes it more
suitable for graph compression algorithms. The characteristics of
the resulted graph are similar to the original. We also ensure fast
decompression of the compressed graph. Partial decompression
of the web-graph is also possible. The result of the pre-
compression can be loaded into memory and the increased
similarity between adjacency nodes makes it suitable for further
use of compression and web-algorithms.

1. INTRODUCTION

Web crawlers usually generate a graph structure in which pages
are the nodes and links are the edges. This representation of the
web graph [4] [7] is the base for most today’s internet algorithms.
With ever increasing rate in the growth of WWW, it is no longer
possible to have the whole web graph in the main memory of a
computer. With billions of pages and billions of links, it is
essential to provide a better use of the web graph. Since size is
the most important issue in using web-graphs, compression
algorithms are needed to provide more efficient presentation of
the graph.
Due to the size of web-graph [4] [5] , the link structure [11] can
only be partially loaded into the memory which is time
consuming and increases unnecessarily the I/O interactions.
Compressing the graph can speed up the algorithm by removing
those unnecessary I/O interactions.
In this paper we focus on problem of compressing the web graph.

We will introduce a new algorithm for compressing the structure
of the web graph by removing edges in a reversible manner. Our
tests on datasets of very large graphs, derived from crawling the
web, have demonstrated the effectiveness of our approach. We
have also shown significant improvements on the compression
ratio of Huffman algorithm and the differential coding methods
like [5] on the web graph processed by our algorithm.
The structure of this paper is as follows: Section 2 provides a
history of works on web graph compression. In Section 3 we will
introduce our algorithm, followed by experimental results.
Afterwards, we will conclude our work with some suggestions for
future works.

2. RELATED WORKS

The previous efforts on web graph compression can be divided
into two general categories: Entropy Encoding Algorithms
referred to as traditional methods, and new methods based on the
nature of web graph. Entropy Encoding Algorithms will compress
the web graph by giving smaller codes to nodes with higher in-
degrees. The new methods, however, benefit from the features of
web graph and result in a better compression ratio.
Web graph has two important characteristics. First, it is a sparse
graph with dense sub-graphs in some parts. The dense sub-
graphs, or communities [8] [13] [14], have been the subject of
research in recent years. The other characteristic of the web graph
is the similarity of the link adjacency list of many nodes which is
the result of mirror pages on the internet.
The algorithm introduced in [5] has three basic steps: finding
nodes with partial similarities in their adjacency lists, selecting
one of them as a reference node and replacing the other nodes by
their differences from the reference node. This approach results in
a greater compression ratio compared to Entropy Encoding
schemes. Our algorithm will benefit from this idea in a somewhat
different approach. Unlike [5] our algorithm will compress the
web graph by removing some of the edges from the adjacency list
of the nodes.
A more recent contribution makes use of clustering algorithms for
re-indexing the nodes with the aim of representing the link
adjacency list of each node by differences between the
consecutive indices of out-degree nodes [1]. Our work has the

Proceedings of the Third International Conference on Modeling, Simulation and Applied Optimization
Sharjah,U.A.E January 20-22 2009

 ICMSAO/09-2

same goal but with a different approach. Unlike [1] we will re-
index the nodes in order to give nodes with similar adjacency lists
closer numbers. In particular, we choose a sub sample of graph or
inverted-index and re-index it based on the method presented in
 [1]. The re-indexed graph will be used for edge elimination and
grouping algorithm which will produce a graph with the same
characteristics to the original graph.

3. WEB-GRAPH STRUCTURE

Web graph is defined as G(V,E) where V is the set of web-pages
and E is the set of links. Each web-page is identified by its URL
and is represented in the web-graph by a unique index number.
Each edge can be defined as a two-tuple that includes the index
number of the page which contains the link and the index number
of the page that the links points to [6] [8] [9].
This structure is usually stored in Compressed Storage Formats
like CSR (Compressed Sparse Row) [18] which is used to store
sparse graphs. In this format the adjacency structure of a graph
with n vertices and m edges is represented using two arrays with
xadj with the size of n+1 and adjncy with the size of 2m (this
is because for each edge between vertices v and u both (v,u) and
(u,v) are stored).
The adjacency structure of the graph is stored as follows.
Assuming that vertex numbering starts from 0, then the adjacency
list of vertex i is stored in array adjncy starting at index
xadj[i] and ending at (but not including) index xadj[i+1].
(i.e., adjncy[xadj[i]] through and including
adjncy[xadj[i+1]-1]) [16].
Entropy Encoding Algorithms (e.g. Huffman Coding) try to
reduce the size of CSR format by assigning smaller index
numbers (containing fewer bits) to the pages with higher
frequency.
However by using the built-in features of the web graph
achieving higher compression rates is possible. One of them
being that pages with similar content are very frequent therefore
pages with the same topic have many links to these similar pages.
Grouping these pages together and storing only one link to the
group can dramatically decrease the size.

4. OUR ALGORITHM

In this section we describe our new algorithm. This algorithm is
based on the compression of the web graph by re-indexing the
similar web pages and then grouping and replacing edges with a
similar edge in a group in the link adjacency list of the nodes. The
proposed algorithm has the following steps:

First, we re-index the web-graph so that similar pages have a
closer page number. Two pages are considered similar if there are
a large number of other pages that have links to both of them. The
result of this phase is used by the Grouping and Edge-Elimination
algorithm. Since re-indexing algorithms are usually slow the
balance between speed and compression should be determined
based on the application requirements. If for an application the
speed is more important than the compression ratio then this
phase can be ignored.

Second, we group similar pages together and replace their page
numbers in the index with their group numbers. All the edges that
point to the nodes from the same group in the link adjacency list
of a particular node are replaced with only one edge that points to
the group number. In order to keep track of those eliminated
edges we use an auxiliary data structure so that we can de-
compress the web graph at a later time. Since grouping and
decompressing should be very fast, a simple and fast grouping
approach is to group the pages with close index numbers together.
Since these pages are indexed based on their similarity, similar
pages will be grouped together. Community based [13]
approaches that find web-communities in order to group them
together usually suffer from very low speed due to high
processing costs needed to find web-communities. Also since
they usually have variable community sizes the auxiliary
structure will take up more space and have higher access time.

This algorithm preserves the overall characteristics of the graph
and also increases similarity between link adjacency lists of nodes
 [2].

4.1. Re-Indexing Algorithm

The main aim of re-indexing is to give similar nodes closer
document IDs. The produced IDs can dramatically improve the
performance of the difference and entropy coding (e.g. Huffman)
algorithms. We use a tested re-indexing algorithm to permute
documents to create locality in the index [1].

We use a document reordering algorithm [1] that re-indexes the
documents based on cosines measure for similarity. Similar
document (that have similar links) get closer numbers.
Conceptually the Re-Indexing algorithm is divided into three
parts. The first part Build-Graph constructs a page-page similarity
graph from a web-graph using cosines measure for similarity. The
second part Split-Index makes calls to the METIS [16] [17] graph
partitioning package to recursively partition the graphs produced
by Build-Graph. It uses these partitions to construct a hierarchical
clustering tree for the web-graph. The third part of the algorithm,
Order-Clusters applies rotations to the clustering tree to optimize
the ordering. It then numbers the pages with simple depth first
traversal of the clustering tree.

The result of the Re-Indexing algorithm is an Index in which
similar pages are sorted together. This helps the grouping
algorithm to group similar pages together instead of grouping in
the order of crawling.

Since this phase of the algorithm is the most time consuming one,
if the application’s main criterion is speed or if other compression
algorithms will be used along with this algorithm; this phase can
be skipped.

4.2. Grouping and Edge Elimination Algorithm

After reordering since similar pages are close to each other we
can group k sequential pages together. Therefore, each node’s

group number is ቒ
୬ౙ
୩
ቓ. Moreover, finding the group number of a

particular page or finding members of a group is very
straightforward.

Proceedings of the Third International Conference on Modeling, Simulation and Applied Optimization
Sharjah,U.A.E January 20-22 2009

 ICMSAO/09-3

The basic idea in edge elimination algorithm is to eliminate all of
the edges in the link adjacency list of a node that point to nodes
from the same group and instead add an edge that points to the
group number. Since all links that were pointing to a group
member now point to the group number the overall similarity of
the link adjacency list of nodes will dramatically increase [2].

In order to demonstrate the increase in similarity consider page x
in the adjacency of page P1 and page y in the adjacency list of
page P2:

ቐ
ݔ ൌ ݕ ՜ ݃ሺݔሻ ൌ ݃ሺݕሻ, ݕݐ݅ݎ݈ܽ݅݉݅ݏ ݊݅ ݄݁݃݊ܽܿ ݋ܰ

ݔ ് ݕ ՜ ൜
݃ሺݔሻ ൌ ݃ሺݕሻ, ݕݐ݅ݎ݈ܽ݅݉݅ݏ ݊݅ ݁ݏܽ݁ݎܿ݊ܫ

 ݃ሺݔሻ ് ݃ሺݕሻ, ݕݐ݅ݎ݈ܽ݅݉݅ݏ ݊݅ ݄݁݃݊ܽܿ ݋ܰ

Grouping has two major benefits:

1- Similarity based coding methods can work more
efficiently since the similarity between link adjacency
lists increases.

2- The size of graph is reduced k times which might
enable us to load the graph to memory or at least
simplify some of the common graph operations.

3- The number of bits required to present each page

number is reduced from log|ܸ| to log
|௏|

௞
 .

The resulted graph can be considered an approximation of the
original graph. It can also be used as a smaller representative
(with similar characteristics) of the original for several web-
algorithms. These algorithms may not need to retrieve the
original web-graph from the auxiliary data structure for their
operations. For example, the results of the Community Detection
algorithms [8] on the representative graph are very similar to the
results from the original graph; because similar nodes are already
grouped together and now group numbers are detected as
community members.

As previously mentioned, we need to keep track of the edges that
have been eliminated, to make the process of compression
reversible. Since we want to make the best use of space for
keeping these eliminated edges, we can use a bit vector of size ݇
in which each bit represents a node in the group. The process is
shown in Figure 1. Consider we chose group size 8. The
adjacency list shown in Figure 1.a will be saved as shown in
Figure 1.b. An 8bit vector is used to save the group members
present in the adjacency list. As shown in Figure 1 The bits
corresponding to 1, 2, 5, 8 are set to 1. This process is repeated
for other groups as well.

Figure 1. Auxiliary File Format.

Using this structure for the auxiliary file results in consumption
of too much space this can affect the overall compression

efficiency. For example in Figure 1, storing group 3 takes up
more space than storing its sole member node 17. To address this
problem the following method is used:
Instead of using a bit vector with the size of group we use a
smaller bit vector that begins with the first member of the group
and ends with the last one (we remove the 0s from the beginning
and the end of vector).

For example the second bit vector in Figure 1 becomes the
following vector (Node numbers are from 0):

Also we can remove the starting and ending bits of the resulted
vector because we already know that they are 1.

By using this method the size of the bit vectors will gradually
decrease but in return we need to store the number of the first and
the last members of the group.

In a naive approach we will need 2 * logk bits to present these
two group members but since the second number is always bigger
than the first one we present a scenario that only needs

ቒlog
୩ሺ୩ାଵሻ

ଶ
ቓ bits.

Consider i as the number of the first member of the group and j
as the number of last member of the group. The goal is to
calculate number l (Which we call matrix indicator) from i and j
such that by only storing l, I and j can be extracted and l should

only have ቒlog
୩ሺ୩ାଵሻ

ଶ
ቓ bits.

In order to do this, we consider ݅ and ݆ as the rows and columns
of a matrix and since ݆ is always bigger than ݅ we only use the
upper triangle of the matrix. We use the following method to
number the matrix:

ۏ
ێ
ێ
ێ
ۍ
0 1
െ k ൅ 1

ڮ k െ 1
… 2k െ 1

െ െ
െ െ
െ െ

ڭ ڭ
2k 2k ൅ 1
െ k ے

ۑ
ۑ
ۑ
ې

The numbering sequence is as follow: After numbering row ݎ,
row ݇ െ ݎ െ 1 is numbered. By using this numbering we can both
calculate ݈ from ݅ and ݆ and also ݅ and ݆ from ݈.

The ݈ can be calculated for row ݅ and column ݆ by the following
equations:

݈ ൌ ݅ ൈ ݇ ൅ ݆ ݂݅ ݅ ൏ ۀ2/݇ڿ
݈ ൌ ሺ݇ െ ݅ሻ ൈ ݇ െ ݅ ൅ ݆ ݂݅ ݅ ൒ ۀ2/݇ڿ

In reverse, we can calculate ݅ and ݆ from ݈:

൜
݅ ൌ ܽ

݆ ൌ ܽ ൅ ܾ ݂݅ ܾ ൏ ݇ െ ܽ

0 0 0

1 5

1 0 10 0

1 5

i ● 1 2 5 8 10 14 17

i ● 1 2 3

1 1 1 0 0 10 0 0 1 0 1 0 0 0 0 1 0 0 0 0 00 0

a)

b)

Proceedings of the Third International Conference on Modeling, Simulation and Applied Optimization
Sharjah,U.A.E January 20-22 2009

 ICMSAO/09-4

൜
݅ ൌ ݇ – ܽ െ 1
݆ ൌ ܾ െ 1 ݂݅ ܾ ൒ ݇ െ ܽ

Where ܽ and ܾ are quotient and remainder of division of ݈ to
݇ ൅ 1 respectively:

݈ ൌ ܽ ൈ ሺ݇ ൅ 1ሻ ൅ ܾ

Since ݅ can get values between 0 to ݇ and ݆ can get values

between ݅ and ݇ therefore ݈ can get values between and
௞ሺ௞ାଵሻ

ଶ
.

As a result l only needs ቒlog
୩ሺ୩ାଵሻ

ଶ
ቓ bits.

We show that for ݇ ൐1 using ݈ instead of ݅ and ݆ takes up less
space:

2 ݃݋݈ ݇ ൐ ݃݋݈
݇ሺ݇ ൅ 1ሻ

2

՜ ݃݋݈
݇ሺ݇ ൅ 1ሻ
2݇ଶ

൏ 0

՜
݇ሺ݇ ൅ 1ሻ
2݇ଶ

൏ 1

՜ ݇ ൐ 1

The following inequality shows the minimum for choosing the
number of bits (݊) to present ݈:

kሺk ൅ 1ሻ
2

൑ 2୬

݊ should be selected so that it is as close to ቒlog
୩ሺ୩ାଵሻ

ଶ
ቓ as

possible.

By using the above method several group sizes may need the
same number of bit for presentation. This fact is shown in Error!
Not a valid bookmark self-reference. for group sizes from 16 to
22. Since bigger group sizes result in higher compression ratio
therefore choosing the largest group sizes with the same number
of required bits for presentation is the best choice.

Table 1. Group size and the number of bits required to
present the group

Group Size 16 17 18 19 20 21 22

ሺ࢑ሺ࢑ ൅ ૚ሻሻ/૛ 136 153 171 190 210 231 253

bits required 8 8 8 8 8 8 8

4.3. Decompression

The compressed format of the adjacency list contains group
numbers instead of page numbers. In order to decompress the
adjacency list of a node we use the matrix indicator ݈ and bit
vector from the auxiliary file. From the matrix indicator we can
calculate the first (݅) and the last member (݆) of the group. Other
page numbers can be calculated from the bit vector.

One of the big advantages of this method is that we can partially
decompress the web-graph meaning that we only decompress the
adjacency lists of the pages that we require.

Decompression is a much faster process than compressing the
web graph because it doesn’t involve several time consuming
operations such as re-ordering. Since compression is only done
once on the web graph bearing the overhead is possible but for
every usage of web graph we need partial or complete
decompression of the web graph; therefore, decompression speed
is of much more importance.

5. COMPUTATION COMPLEXITY

The re-ordering phase of the algorithm is the most time
consuming part of the algorithm. For further reading we refer the
reader to [1]. Grouping and edge elimination process is ܱሺ|ܧ|ሻ,
since it is done by one iteration on the web-graph.

We should keep in mind that the edges in the link adjacency list
of each node are sorted in increasing order based on the index
value of the nodes that they are pointing to. This will reduce the
processing time of finding edges that point to node members
belonging to the same main group in the adjacency list of a node.

In the decompression process, we can calculate the first and the
last member of the group from matrix indicator with ܱሺ1ሻ. Other
group members can be extracted from the bit vector which in the
worst case is ܱሺ݇ሻ. Extraction from the auxiliary file is only
necessary if we want the exact adjacency list which is not
necessary for many web-graph processing purposes.

In comparison to community based compression approaches
which try to use the natural locality in web communities since in
our algorithm similar pages are sorted together we can achieve
the same compression rates but with much less processing time
and space.

6. INVERTED INDEX

Datasets produced by crawling engines contain very large
Inverted-Indices. These indices can also enjoy the benefit of our
pre-compression algorithm.

The inverted index data structure is a central component of a
typical search engine indexing algorithm. One of the goals of a
search engine implementation is to optimize the speed of the
query; i.e. find the documents where word X occurs faster. First a
forward index is generated, which stores lists of words per
document; next the forward-index is inverted to create an inverted
index. Querying the forward index would require a sequential
pass through each document in the collection, which is not
realistic.

Inverted index ܫ is described as a set of terms ݐଵ … ௠. For everyݐ
term ݐ௜ there is an associated list of |ݐ௜| document numbers
݀௜,ଵ …݀௜,௧ [1] . In Inverted Index (or Index) each term-document
(or document-term) list is very similar to the adjacency list of a
web-graph. Two terms (or documents) are considered similar if
they have similar documents (or terms) in their list.

The pre-compression algorithm can be applied to Inverted-Index
just as easily as it can be applied to web-graph.

Proceedings of the Third International Conference on Modeling, Simulation and Applied Optimization
Sharjah,U.A.E January 20-22 2009

 ICMSAO/09-5

7. TEST RESULTS

We tested our algorithm on several datasets with very large
graphs (e.g., millions of links) produced by UbiCrawler [19]
(CNR 2000, IN 2004, EU 2005) [20]. We examined the effect of
choosing different group sizes and re-ordering on the achieved
compression. We also compared the results without considering
auxiliary data structures since auxiliary file is only necessary for
complete decompression of the web-graph.

Table 2. Size improvement and Bit per Link for CNR
2000 with different Group Sizes and The effect of Re-
Ordering. CNR 200 Collection, 325557 Nodes, 3216152
Edges

CNR
2000

Group
Size 30 35 40 45 50

Not-
RO

%Improv 65.43 65.52 67.04 66.96 66.84

bpl 7.21 7.19 6.87 6.89 6.91

RO
%Improv 69.19 69.32 70.73 70.69 70.60

bpl 6.45 6.42 6.12 6.13 6.15

As seen in We tested our algorithm on several datasets with very
large graphs (e.g., millions of links) produced by UbiCrawler [19]
(CNR 2000, IN 2004, EU 2005) [20]. We examined the effect of
choosing different group sizes and re-ordering on the achieved
compression. We also compared the results without considering
auxiliary data structures since auxiliary file is only necessary for
complete decompression of the web-graph.
Table 2, increasing the group size somewhat improves the
compression ratio. The improvement depends on the size of the
original web-graph. Bigger and denser web-graphs achieve higher
compression ratios. We tested our algorithm on several datasets
with very large graphs (e.g., millions of links) produced by
UbiCrawler [19] (CNR 2000, IN 2004, EU 2005) [20]. We
examined the effect of choosing different group sizes and re-
ordering on the achieved compression. We also compared the
results without considering auxiliary data structures since
auxiliary file is only necessary for complete decompression of the
web-graph.
Table 2 also demonstrates the effect of re-ordering on the
compression ratio. It seems re-ordering produces is almost fixed
improvement in each case.

Table 3. Size improvement and Bit per Link for CNR
2000 with different Group Sizes and The effect of Re-
Ordering Without considering the auxiliary file size.

CNR
2000

Group
Size 30 35 40 45 50

Not-
RO-
W/O
AUX

%Improv 77.73 78.23 80.12 80.46 80.68

bpl 4.64 4.54 4.14 4.07 4.03

RO-
W/O
AUX

%Improv 80.06 80.49 82.19 82.44 82.61

bpl 4.17 4.08 3.73 3.67 3.64

In As seen in We tested our algorithm on several datasets with
very large graphs (e.g., millions of links) produced by

UbiCrawler [19] (CNR 2000, IN 2004, EU 2005) [20]. We
examined the effect of choosing different group sizes and re-
ordering on the achieved compression. We also compared the
results without considering auxiliary data structures since
auxiliary file is only necessary for complete decompression of the
web-graph.
Table 2, increasing the group size somewhat improves the
compression ratio. The improvement depends on the size of the
original web-graph. Bigger and denser web-graphs achieve higher
compression ratios. We tested our algorithm on several datasets
with very large graphs (e.g., millions of links) produced by
UbiCrawler [19] (CNR 2000, IN 2004, EU 2005) [20]. We
examined the effect of choosing different group sizes and re-
ordering on the achieved compression. We also compared the
results without considering auxiliary data structures since
auxiliary file is only necessary for complete decompression of the
web-graph.
Table 2 also demonstrates the effect of re-ordering on the
compression ratio. It seems re-ordering produces is almost fixed
improvement in each case.
Table 3 the size of auxiliary data structure is not considered.
Ignoring the auxiliary file can dramatically improve the
compression ratio achieved by algorithm. This is most suitable
when the algorithm only needs the compressed graph for its
operation. In this case usually the compressed graph can be
loaded into the memory.

Figure 1. Size improvement for CNR 2000 with different
Group Sizes and The effect of Re-Ordering With and
Without considering the auxiliary file size.

Figure 1 demonstrates the algorithm’s behavior for a variety of
group sizes. It also compares the effect of auxiliary file on the
compression ratio. As seen in Figure 1 by increasing the group
size, the overall compression is improved but increasing the
group size further results in lower compression ratios. This is
because the increment ratio of the auxiliary file size is higher than
the decrement ratio of the compressed graph’s size.

8. CONCLUSIONS

In this paper we presented a very fast (without reordering)
compression algorithm which can be used to achieve good size
improvements. Since our algorithm provides a pre-compression
method for similarity based compression algorithms therefore
higher compression ratios can be achieved. This method can also

55

60

65

70

75

80

85

90

30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70

%
 S
iz
e
Im

p
ro
ve
m
en

t

Group Size

Not Re‐ordered

Re‐ordered

Not Re‐ordered Without Auxiliary

Re‐ordered Without Auxiliary

Proceedings of the Third International Conference on Modeling, Simulation and Applied Optimization
Sharjah,U.A.E January 20-22 2009

 ICMSAO/09-6

improve the performance of difference coding and entropy coding
algorithms. We believe this improvement is the result of
increased similarity between adjacency list of web-pages. Also
the characteristics of the resulted graph are very similar to the
original graph; Therefore, many web-algorithms can be used
without decompression. Decompression of the graphs is very fast
and partial decompression of the graph is also possible.

9. REFERENCES

[1] Blandford, D. & Blelloch, G. “Index compression through
document reordering.” Data Compression Conference, 2002.
Proceedings. DCC 2002, p.342-351.

[2] Mahdian, A., Khalili H., Nourbakhsh, E., and Ghodsi, M.
“Web Graph Compression by Edge Elimination.” In
Proceedings Data Compression Conference, DCC 2006, 459,
2006.

[3] DUFF, IS, GRIMES, RG. and LEWIS, JG. “Sparse Matrix
Test Problems.” ACM Transactions on Mathematical
Software 15, no. 1 (1989): 1-14.

[4] Kleinberg, JM, Kumar, SR., Raghavan, P., Rajagopalan, S.
and Tomkins, AS. “The Web as a Graph: Measurements,
Models and Methods.” LECTURE NOTES IN COMPUTER
SCIENCE (1999): 1-17.

[5] Adler, M, and Mitzenmacher, M. “Towards compressing web
graphs.” In Proc. of the IEEE Data Compression Conference
(DCC), 203-212, 2001.

[6] Kleinberg, J. and Lawrence S. “The structure of the web.”
Science 294, no. 5548 (2001): 1849-1850.

[7] Laura, L., Leonardi S., Caldarelli, G. and De Los Rios, P. “A
multi-layer model for the webgraph,” Proceedings of the 2nd
International Workshop on Web Dynamics, 2002.

[8] Raghavan, S, and Garcia-Molina, H. “Representing Web
graphs.” In Proceedings of 19th International Conference on
Data Engineering, 2003, 405-416, 2003.

[9] Kumar, R, Raghavan, P., Rajagopalan, S., Sivakumar, D.,
Tomkins, A. and Upfal, E. “Stochastic Models for the Web
Graph.” In Annual Symposium On Foundations Of Computer
Science, 41:57-65, 2000.

[10] Reddy, PK, and Kitsuregawa, M. “An approach to relate the
web communities through bipartite graphs.” In Proceedings
of WISE 2nd, 302-310, 2001.

[11] KLEINBERG, JONM. “Authoritative Sources in a
Hyperlinked Environment.” Journal of the ACM 46, no. 5
(1999): 604-632.

[12] Blandford, DK, Blelloch, GE. and Kash, IA. “Compact
representations of separable graphs.” In Proceedings of the
fourteenth annual ACM-SIAM symposium on Discrete
algorithms, 679-688. Society for Industrial and Applied
Mathematics Philadelphia, PA, USA, 2003.

[13] Flake, GW, Lawrence, S. and Giles, CL. “Efficient
identification of Web communities.” In Proceedings of the
sixth ACM SIGKDD international conference on Knowledge
discovery and data mining, 150-160. ACM New York, NY,
USA, 2000.

[14] Tawde, VB, Oates, T. and Glover, E. “Generating Web
Graphs with Embedded Communities.” Lecture Notes In
Computer Science (2004): 80-91.

[15] Gibson, D, Kleinberg, J. and Raghavan, P. “Inferring Web
communities from link topology.” In Proceedings of the

ninth ACM conference on Hypertext and hypermedia: links,
objects, time and space, 225-234. ACM Press New York,
NY, USA, 1998.

[16] Karypis, G, and Kumar, V. “A Fast and High Quality
Multilevel Scheme for Partitioning Irregular Graphs.” Siam
Journal On Scientific Computing 20 (1999): 359-392.

[17] Karypis, G., and Kumar, V. “Multilevel Graph Partitioning
Schemes.” Proceedings of The International Conference on
Parallel Processing, 1995.

[18] Smailbegovic, F.S., Gaydadjiev, G. N. and Vassiliadis, S.,
“Sparse Matrix Storage Format,” Proceedings of the 16th
Annual Workshop on Circuits, Systems and Signal
Processing, ProRisc 2005, pp. 445-448, Veldhoven, the
Netherlands, November 2005

[19] Boldi, P., Codenotti, B., Santini, M. and Vigna, S.
“UbiCrawler: a scalable fully distributed Web crawler.”
Software Practice and Experience 34, no. 8 (2004): 711-726.

[20] Boldi, P. and Vigna, S. “The webgraph framework I:
compression techniques.” In Proceedings of the 13th
international conference on World Wide Web, 595-602.
ACM Press New York, NY, USA, 2004.

	Web-graph pre-compression for similarity based algorithms
	Recommended Citation

	Microsoft Word - CameraReady-ICMSAO2009.docx

