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Statistical Modeling of MODI S Cloud Data Using the Spatial Random Effects
M odel

Aritra Sengupta Noel Cressi¢’  Richard Frey ~ Brian H. Kahn®

Abstract

Remote sensing of the earth by satellites yields datasstsah be massive in size. To overcome
computational challenges, we make use of the reduced-npatieb Random Effects (SRE) model
in our statistical analysis of cloud mask data from NASA'sdécate Resolution Imaging Spectrora-
diometer (MODIS) instrument on board NASA's Terra satelllaunched in December 1999. A set
of retrieval algorithms has been developed by members dfithBIS atmospheric team for detect-
ing clouds. Clouds play an important role in climate studigsl hence an accurate quantification of
the the spatial distribution of clouds is necessary. Inplaiger, we build a statistical model for the
underlying clear-sky-probability (or conversely, thewdieprobability) process, and we quantify the
uncertainty in our predictions. We consider a hierarchstafistical model for analyzing the cloud
data, where we postulate a hidden process for the prohyadiiilear sky that makes use of the SRE
model. Its advantages are considerable: It can represamt tyges of spatial behavior, it permits
fast computations when datasets are very large, and it trastate change-of-support properties.

Key Words. empirical hierarchical model (EHM); massive dataset; mpti spatial prediction;
spatial GLMM; uncertainty quantification

1. Introduction

Clouds are generally characterized by higher reflectanndsl@aver temperatures than
Earth’s surface (Ackerman et al., 2010). They play an imgdrtole in climate research
and must be accurately described in order to properly asdiesatic processes and cli-
mate change. The accuracy of remote sensing retrievalsyefadeatmospheric quantities
can be affected by cloud contamination of the atmosphellignoo. If it is highly cloud-
contaminated, no retrievals are reported for atmosphernties that require a clear sky
(e.g., aerosols). The Moderate Resolution Imaging Spediometer (MODIS) offers the
opportunity for multispectral approaches to cloud detecti

Our interest is in the MODIS instrument on board the Terralbi, which was launched
by NASA in December 1999. The Level-2 MODIS cloud mask pradiatnick et al.,
2003) is produced for pixel arrays at a spatial resolutiorl &fnx1 km. Each MODIS
product file covers data collected over a five-minute timerival, which is called a granule,
that contains data on approximately72x 1P pixels of 1 kmx1 km resolution. In this
proceedings paper, a granule of Terra MODIS data will be tsdtustrate our statistical-
modeling approach. The granule corresponds to June 29, 2006 UTC. A true-color
composite image of the granule is shown in Figure 1. The p=ing of this granule is
available at the Goddard Data and Information ServiceseL¢DiSC) (sednt t p: / / daac.
gsfc. nasa. gov/).

*Department of Statistics, The Ohio State University
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*Cooperative Institute for Meteorological Satellite SesjiUniversity of Wisconsin-Madison
§Jet Propulsion Laboratory, California Institute of Tecluyy
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MOD021KM.A2006180.1245.004.2006184060808.hdf
Terra MODIS Truecolor Scene

Figure 1: An example of a granule image obtained by the MODIS instnino® board
NASAs Terra satellite (June 29, 2006, 12:45 UTC). The irdaiws the location of the
granule on a world map. (Sourcendi s- at nos. gsf c. nasa. gov.)

The MODIS instrument collects data on spectral radiancasdte then processed at
NASA using the MODIS cloud detection algorithm (e.g., Piekret al., 2003; Ackerman
et al., 1998, 2010) to produce a Level-2 cloud mask clastgitgMODO06 product). The
MODIS cloud detection algorithm is based on a number of spkigtsts; different tests can
have different results for a particular pixel. The resultsf all tests are then combined to
determine an overall “confidence)(s), for a pixel located a$to be clear (i.e., cloud free).
If Q(s) =1, it signifies high confidence for the pixel to be clear, an@(i§) = 0, it signifies
high confidence for the pixel to be cloudy. Then, “clear-ségtoral” tests are performed
that check for unambiguous clear-sky signals. We denote Mi3[2loud mask product as
Q(+), and we review the algorithm that resultsQx-) in Section 2.

In this proceedings paper, we propose a hierarchical $a#iaistical model for ana-
lyzing MODIS cloud data. Our goal is to produce optimal sggtirediction maps for the
underlying clear/cloudy process, along with measures ediption uncertainties. We con-
centrate on the particular granule discussed above (seeeFly. Our data are the MODIS
cloud mask product)(-), which is available on 1 km1 km pixels. Henceforth, each of
these pixels will be called a “basic areal unit” (BAU). Themmoer of BAUs in the granule
shown in Figure 1 itN = 2,748 620.

In general, we assume that we have datanf@AUs, wheren < N. For the particular
granule that we consider in this paper, we haveN (i.e., there are no BAUs without data).
A full-rank spatial-statistical modeling approach for tip@nule would require specifying
anN x N covariance matrix for the underlying spatial (transforinele@ar-sky-probability
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process. To produce optimal spatial statistical predistiove would need to invert the
N x N covariance matrix, something that is not computationadigstble forN larger than
several thousand.

The computational bottleneck that arises due to the cortipo#d cost of inverting
the N x N covariance matrix referred to above, is often referred ta &sig N” problem.
When the data appear to be Gaussian, reduced-rank-modglprgaches have been devel-
oped to deal with this computational challenge (e.g., Walid Cressie, 1999; Wikle et al.,
2001; Cressie and Johannesson, 2006, 2008; Banerjee2&tGd;,Stein, 2008; Lopes et al.,
2008). For data appearing to come from the exponential yamfidistributions, Lopes et al.
(2011) took the hierarchical generalized linear mixed nliadeframework proposed by
Diggle et al. (1998), and they introduced a new class of gggathporal models using a
latent factor-analysis structure; their fully Bayesiandaloallows for dimension reduction
and hence fast computations. A number of spatial and sgetiporal applications for
very-large-to-massive datasets center around theseeddank representations of a hid-
den continuous Gaussian process (e.g., see the review e \XKLO0).

To solve the “bigN” problem that arises in our application, we shall use theiced-
rank modeling approach developed by Cressie and Johamng3@s, 2008), although our
data are bimodal and constrained@ol]. Our modeling approach is a combination of the
GLMM framework of Diggle et al. (1998) and use of the SpatianBom Effects (SRE)
model of Cressie and Johannesson (2006, 2008), althougtdéweloped it for Gaussian
data with a continuous spatial index. We take an empirieaHnchical modeling (EHM) ap-
proach and, unlike a Bayesian hierarchical modeling (BHpjraach, we treat the model’'s
parameters as fixed but unknown. We estimate these paramsiag an EM algorithm
(e.g., Dempster et al., 1977). Computation of optimal spatiedictions are feasible, and
no prior specification of parameters is needed. For a mor@laendiscussion of the EHM
and BHM approaches, see Cressie and Wikle (2011, Chapter 2).

Cressie and Johannesson (2006, 2008) developed the Jpatidbm Effects (SRE)
model for optimal spatial predictions from continuous, syetric data with a continuous
spatial index, a methodology that is known as Fixed RankiKgigFRK). Cressie and
Johannesson (2008) took an EHM approach and gave a methudroénts estimator for
the parameters of the SRE model, and Katzfuss and Cres$l8)(8@ve an EM algorithm
to obtain maximum-likelihood (ML) estimates. A Bayesiarrsien of the SRE model is
given in Kang and Cressie (2011). In Sengupta and Cressi2&and Sengupta and
Cressie (2012b), a hierarchical spatial statistical mdtk includes the SRE model as a
component of the process model is developed for big, spdtgirete, and continuous data.

With regard to applications, the SRE model and the methgiedoassociated with
it have been successful in analyzing massive remote sedsitagets (e.g., Cressie and
Johannesson, 2006, 2008; Shi and Cressie, 2007; Kang 2080; Katzfuss and Cressie,
2011). The models were Gaussian and additive. In SenguptaCegssie (2012b), the
SRE model was used in a hierarchical framework to analyZelyhgkewed, non-negative,
remotely sensed Aerosol Optical Depth data, where the raadete non-Gaussian and
non-additive.

The plan of the rest of this paper is as follows: In Section &,d&scribe the MODIS
cloud mask product. Details of the hierarchical spatidiisieal model are presented in
Section 3. In Section 4, we analyze the granule of MODIS cliatd shown in Figure 1, us-
ing the modeling framework proposed in Section 3; we prochptamal-spatial-prediction
maps for the underlying clear-sky/cloudy process, alorth wiaps showing the prediction
uncertainties. Discussion and conclusions follow in $ech.
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2. MODISCloud Mask Product

The MODIS cloud mask algorithm (e.g., Ackerman et al., 1998.0) identifies different
conceptual domains according to surface type and solaniflation. Once a pixel is as-
signed to a domain, a battery of spectral tests is appliedrevbach test attempts to detect
the presence of cloud in the pixel, by returning a confideaeellfor the pixel to be clear,
ranging from 1 (high-confidence clear), to 0 (low-confidenlesr, that is, high-confidence
cloudy). Individual spectral tests are based on an uppetcaver bound (see below).

Tests capable of detecting similar conditions are groupgéther. Denote the total
number of groups biNg, and assume that there arespectral tests within theth group;
i=1,...,Ng. For thej-th test within thei-th group, if the observed light radiance falls
below (above) the lower (respectively, upper) bound, thendear-sky confidence level,
Fij, is O (respectively, 1). A pictorial illustration of such pestral test in the MODIS cloud
mask algorithm is given in Figure 2: If the observed radiaoicthe reflected light falls in
the “high-confidence cloudy” region (i.e., below the loweuhd), thenF; is assigned a
value 0 (i.e., cloudy), and if the observed light radiandks fa the “high-confidence clear”
region (i.e., above the upper bound), thHenis assigned a value 1 (i.e., clear). When the
observed value falls in the “intermediate” region (i.e tvieen the lower and upper bounds),
Fij is assigned a value between 0 and 1 using linear interpo|atie Figure 2.

o _ J
High Confidence V
Fii(s) Cloudy

High Confidence

A Clear

Intermediate Zone

Figure 2. A pictorial illustration of a MODIS cloud mask spectral teshich is based on
an upper and lower bound.

For a given pixel, a minimum confidence level is determinedhei-th group as:
Gi=min{Fj:j=1,....m}, fori=1...,Ng. (1)

The overall clear-sky confidence valug, for that pixel, is then defined as:
Ne 1/Ng
Q= Gi : 2)
I
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This approach is clear-sky conservative in the sense tloaiafof the tests concludes that
the pixel is cloudy (i.e., if on&; = 0), then the overall clear-sky confidence value is 0.

The Q-values obtained above (called the “initial” Q-vajuae then subject to “clear-
sky restoral tests” (e.g., Ackerman et al., 2010; Heiding@d0). These tests check for
unambiguous clear-sky signals. For example, spectra teght indicate that a pixel lo-
cated asis cloudy (i.e.Q(s) = 0); but, if all its neighboring pixels are clear, then thegbix
is restored as “probably clear” by settiQs) = 0.96. Here “cloudy,” “probably cloudy,”
“clear,” and “probably clear” are the possible classifioasi for a pixel, and they are based
on thresholding the Q-values (e.g., Platnick et al., 200Bgre are other clear-sky restoral
tests for different land surfaces, coastal waters, and bon §inal Q-values are obtained
after applying the clear-sky restoral tests; see Figure thiodifference between initial and
final Q-values obtained for the granule shown in Figure l.idé¢able in Figure 1 is a strip
of sun glint reflecting off the ocean, which appears in thepgapel of Figure 3 (initial Q-
values) but not in the bottom panel (final Q-values). Thustoral tests are important, since
there are geophysical conditions and viewing geometriesrevthe cloud-mask algorithm
tends to over-predict clouds (e.g., regions with sun-glint

In this proceedings paper, we analyze the spatial datastmadfQ-values(denoted
by Q(+)), which we refer to as th&ODIS cloud data In the next section, we develop a
hierarchical spatial statistical modeling framework tisatised in Section 4 for predicting
the underlying clear-sky-probability process, given tlagad Our approach also allows us
to quantify the uncertainty associated with our predictiohhese models allow for spatial
change-of-support, where our goal is to predict cloudtipacat any desired resolution
coarser than 1 ksl km; see the discussion in Section 5.

3. Hierarchical Model for the MODI S Cloud Data

In this section, we propose an empirical hierarchical mddeffinal Q-values obtained
from the MODIS cloud mask product. We index the the set of BAlith data adDp =
{s1,...,%}, and the complimentary set of BAUs without data@s = {Sy+1,-.-,N}-
Hence, our data aréQ(s) :i =1,...n} (see Section 2), where recall that for the gran-
ule shown in Figure 1, we hawve= N = 2,748 620. We introduce a hidden variabé(s ),
that denotes the state of a pixel, namely 0 or 1 (cloudy orxlémated ats;i =1,...,N.
Then we assume a hidden spatial procéss that controls the probability &#/(-) being 1,
where bothWV/(-) andY(-) are defined over the entire spatial doma&ins= DoUDy.

Our hierarchical spatial statistical model consists of i@ daodel and a two-stage pro-
cess model. We model the pixel-level conditional probtedi{[Q(s)|W(s ), parameters:
i=1,...,n}, using a “zero-one inflated” Beta distribution. ConditiboaW(s) =0, Q(s)
will be modeled using a zero-inflated Beta distribution; andditional oWV (s) =1, Q(s)
will be modeled using a one-inflated Beta distribution. Tkeozone inflation deals with
those{Q(s)} that are exactly zero or one. Then aata modeis: Fori =1,...,n, inde-
pendently,

1Q()IW(s) = 0,P, tg] = {Pol (Q(s)=0)+ (1) fmo(Q(s))}; @

and, fori =1,...,n, independently,

QS)W(S) = 1,Py,ay] = {Pll Qs)=1)+(1-Py fl,m(Q(s))}. (4)
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Figure 3: Initial Q-values (top panel) and final Q-values (bottom gdaucorresponding to
the granule shown in Figure 1.

In (3) and (4),

fab(Q(8) = [ Qs) - Q)P0 QW) <. 6
which is the density of a Beta, b) random variable, wher@> 0 andb > 0. The parameters
Po, 0o, P1, anda in the data model are unknown and need to estimated.

Next, we specify théwo-stage process modéProcess model 1" represents the distri-
bution of {\W(s) :i =1,...,N}, conditional on the hidden spatial procé&4s). We assume
a set of independent Bernoulli random variablespi@mcess model:1Fori = 1,...N, inde-
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pendently,

(6)

W(s)[Y(-) ~ Bernoulli <M> ,

1+expY(s))

where recall thatV(s) = 1 (respectively, ) means that the pixel located stis clear (re-
spectively, cloudy). Thel(-) is the logit transform of the clear-sky-probability proses

p(-), and conversely, )
exp(Y (-
)= (Foevty) )

At the second stage of the process model (“process model®’)se the reduced-rank
Spatial Random Effects (SRE) model (e.g., Cressie and delsaon, 2006, 2008) to define
the smooth spatial dependenceYifn). Process model &:

Y(s)=X(s) 'B+S(s) 'n+&(s);i=1,...N, (8)

whereX(s) is a vector of known covariatef} denotes the set of unknown regression co-
efficients; S(-) = (S1(),...,S(-))" is a vector ofr (not necessarily orthogonal) spatial
basis functions, where<< N is fixed; n is anr-dimensional vector of spatial random ef-
fects assumed to have a GaiK) distribution, where the covariance matKxis unknown

and needs to be estimategl;) is a fine-scale-variation process modeled as independent
Gay0,0%) random variables, whex is unknown and needs to be estimated.

4, Spatial Statistical Analysis of MODI S Cloud Data

In this section, we carry out a spatial statistical analgdishe granule of MODIS data
shown in Figure 1, using the hierarchical model specifieddati®n 3. For the purpose of
this analysis, we selected as basis functi@{s), the bisquare functions (e.g., Cressie and
Johannesson, 2006, 2008). The generic form of a bisquacéduaris,

2 2
b<s>={1—(¥) } (15—l < w), ©

wherec is the center of the basis functioh(A) is an indicator function that is 1 iA is
true, and 0 otherwise. Centefrs } in D are usually chosen according to a multi-resolution
scheme (e.g., a quad-tree). Then the “apertwres given by,

w = 1.5 x shortest great arc distance between like-resolution ceniats

A pictorial illustration of the bisquare basis function igen in Figure 4. Other choices for
basis functions are also possible (e.g., EOFs in Wikle amrg<i&, 1999; W-wavelets in Shi
and Cressie, 2007).

As in Cressie and Johannesson (2008), we employ severdaltiess of the basis func-
tions to capture the different scales of spatial varighilitere we use three scales of res-
olutions to obtain{b;(s) :i =1,...,(r1+r2+rs3)}, wherer; = 12,r, = 34, andrz = 102,
are the number of basis functions at the three resolutions.cénters of the bisquare basis
functions were selected using a quad-tree structure (ergssie and Kang, 2010), ensuring
that the centers for the different resolutions do not mafidiie number of basis functions
were determined to ensure full coverage of the spatial dom@le also included centers
of the bisquare function outside the study region to accéamthe boundary effects (e.g.,
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Figure 4. A two-dimensional bisquare function as a 3-D plot (leftdaas an image plot
(right).

Cressie and Kang, 2010). We further standardized the hisquactionby(-) to obtain the
i-th basis function,

_ b (S) — avep (bl (S)) Cj=
~ {varsep (bi(9) 12

where ave-p(-) and vag-p(-) are spatial moments taken over the domain of intdde§the
locations of the basis-function centers for all three netsohs are shown in Figure 5.

Consider now the covariates(-) in (8). We include the vectol And latitude as a
covariate. Further, instead of using the coarsest-réenl&i(-),...,S,(-) as spatial basis
functions in the SRE model, we use them as covariat¥gip(e.g., Shi and Cressie, 2007).

The second term of (8) involves asdimensional vectoi$(-), of spatial basis functions,
which in our case is made up of the bisquare functions at t@nskand the third resolutions
(see Figure 5). Now, there are regions in the study regidratteeaffected by sun-glint (see
Figure 1), which the MODIS cloud algorithm attempts to actdier by doing clear-sky
restoral tests. Nevertheless, the presence or absenca dfistis a source of variability
that exists for the granule we consider. Hence, we includstin-glint indicator flag (which
takes a value 1 if a pixel is affected by sun glint, and is O wtige) as a column i%(+).
Thatis,r =1+r,+r3=1+34+102=137.

Recall that our goal is to produce optimal spatial-predittmaps for the underlying
clear-sky-probability process, along with measures ofligt®n uncertainty. This can
be achieved by generating samples from the predictiveillision, [W,Y|Qo, 8], where
Qo= (Q(s1),-,Q(s)) ", W = (W(sp),...,W(sv)), Y = (Y(s),....Y(sn)) T, and@ =

Po,cxo,Pl,al,B,K,og}. (Recall that for the data shown in Figurer8= N, and hence

'7(rl+r2+r3)7 (10)
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Figure 5: Centers of the basis function; 'o’, '+, and 'X’ are use taiinguish the three
scales of resolution.

the set of pixels where there are no observatidhg, is empty.) This can be achieved
by equivalently generating samples from the predictiv&idistion, W, n,&|Qo, 8], where
&= (&(s1),...,&(sv)) . Using Bayes’ Theorem, this predictive distribution is

[W,n,&|Qo,8] U [Qo|W,6][W(n,&,6][n,&|6]. (11)

However, due to the unknown proportionality constant (Whgca function of the dat®o),
the predictive distribution is not available in closed fomor are the parametei®, known.
Here we use a combination of EM estimation@oto yield éEM, and an MCMC algorithm
(e.g., Robert and Casella, 2004) to yield samples from tinifecal) predictive distribution
W.n,&|Qo,0], whereBgy is substituted in fo.

The EM algorithm is employed for estimation of the paranwe@for more details on
the methodology, see the review in McLachlan and Krishn@0&2 For the hierarchical
model described in Section 3, the process ve@grthe random effech), and the fine-
scale-variation compone@tare not observed, but can be considered as missing data. The
EM algorithm involves iterating between an E (expectatistiep and an M (maximization)
step. Here, the E-step is the most problematic, which wdvesy using Laplace approx-
imations to evaluate the expectations. In the M-step, misition with respect to (wrt)
Py, P1, K, ando§ is easy and is available in closed form. However, since mizstion
wrt 0g, oy, andP are not available in closed form, we use a one-step Newtqi$m
update in each of the iterations of the EM algorithm. Tecainietails of the EM algorithm

3119



Latitude

Section on Statistics and the Environment — JSM 2012

used in this and related problems can be found in Sengupi®(Z0h. 4) and Sengupta
and Cressie (2012a,b). Estimat@g,, obtained for the MODIS cloud data are given in
Sengupta (2012, Ch. 4). A

Once we obtain the parameter estimafks,, we substitute them into the MCMC al-
gorithm to obtain samples from the (empirical) predictivstribution, [W,n,E\Qo,éEM].
We generated 10,000 MCMC samples, after discarding 1,00@lea as burn-in. Because
of storage issues involved with storing thedimensional vectog, we saved every fifth
MCMC sample generated. The EM algorithm converged aftetefrtions, and the com-
putational time for the EM algorithm was 27.76 minutes. Thenputational time for the
MCMC was 12.73 hours. All the computations were performedaatual quad core 2.8
GHz 2x Xeon X5560 processor, with 96 Gbytes of memory.

Mean Standard Deviation

40

' g
. ’-‘ﬁﬂ""’d

20
4

3z

Latitude

3o

25

20 L : : s s +
45 —40 -35 =30 =25 -20 -15

Long ituda Longituds

2.5 Percentile

97.5 Percertile

40 40

3z

Latitude

an 3o

25 25

20 . . . . . . 20 . . . . . .
—45 =40 -35 -30 —25 20 -18 45 —40 -35 30 -25 —20 -15
Long ituda Longituds

Figure 6: Maps showing the predictive mean (top-left panel), theepiise predictive
standard-deviation (top-right panel), the pixelwise 2&scgntile (bottom-left panel) and
the pixelwise 97.5 percentile (bottom-right panel) for inedictive distribution of the clear-
sky-probability process.

Using the MCMC samples refered to above, we computed theigbrexd mean and
the predictive standard deviation of the clear-sky-prdtgtprocess,p(s), given by (7).
We also obtained the pixelwise 2.5 and 97.5 percentiles df eatheN elements op =
(p(s1),...,p(sn)) . These summaries were obtained frmQo, O y]. Figure 6 shows
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maps of the pixelwise predictive mean, the pixelwise ptadgicstandard deviation, and the
pixelwise 2.5 and 97.5 percentiles, respectively; thetdito quantities are the end-points
of a pixelwise 95% prediction interval.

5. Discussion

In this proceedings paper, we have developed a hierarchizgial statistical model for
analyzing a remote sensing dataset on clouds from NASA's M&bstrument. The data
are at a very fine scale of resolution (1 krh km), and they are massive in size=£
2,748 620). However, use of the reduced-rank SRE model to cagterspatial covariance
of the latent proces¥(-) allows for very fast computations. For such a massive datase
we were able to perform EM estimation in 27.76 minutes and thplement the MCMC
algorithm in 12.73 hours.

We took an empirical hierarchical modeling (EHM) approagtere the unknown
model parameters were estimated using an EM algorithm. rifdtizvely, one could take
a Bayesian hierarchical modeling (BHM) approach, wherda plistribution is put on the
parameters. In the context of the SRE model, Kang and Crgx¥ld) developed a “Givens
angle prior” forK, which could be adapted to the cloud data in much the same svexas
done for count data in Sengupta and Cressie (2012b). They fthat while the prediction
intervals obtained using an EHM approach tended to be teodilwvhen compared to those
using a BHM approach, EHM was an order of magnitude faster.

Within the hierarchical-modeling framework that we deyed in this article, we used
the SRE model to define an underlying Gaussian field for théemcroces¥ (-). These
models do not rely on specifying a spatial-weights matrigd ao assumptions of homo-
geneity, stationarity, or isotropy were made. The SRE maded forY(-) is particularly
adept at handling change-of-support, which involves nirigrcloud fraction at any desired
scale coarser than 1 kai km.

To our knowledge, this is the first attempt to develop a haniaal spatial statistical
model for a cloud dataset at such a fine resolution. The $patidel developed here could
be extended to a spatio-temporal setting that might be Lefthe evaluation of climate
model processes, as well as for improvements in their sttsgale physical parameteriza-
tion. In the long term, we would like to develop data-fusioethodology to incorporate
cloud data (e.g., fuse water vapor from AIRS with cloud datafMODIS).
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