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Hierarchical Statistical Modeling of Big Spatial

Datasets Using the Exponential Family of Distributions

Aritra Sengupta Noel Cressi#

Abstract

Big spatial datasets are very common in scientific problesush as those involving re-
mote sensing of the earth by satellites, climate-modeluwugmall-area samples from national
surveys, and so forth. In this article, our interest liesnauiily in very large, non-Gaussian
datasets. We consider a hierarchical statistical modeistimg of a conditional exponential-
family model for the data and an underlying (hidden) gedsteal process for some transfor-
mation of the (conditional) mean of the data model. Withiis thierarchical model, dimen-
sion reduction is achieved by modeling the geostatisticatgss as a linear combination of
a fixed number of spatial basis functions, which results insgntial computational speed-
ups. These models do not rely on specifying a spatial-weigtutrix, and no assumptions
of homogeneity, stationarity, or isotropy are made. Oureg@gh to inference using these
models is empirical-Bayesian in nature. We develop maxirtiketihood (ML) estimates of
the unknown parameters using Laplace approximations irxp@otation-maximization (EM)
algorithm. We illustrate the performance of the resultingp@ical hierarchical model using
a simulation study. We also apply our methodology to analyzemote sensing dataset of

aerosol optical depth.
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1 Introduction

Big spatial datasets are very common in scientific probleondh as those involving remote sensing
of the earth by satellites, climate-model output, smathasamples from national surveys, and so
forth. In this article, our interest lies primarily in datds that are very large and non-Gaussian
in form. We consider a hierarchical statistical model cstisg of two levels. At the first level,
we have an exponential-family model for the data given aialpatocess and parameters (which
we call the data model). At the second level, we assume aajestistal process given parameters
(which we call the process model), for some transformatidch@mean of the data model.

The exponential family of distributions include commonbed continuous and discrete distri-
butions; for a detailed review, see McCullagh and NeldeB@l $ection 2.2.2). All members of

the exponential family have a density or probability masgfion that can be written as:

p(zly) = exp{(zy—b(y)) /T*—c(z 1)}, 1)

wherey is called the canonical parameter or the natural parani®igris a function that depends
only ony, c¢(z 1) is a function independent gf andt is a scaling constant. The representation
above is called the canonical form, or the natural form, efékponential family.

Here, and in what follows, we use the notat{@B| to denote the conditional probability dis-
tribution of A givenB. Suppose we have daf,, . .., Z,, coming from a member of the exponential
family such thaf [Zi|y1,...,yn] : i =1,...,n} are mutually independent, afd|ys, . .., Yn] = [Zi|Vi],
where[Z;|yi] has density given by (1). Then one may proceed by modelirgnsfiormation of the
expectation ofZ|yi], namelyE(Z|y;) = b/ (i), as

a(E(Zv)) = X{'B, ()

whereg(-) is the link function X; denotes g-dimensional vector of known covariates, ¢t a
p-dimensional vector of regression coefficients. There do¢ af possible choices fay(-). The

maximum likelihood (ML) estimator o8 can be obtained via iteratively reweighted least squares.



For a detailed review of the literature on GLMs, see McCuilagd Nelder (1989) or McCulloch
et al. (2001).

When Z,,...,Z, are associated with locations in space, the assumptiondependence is
doubtful. A way to extend the framework above, that takes atdcount spatial variability, is to
replacey in (1) with a spatial procesqY(s): s€ D}, whereD is the spatial domain of interest.

The covariance betweéf(s) andY(u), for s,u € D, is defined as:

Cr(s,u) =cov(Y(s),Y(u)).

Now consider spatial data(s;),...,Z(s,) from a GLM such tha{[Z(s)[Y(:)] :i =1,...,n}

are mutually independent, and

whereg(-) is the link function. The hierarchical modeling framewogided above yields a spatial
version of the GLM framework; it was proposed by Diggle e{(4898), who assumed a Gaussian
model forY(-) and a prior distribution on its parameters. See also OmreTggitheland (1997)
for an exposition of the same framework for solving complefgbems in petroleum geostatistics.
Lindley and Smith (1972) introduced a Bayesian-linear-eidthmework, where conditional
and prior distributions come from a multivariate Gaussiastridution. In the spatial context,
Omre (1987) defined Bayesian kriging for the linear modet;fother extensions, see Cressie
(1993, Sec. 3.4.4). Besag et al. (1991) showed how a spatidehfor counts in small areas
could be decomposed hierarchically, where the hidden psXte) was used to model the spatial
dependence. They assumed that the counts were (condiipRalsson distributed, and that the
log means were a Gaussian spatial process, specifically ss@auMarkov Random Field (MRF)
known as the conditional autoregressive (CAR) model. Hanes simultaneous autoregressive
(SAR) model, or a geostatistical model could also be useatkdd Diggle et al. (1998) employed
spatial generalized linear mixed models (GLMMs) for sgbtidependent non-Gaussian variables

observed potentially anywhere [y and they assumed a hidden geostatistical proc&4sgwith
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both fixed effects and random effects. Their hierarchicatlehevas fully Bayesian and required
a Markov chain Monte Carlo (MCMC) algorithm to obtain the fgw®r distribution. In a spatio-

temporal context, Wikle et al. (1998) developed a fully Bsiga hierarchical-model formulation
for modeling a dataset of monthly maximum temperatures.

In contrast, Heagerty and Lele (1998) developed a methotif@ary data where they used
a composite-likelihood (e.g., Lindsay, 1988) approachstingate the spatial hierarchical model
parameters. Zhang (2002) gave a Monte Carlo version of theGgAdient Algorithm to analyze
non-Gaussian data, and Monestiez et al. (2006) developeettaonh called Poisson kriging for
mapping the relative abundance of species.

Despite the popularity of the spatial models discussedaltbese models might suffer from
two major drawbacks: (1) there might be spatial confoundargl (2) there is often a computa-
tional bottleneck when the size of the dataset is large.i@painfounding between the fixed and
the random effects was pointed out in articles by Reich g28l06), Hodges and Reich (2010),
and Paciorek (2010). Reich et al. (2006) and Hodges and R20d0) proposed a modeling ap-
proach that gets around the problem of spatial confoundyrigtboducing random effects that are
orthogonal to the column space of the matrix of covariates.sWall discuss this in more detail in
Section 2.2.

The computational bottleneck arises due to the general atatipnal cost oD(n®) to obtain
the inverse of am x n covariance matrix. It is often referred to as a “lpigproblem. Many geo-
physical and environmental datasets are high-dimensidvhaén the data are Gaussian, reduced-
rank-modeling approaches for the hidden Gaussian prdteshave been developed to deal with
this computational challenge (e.g., Wikle et al., 2001;3Sireand Johannesson, 2006, 2008; Baner-
jee et al., 2008; Stein, 2008; Lopes et al., 2008). When tha& @@ non-Gaussian, Lopes et al.
(2011) take the GLMM approach in Diggle et al. (1998), buthwiéduced-rank factor analysis
models forY (-) in place of the intrinsically stationary models used by Dégef al. (1998). A num-
ber of spatial and spatio-temporal applications for vengé-to-massive datasets center around
this reduced-rank representation of the hidden contin@ausssian process (e.g., see the review in

Wikle, 2010).



The reduced-rank methods discussed above are based oatpticsd models, where a contin-
uously indexed Gaussian procd¥4s) : s€ D} is used to specify the hidden process. In the case
whereD = {s;,...,sy} is a spatial lattice of sites, a geostatistical mode¥ar (Y(sp),...,Y(sy)) "
can still be used; such a model captures the spatial depeadkrough the covariance matrix,
>y =cov(Y).

A Gaussian MRF that is used to capture the spatial dependente does so through the
(typically sparse) precision matrE;l. A detailed discussion of this can be found in Rue and
Held (2005, Chapter 5) and Cressie and Wikle (2011, Pagesl@8p Rue and Held (2005,
Chapter 5) discuss a way to approximate a geostatisticathwdth a sparse CAR model, and this
relationship has been used by Lindgren et al. (2011) and®imet al. (2012) to build hierarchical
spatial models with Gaussian-MRF process models that d@ivcomputations. However, by
necessity, they use only a small number of parameters, wioighl be problematic when modeling
spatial dependence over large, continental-scale, lggeemus regions. In arecent article, Hughes
and Haran (2013) consider a Bayesian hierarchical modél aviiidden Gaussian MRF and use
a dimension-reduction approach to deal with spatial camiing and computational complexity
that arise when analyzing a large spatial dataset. Theyn@eaize the precision matrix using an
underlying graphG = (V,E), where edges represent spatial dependence, and they asslynae
small number of parameters.

In this article, we assume that there are small af@asi = 1,...,N} atlocationd = {sy, ..., },
respectively. The order of the small areas is immaterialveachoose to order them such that
A1,...,An have observationZ(sy),...,Z(sy), respectively, associated with them, where: N.

Define the observation vector (i.e., data) to be
Zo=(Z(s1),---,Z(sn)) s 1<n<N.

We propose a flexible class of spatial models for analyziegeh{potentially) non-Gaussian lattice
data. The models are hierarchical, where the data model<@nm@ the exponential family of

distributions, and the process model is geostatisticahmmdtationary (Section 2). These models



are computationally efficient to implement, and we take apigoal hierarchical modeling (EHM)
approach where any unknown parameters are estimated by fithagi®n. Hence, the model is
not fully Bayesian, but Bayes’ Theorem is used to obtain thargortant predictive distribution;
for the special case where data are spatial counts, we havendtrated its feasibility (Sengupta
and Cressie, 2013). For a more complete discussion of the Bpfivbach, see Cressie and Wikle
(2011, Chapter 2).

Our spatial statistical analysis of the lattice datsis a combination of the GLMM framework
of Diggle et al. (1998), the use of the Spatial Random Effé8BE) model of Cressie and Johan-
nesson (2006, 2008), developed for Gaussian data with énocouis spatial index, and a fast EM
algorithm for estimating any unknown parameters. The SRHEeahis a geostatistical model that
achieves dimension reduction by modeling the underlyirsgiapprocess as a linear combination
of specified spatial basis functions on a spatially contirsusiomain; in what is to follow, we use it
on a discrete spatial lattice. The dimension reduction artant for spatial best linear unbiased
prediction (i.e., kriging), since it involves invertingein x n covariance matrix oZo. Using the
SRE model, the matrix inversion is a relatively simple tasle model is well suited to change-
of-support, and it avoids any stationarity assumptionsgtercovariance matrix. Unlike the model
used in Lopes et al. (2011), the SRE model does not assumege@ndiacovariance matrix for the
spatial random effects. Instead, it captures spatiaistitatl dependence using both the modeler-
specified spatial basis functioasd correlated random effects. Assuming the data are Gaussian,
Katzfuss and Cressie (2009) gave an EM algorithm to obtairestimates for SRE-model param-
eters; and there is also a Bayesian-hierarchical-modeMPB¥érsion that puts prior distributions
on the parameters rather than estimating them (Kang angi€r@911).

When the data are non-Gaussian, estimation of the parasmetehierarchical statistical model
is not as straightforward. In the EHM proposed in Section @ use the EM algorithm (Dempster
et al., 1977) to obtain ML estimates of the parameters in tbdeh Since the expectations in
the E-step of the algorithm are not available in closed fonm,use a Laplace approximation to
approximate the intractable integrals. Having obtainede$timates for the unknown parameters,

we substitute them into the predictive distribution and aséMCMC algorithm to generate sam-



ples from it. Thus, our use of EHM for non-Gaussian data, wahameter estimates substituted
into optimal predictors, is the direct analogue of krigingdéd ubiquitously in geostatistical and
environmental applications). We handle big spatial dasadsgembedding the SRE model into our
hierarchical statistical model.

The plan of this article is as follows. In Section 2, we ddser hierarchical model for non-
Gaussian spatial data, whose data model comes from the exj@nfamily and whose process
model is based on a hidden SRE model. We also address theabspatial confounding in
Section 2. In Section 3, we outline statistical inferenceeobon generating MCMC samples from
the predictive distribution. Then, in Section 4, we desetiibe EM algorithm for obtaining ML
estimates of the model parameters described in SectionQedtion 5, we carry out a simulation
experiment to assess the performance of our EHM approactsedtion 6, we use our EHM
approach to analyze a large, spatial, remote sensing tiateserosol optical depth (AOD) from
the MISR instrument on the Terra satellite. Discussion amtlusions follow in Section 7, and

technical derivations are given in the Appendix.

2 Hierarchical Statistical Model

In this section, we give details of the hierarchical statédtmodel that we use to model non-
Gaussian data. Specifically, thata modelcomes from the exponential family of distributions,
and theprocess modek a (transformed) Gaussian spatial process. We consiteelaata ob-
tained from among small ared#\ :i=1,...,N}, located af{s :i=1,...,N}, respectively, al-
though some locations have missing data. Thus, the spatmbih is the discrete spatial lat-
tice D = {s1,...,s}. Without loss of generality, the locations where there dvseovations
are denoted a$s;,...,sn} C D, where 1< n < N. Hence, the set of unobserved locations are

{s:i=n+1...,N} ifn<N.

2.1 Components of the Hierarchical Statistical Model

1. Conditional distribution of the data given the procesgddnodel)



RecallZo = (Z(s1),...,Z(s,)) " denotes the vector of observations, af(@) denotes the
hidden process at locatiae D. Further, define the random procéss) = {Y(s) : s D}.
Then assume th&Z(s)|Y ()] = [Z(s)|Y(s)], and furthermore that it is a member of the ex-
ponential family (e.g., McCullagh and Nelder, 1989, Chag)e Conditional independence

of the data given the process yields,

2oV = []2@)¥(s)

where

Z(s)|Y(s) ~ ind. exponential familypzy (s),V (Hzyy(s))), i =1,...m; (4)

the conditional meanyzy(s) = E(Z(s)|Y(s)), depends oiY(s); and the variance of the
conditional distribution,[Z(s)|Y(s)], is expressed as a function of the conditional mean
throughV (v (s))- The functiorV(-) denotes the mean-variance relationship for the expo-

nential family. The distribution in (4) can be written as:

fzv (2(8)[Y(s)) = exp{ (z(s)¥(s) —b(¥(s))) /1> —c(z(s), 1)} , (5)

where for convenience we have written the distributionsrcénonical form The quantities
y(s) andb(y(s)) depend orY(s) in a way determined by which member of the exponential

family in (4) is chosen.

. Link function

We proceed by modeling a transformatiay;), of the meanyy(-) as a sum of the two

components:

9(kzy(8)) =t(s) +V(s); se D, (6)

whereg(pzyy (s)) is thelink functionevaluated at the (conditional) meda(s) is deterministic

large-scale spatial variation (or the trend term), a(g) denotes random, mean-zero, small-



scale spatial variation, which is assumed to be a Gauss@ess. 1fg(lzy(-)) =y(-) in
(5), theng(-) is the canonical link function, which plays an importanterah the GLM
(McCullagh and Nelder, 1989, Section 2.2.3). Examples nbogal links include the logit
link for the Binomial distribution, the log link for the Paen distribution, and the inverse
link for the Gamma distribution. However, the canonicaklia not the only choice. Some
popular non-canonical links include the probit link for tRmomial distribution and the log

link for the Gamma distribution (Section 6.2).
. Process model
The proces¥ (-) is defined as:

Y() =9z (4))- ()
Thus,Y(+) is related to the mean of the observed process through théuirction. If we
work with the canonical link, we have the special c#$e = y(-).
From (6),

Y()=t()+v(), (8)

where recall thatt(-) is thedeterministicspatial trend angl(-) is arandommean-zero spatial

Gaussian process.

. Spatial trend

The trend, or large-scale spatial variation, is modeled &sear combination of known

covariatesX(s) = (Xi(s),. .., Xp(s))T:
t(s) =C(s) +X(s) 'B, 9)

whereC(s) is a known offset term, anfl is a p-dimensional vector of unknown regression
coefficients that need to be estimated. Recall that (Y(s;),...,Y(sy))', and hence (8)
becomes,

Y =C+XB+v, (10)



whereX = (X5, X)), Xo = (X(s1),...,X(s2) T, Xu = (X(sn42), ... X(sn) T, v = (v5,v)) |

Vo = (V(s1),..-,v(s) T, Vu = (V(Sns1),---,V(sn)) T, andC = (C(sy),...,C(sn))

. Spatial Random Effects (SRE) model fq¥)

We use a geostatistical model fof-), in contrast to the MRF used by Besag et al. (1991)
and Lindgren et al. (2011). In what follows, GaZ) is an abbreviation for a multivariate
Gaussian distribution with megnand covariance matriX. The possibility of big dataZo,

motivates us to propose the Spatial Random Effects (SREgmod
V() =S() 'n+E(), (11)

whereS(-) is anr-dimensional vector of known spatial basis functionss a vector of ran-
dom effects thatis assumed to have a ®aki ) distribution; and(-) is a fine-scale-variation
component that is assumed to be spatially independent V\lBhL(i),vE(-)og) distribution
and \(-) known. Other possible approaches to spatial predictiorrevtiatasets are very-

large-to-massive are discussed in Section 1.

Recall that|D| = N > n, wheren may be very large; however, the random-effects vector
n is only of dimensiorr (r < n). We do not assume any particular structure forrther
covariance matrix, nor do we necessarily try to parameterize it using just gfakameters.
The spatial dependence Yhis captured using botk and the spatial basis functios-).
Dimension reduction is achieved by modeling the underlyNrdimensional spatial process
as a linear combination af fixed spatial basis functions over the entire spatial dornoéin
interest. In Section 5, we show that this leads to substacdi@mputational gain, which

is especially significant when dealing with very large datas As well as computational
speed-ups, the hierarchical model given by (5), (10), addl &voids making second-order

stationarity assumptions, and it is well suited to chanfgsupport.
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2.2 Spatial Confounding of Fixed and Random Effects

Our interest in this article lies primarily in inference drethidden spatial proce¥s-) or, equiva-
lently, in inference oy (-) = g~(Y()). That is, we wish to predict(-) over the entire spatial
domainD, based on the dao = (Z(s1),...,Z(sh)) . We first discuss confounding for the case
where there is no dimension reduction, namely for a fulkrapatial generalized linear mixed

model (SGLMM). The process model for a full-rank SGLMM is givby:

A(bzy () =X(-) "B+V(-), (12)

where recall thaX(-) is a p-dimensional vector of known covariatg®js a p-dimensional vec-
tor of fixed but unknown regression coefficients, ard) is the random effect. Defingo =

(9(Hzv(s1)); - - .,g(uZ‘y(sn)))T, and rewrite (12) in vector notation as,

go = XoB+Vo = XoB+ Invo, (13)

whereXo = (X(s1),...,X(sn)) T, andvo = (v(s1),...,V(sn)) . The last equality emphasizes the
matrix coefficients of the fixed and random effects. Reichl.e(2006) and Hodges and Reich
(2010) used a reparameterization of (13) to show that su€BLa/B/ exhibits spatial confounding
for fully Bayesian inference. Specifically, posterior irdace forf3 tends to be biased, and its
posterior variance is inflated. This happens because aacbspthe column space bf coincides
with the column space ofp (see Paciorek, 2010). They also proposed a way to mitigatephatial
confounding by setting some random effects equal to zertd;lbghes and Haran (2013) pointed
out that for a Gaussian MRF, this can result in negative apddpendence. Hughes and Haran
(2013) proposed a model that alleviates spatial confoundeduces the dimension of the random
effects, and only allows for positive spatial dependenceranthe random effects.

Our approach to modeling is also based on reducing the diorenthe random effects. We

use spatial basis functions to achieve dimension redubtiv@llow general dependence between
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the random effects. Recall the SRE model (11), which gives

Vo = Son +¢&o, (14)

whereSo = (S(sy),...,S(sn)) ' is typically sparse, an8 = (§(s1),...,&(sn)) . The basis func-
tions are introduced to capture the small-scale spatiahtian in the model, and their optimal
choice is an area of ongoing research (e.g., Bradley et@l1)2 As long as{p is not perfectly
collinear withSp, the large-scale variability that is captured by the fixéfdets component will
not be fully explained by the random effects. In this article take an empirical-Bayesian ap-
proach, where we use the EM algorithm to estimate the unkmpawsameters (Section 4), and then
we substitute in the estimates to obtain MCMC samples frarethpirical predictive distribution
(Section 3). That is, the EM estimate pf(andK and 0%) is held fixed in the MCMC, which is
consistent with the treatment of large-scale variationrigikg when, in practice, the spatial trend
(and the variogram) is unknown and has to be estimated (&gssie, 1993, Section 3.5). Whgn
is held fixed in the MCMC, (empirical) Bayesian inference lba tandom-effects term is no longer
confounded. Consequently, an EHM approach mitigatesagatnfounding in the SGLMM (12)

used in the process model.

3 Empirical-Bayesian Inference

Our main focus in this paper is on predictionYaf) or of iz (). That s, after having observet
at locations{s;, ..., s}, we wish to make inference on= (Y(sy),...,Y(sy))' or some function
of Y. The paramete8 = {B, K, og} are also of interest, but instead of putting a prior distiiu
on them, weestimatethem using an EM algorithm (Section 4). Our hierarchical eidmecomes
an empirical hierarchical model when we substitute theresdtd parametelésin place of@, into
the predictive distribution|Y |Zo,0]. With a slight abuse of notation, we write this mzo,é]

and refer to it as thempirical predictive distribution.

12



Recall thatZp = (Z(s1),...,Z(sh)) ", and writeY = (YS,YJ)T, where
Yo=(Y(s1),...,Y(s) ", andYy = (Y(snt1),---, Y () |-
T
Similarly, X = (XS,XJ)T, S=( T,SJ)T, and€ = <£(T),£J) . Now,

_ [8o.8y.Z0.16)
BulZo:n.80.8) = =7 g

[ZoIn, &0, 8][n|K][&o|0%] &y |0F]
J1ZoIn. &0l n|K][Eo|0F] &y [oF]dEy

= [&yl0g]. (15)

Thus, giverB, §, is conditionally independent ¢Zo,n, &), and hence for an unobserved site in

{s:i=n+1,...,N}, we have:

E (Y(s)1Zo.B.K.0F) =C(s)+X(s) B+S(s) E (n|Z0.B.K.0F)

var(Y(s)|Zo.B.K,0?) = S(s) 'var(n|Zo,B.K, 0% S(s) + o?vg(s). (16)
For a sites € {s1,...,S}, where an observation is available, we have

E(Y(8)IZo,B.K,0F) =C(s) +X(s)"B+S(s)"E (n[Zo. B.K.0?) + E (&()|Z0,B.K.0?)
var(Y(s)]Zo,B, K,o%) :S(s)War(n]Zo,B, K,Og) S(s) +var(€(s)\zo, B, K,o?)

+25(s)"cov(n,&(s)1Zo,B,K,0F) (7)

The goal here is to predidt (or some function ofr), given the data. However, the predictive
distribution,[Y|Zo, 8], is not available in closed form, nor@known. We shall use a combination
of EM estimation of@ to yield 8ewm, and we shall use an MCMC algorithm (see, e.g., Robert and
Casella, 2004) to yield samples from the predictive distidn, [Y|Zo, 0], wherebgy is substi-
tuted in for®. In actuality, this is achieved by obtaining samples from pinedictive distribution,

N,¢c|Zo, 0], and the distributio 02|, wheref = éEM ando? = 62._,, are respectively substi-
o) ul0¢ &EM

13



tuted in. The EM algorithm to obtaiﬁEM is presented in the next section, where it is seen that the
E-step cannot be evaluated exactly; we propose a Laplacexapation. The MCMC algorithm

to obtain the predictive distribution is described in thepapdix.

4 EM Estimation of Parameters

In this section, we obtain the ML estimates of the paramatsihsg the EM algorithm. The EM
algorithm (Dempster et al., 1977) has been employed fomesitbn of parameters in the presence
of missing data; for more details, see McLachlan and Kriai(@208). For the hierarchical model
described in Section 2, the random effegfsand the fine-scale variatiofg, are not known and
can be treated as “data” that complete the likelihood. Thedigdrithm involves iterating between
an E (expectation)-step and an M (maximization)-step, amdir case the E-step is the most prob-
lematic. We resolve this problem by using Laplace approkiona to evaluate the expectations
required in the E-step.

Recall that
I(Hzy (1) =Y (),

whereg(+) is the link function. We now rewritg(-) andb(y(-)) in (5) as functions oY (-). Define:

y(-) = ha(Y())
b(y(-)) = h2(Y (). (18)

Then, under this re-parameterization, the conditionasitgif [Z(s)|Y(s)], fors€ {s1,...,S}, IS
given by:
fz1v(2(s)) = exp{ (2(ha(Y(s)) —ha(Y(s))) /12— c((9),T) } . (19)

14



Note that if the canonical link is considered, we hgi#¢ = Y(-), and hence

ha(Y(-)) =b(Y(-)). (20)

The “complete data” log likelihood,, for the unknown parameters is made up of the obser-

vationsZ o and the unobservagland§g. ThenL. is simply the logarithm of the joint distribution

of Zp, n, and§, given the paramete®= {B,K,og}. That is,

Le(81Z0.N. &o) =I0g[Zo|B, N, &o] +logn|K] + log [£o|0?]

—const+ {iZ(s)hl(C(S) +X(s)'B+S(s) 'n+&(s))
—ihz(C(S) +X(s)"B+S(s) 'n+&(s)) } /T

1 1 Ty —1 n 2 1 Ty/—1
510g[K| 2trace(r]r] K ) 51090 Zogtrace@oﬁoVE;o), (21)

where recall thafA |B] denotes the density function AfgivenB, V.o = diag(ve(sy), ..., Vs(Sh)),
and “const.” denotes a generic constant that does not depe®dThe EM algorithm is based on

L; and an iteration procedure that we now describe. Assume wedmnpleted thé-th iteration

of the EM algorithm; that is, we have an estim@té of 8.
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4.1 The E-step

At the (I 4 1)-th iteration, the E-step is:

Q(6.08") = E (Lc(61Z0,n.E0)(6!")

= const:+ {_iZ@)E (M(C(s)+X(8)TB+S(s) n+&(s))Zo.0")

_-iE (hZ(C($> +X($>TB+S(S)T',I +E($))|Zo,e[|]> } /-[2

— % log|K | — %trace(E (nnT|Zo,6[']> K’l>

~Mogo2- L T 1) -1
2IogoE 20%trace<E (£O£O|Zo,6 )Vz;o>~ (22)

The expectations involved in the E-step of the EM algorithreith respect to the unobserved
variablesn and§, and they are not available in closed form.

When the integrals in the E-step are problematic, one appnway be to implement a stochas-
tic EM (SEM) algorithm (e.g., see Robert and Casella, 2004t &thlan and Krishnan, 2008),
where the expectations are evaluated using Monte Carlgretien. When datasets are large, this
computation can be very slow, and hence the EM algorithm eaveby slow to converge. In our
approach, we derive Laplace approximations (LA) to appnate the expectations involved in
(22), which are based on second-order Taylor-series eigansf the logarithm of the integrands
around their respective modes.

To apply the LA, we need to obtain the mocdﬁ,“],i[g), of L¢ considered as a function of
and§,. Sengupta and Cressie (2013) use a coordinate-wise ased#mvarfor the Poisson GLM
and canonical log link, which maximizes alternately witegect tan, and then with respect &,
until convergence. We do the same here for the general biecat model described in Section 2.

We use a second-order Taylor-series approximation to appete the posterior distribution of
[n,EO|Zo,6[']] with a Gaussian distribution with mean and variance givethieyposterior mode
and the inverse of the negative Hessian of the posteriouaied at the mode; see the justification

given in Kass and Steffey (1989). Details of our approxioraican be found in the Appendix,
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where it is seen that the posterior distributid}n,EO|ZO,9[”], is approximately a multivariate

Gaussian density, with approximate mean and approximai@wz given by

U
n n
E zo.8" | =, | (23)
E.o E-O
and
02 I 82 0 -1
—Z_(1L0lz ~ 2 (L8 |z
var n Zo7e[|] _ 6[]62[]T ( C( l‘ OanaEO)) anazzg ( C( I’ O7n7EO)) ‘ _A“]E _E[I]
EO _aaoaan‘r (LC(GH\ZOamEo)) _6‘22628 (LC(GH‘ZOan,Eo)) n=n",{0=¢%o

(24)
respectively. To obtain van|Zo, 9[”) and vatég|Zo, 9[”), we need to invert the matrix of partial
derivatives shown just above. LAtdenote am x r matrix andB denote am x n matrix. Further,
let U be anyr x n matrix andV be anyn x r matrix. Then, a block-matrix-inversion formula (e.g.,

Duncan, 1944) is given by:
-1
A U (A—UB~1v)1 —(A—-UB~1v)~lug-?

= : (25)
V B —(B—VA~lU)~tva -l (B—VA~lU)!

Now recall the Sherman-Morrison-Woodbury formula (e.genHerson and Searle, 1981):
B-VA~lU)t=B14+Blv(A—uB~lv)luB L

We use this formula in the block-matrix-inversion formu®b) to obtain the following equivalent

block-matrix-inversion formula, which we use to obtain theerse in (24):

-1

A U (A—-uUB~tv)-1 —(A-uB~lv)~lus?! (26)
V B B lv(A-uB-v)-1 BliBlv(A-uBlv)“luB?!

where the lower off-diagonal block is obtained using ther8taa-Morrison-Woodbury formula as
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follows:

B-VAlU) hvat={Bv(A-uB~lv)luB~t+Bt}vAt
=B 'V(A-uUB V) H{uB" VATt - (A—-UB~v)AT1)

=B lv(a-uBlv) L (27)

Now, for generic variables andv, define

2

(Lc(e“Hzo, u,v))

U=up,V=Vgp

We consider the different component matrices in(the n) x (r +n) matrix of partial derivatives
givenin (24). The matrix](i[g,i[g) is ann x n diagonal matrix; its inversion is easy. The matrix
JR", 41y is of dimensiom x r, wherer < n. The other two matricesi,(éy,ﬁm) andJ(ﬁ[”,éEl)]),
have dimensiom x r andr x n, respectively. We can then use formula (26) to invert therimat

(24), which gives, approximately,

(28)

<[] 2l
In the formulas given just above, all we need to invert isrthen diagonal matrix,J(Eg,Eg), and

some fixed-rank x r matrices. This makes the computations extremely efficiedtadlows us to
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obtain the expressions fé&(nn " |Zo,0) andE(EOEg|Zo,6m) in (22) as follows:

E(Nn"Zo,6") = var(n|Zo.6") + E(n|Zo.6")E(n|Z0.6")"

E(§080/Z0,0") = var(€o|Zo.0') + E(§0|Zo,8")E(§0/Z0,8") (29)

where the terms on the right-hand side of (29) are evalugdpbaimately using (23) and (28).

The remaining terms in (22), for which we need an approxiomtare
E ((C(8)+X(5)TB+S(8) N +E(9)1Z0,8"); s€ {s1,..:}, k=1,2

For the particular case of count data and the canonical kimsidered in Sengupta and Cressie
(2013), analytical expressions were obtained based ondbestn approximation fgmn, §o|Zo, 6[']]
discussed above. In the general case considered here, ralsarcker Taylor-series expansion is

needed to evaluate the required expectations. From thenippeve see that, approximately,

E (I(C(s) +X(s) B+S(s) N +E())1Z0,0") = h(C(s) +X(s)"B+S(s) i +E(s))

£ IMC(S) +X(3) B+ 8i3) Al +E1(s)) x (S(s) var(n|Zo,8)S(s)
+25(s)" cov(n, €o|Z0.8" e(s) + &(s) Tvar(€o|Zo. 8" els) ) (30)

wherek = 1,2, ande(s) is a vector of lengtim whosei-th element is 1 and all other entries are 0,

fori=1,...,n.

4.2 The M-step

Following the E-step, we perform the M-step, which involuesximizing (22) with respect to each
of the parameters iB. The maximization with respect ando% is obtained by differentiating

(22) with respect t andog, equating to zero, and solving the resulting equations.soihgions
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at the(l + 1)-th iteration are:
1 _
0§“+1] — ﬁtrace((E(£o|Zo, 0'E(E|Z0,0!) T +var (Eo|Zo, 9“]>> Vg;é)
KI+Y —E(n|Zo,6")E(n|Zo.68")" +var(n|Zo,8!") (31)

However, the maximization of (22) with respectfois not available in closed form; we use a

Newton-Raphson update at each M-step as follows:

-1

pr gl | GRO|  REY), @)
6=6'

In (32),R(0) denotes the score function obtained by taking the partialate/e of Q(0, 6[']), given
by (22), with respect t¢8, andR(Gm) is obtained by evaluating(0) at8l!. The score function

and the derivative required in (32) are evaluated in the Agpe

4.3 Starting Values for the EM Algorithm

In order to implement the EM algorithm, we need to specify e@tarting values for the parame-
ters. Although in the simulation study described in Sectipwe use the true parameter values as
our starting values, for real data applications we do noehhat luxury. In this section, we give a
recommendation for initializing the EM algorithm. We shadle this method to obtain the starting
values for the EM algorithm when analyzing the large remetessg dataset in Section 6.

One may proceed by using the classical fixed-effects GLI\rIrEHEi,fSGLM, as the starting value
for B; here,[A3G|_,\,I is obtained using the iterated reweighted least squaresitlgn (see McCulloch
et al., 2001, Chapter 5).

Recall that the spatial trend is
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consider the detrended process,

U(s)=Y(s)—t(s), (33)

which has mean zero and

varU(s)) = S(s) 'KS(s) + 05ve(s). (34)
Writing Up = (U(sy),...,U(sh)) ", we obtain:

cov(Uo) = Zy;0 = SoKSS + 08Ve.0, (35)

where recall thaVs.¢ is a known diagonal matrix.

To obtain method-of-moments estimateskofind og that can be used as starting values, we
replaceY(s) with g(Z(s) + c), wherec is some user-specified constant that is added to the data
to ensure that the transformation is defined everywheramiitie range of the data and recall that
g(+) is the link function. For example, for Poisson data and thmoéal log link, lodZ(s) 4 0.5)
avoids a singularity whe#(s) = 0.

Consequently, an approximation 1dx-) is obtained as:
U(s) = 9(Z(s)+0) —C(s) — X(s) Boum: i = 1,...,n. (36)
Definesd = 15" ,U(s)? and choose
Zy0=SIn (37)

simply to capture the total variation through the trace apr We apportion approximately 90%

of this to the smooth small-scale variation and 10% to thedirade variation (e.g., Katzfuss and
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Cressie, 2011). That is, we select our starting vaIuerando% to satisfy

SoK 98] ~ 0.9% £y.0

0:° = 0.1 x trace3y o) /trace Ve o), (38)

as follows. Using (38), and th@-R decompositionSpo = QsRs, we obtain the starting value for

K as

K9 = R31QE (o.g x iu;o) Qs(R) L. (39)

Note that this approximate 90-10 apportionment of the tedaiability could be done differently,

depending on the data’s smooth-scale variation relatitiediw fine-scale variation.

4.4 Properties of the Resulting EM Algorithm

Suppose that the algorithm is initialized with parametéue/ae[o}

€ ©, whereQ is the parameter
space. Then it can be seen from (31) Bltc ©,1 = 1,2,..., which is a desirable property. For
example, this means that if the starting value Koiis a covariance matrix, then all future EM
updates will also be symmetric and at least non-negativaiteefiikewise, if we choossg[o] >0,
then it is guaranteed that the EM estimate satis”f@év' > 0.

The most appealing feature of the resulting EM algorithnoiaputational. The E-step requires
one optimization to obtain the posterior mode. Then the &Rigel assumption and the Sherman-
Morrison-Woodbury formula make the LA computations extedyrefficient. The computational
complexity of the EM algorithm is linear in the sample sizésee Section 5.4). This is a highly
desirable property when dealing with big data. In Sectiath® computational performance of this

algorithm and the variability of the estimates are assesgedgh simulation.

5 A Simulation Study

In this section, we investigate statistical propertieswflBHM approach using a simulation exper-

iment, where we simulateoissondata over a regular spatial domain using the hierarchicaleino
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set-up as described in Section 2. Further, we demonstrteotinputational gain that is achieved
by using an EHM approach as opposed to a BHM approach. Tha&idns for the EM algorithm

and the MCMC algorithm relevant to our EHM are available ajuesst.

5.1 Simulation Set-Up

We generated count data from a Poisson distribution whossnmas obtained by exponentiat-
ing an underlying spatial Gaussian proc¥gs). We considered a regular spatial domdn=
{s1,...sn}, consisting oN = 300x 300= 90,000 points on{—1495,...,—0.5,0.5,...,1495}°,

In this simulation, the hidden proceg§ ) given by (8), (9), and (11) was made up of three additive
components:

Y(s)=X(s)"B+S(s)'n+&(s); se D, (40)

where the fine-scale heterogeneity terpg-y= 1, and the offset terr@(-) = 0. The large-scale

variation, or trend, was assumed to be,
X(s)"B=Po+P1x%, (41)

wheres= (s1,) " andp = (Bo,B1) .

Recall that the random-effects vectpr Gau0,K ), and heré/-) is a process of independent
and identically distributed (i.i.d.) G&Q, og) random variables, independentmpf For the vector
of basis functionsS(-), we used the bisquare functions. The centers of the bisduactions
were selected using two scales of resolution and were ndgpaced within a resolution. The
number of basis functions used at the two resolutions wesperctively, 4 and 25. Consequently,
r=4+25=29.

To specify the SRE model’s covariance matkix we started with an exponential covariance

function given by

C(u,v) :coexp<—%), (42)

wherecy is the sill andag is the scale parameter. Here we speciige- 1 (without loss of general-
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ity) andag = 100 (to capture moderate-to-strong spatial dependenety £ (v(s1), .. .v(sN))T

be a mean-zero spatial Gaussian process definedovénose covariance matrix is obtained from
the exponential covariance model (42); thawvisy Gau0, Z,). We calibratecK andog using the
procedure given in Kang and Cressie (2011). For just thémdlon, we considered only 9,000
regularly spaced locations (sampling every tenth locdtiom the list of all 90,000 locations) that
covered the entire spatial domain, rather than using all®Dlocations.

First we calculated © such that|SK°ST — %, || was minimized, wherd - || is the Frobenius
norm (e.g., Cressie and Johannesson, 2008). Finally, tobatdhe variability of Y, we chose

K = kK9, wherek was chosen to preserve the total variation. That is,
tracgZ,)/N = 1 = tracgkSK’S" + ofln)/N. (43)

For selecting the large-scale-variation parampteve defined the variation of the “signalf,

as:

Ve = %trace(SKST +0¢l N) + % i (X(S)TB—Sagg(X(s)TB))

2

The paramete was selected such thef was approximately 2 (see Aldworth and Cressie, 1999,
Section 3.2.4). Note thdlp is a free parameter that does not impéct We fixed3p = 2. Spec-
ifying B1 = 0.0125 givesVs = 2.17. Consequently, in our simulation stu@/= (2,0.0125 .

Additionally, we specified théne-scale-variation proportion (FVR)

trace(ogl N)

trace(SKST + ogl N) ,

FVP=

(44)

which from (43) is equal tmr%. In our simulationFV P was held at 5%; hence? = 0.05. Using
(43), we obtainedt = 1.22.
We simulatedn and & from the Gaussian process defined above and then, usingwé0),

obtainedY over the entire domaib. Next, we used the inverse of the log link function,

Hzy () = exp(Y(-)), (45)
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to simulate a realization of the conditionally (conditiboa Y (-)) independent Poisson random
variables,Zo, for only n locations (i < N); the n locations{sy,...,s,} were randomly sampled
without replacement from thid = 90,000 possible locations.

We will use this set-up to investigate the performance ofEMebased parameter estimates
(Section 5.2), to compare the predictive performance ofEidM approach to that of an inde-
pendent hierarchical GLM (Section 5.3), to compare the agatmnal efficiency of our EHM
approach to that of a competing Bayesian hierarchical nmogi¢BHM) approach (Section 5.4),
and finally to do a sensitivity study of the EHM and the BHM aggrhes (Section 5.5). In Sections
5.2, 5.3, and 5.5, we holdfixed at 20,000. In Section 5.4, we vamyand tabulate the computa-
tional efficiency as a function af. We use the true parameter values as starting values folthe E

algorithm and for specifying hyperparameters for the BHNrapch.

5.2 Assessment of the EM Estimates

In this section, we assess the performance of the EM estmateldingn fixed at 20,000, we
simulated 1600 vectorz[ol],...,zgGoq as specified in Section 5.1. For each of the simulated
datasetsZP)], wherel =1,...,1600, we used the EM algorithm described in Section 4 to es&m
the unknown parameters.

We calculated the average and the empirical root mean stjear@ (RMSE) for the parame-
tersp = (Bo,B1) " ando the results are summarized in Table 1, and they show vergt ggree-

ment with the true values.
—— Table 1 approximately here ——

Now we consider the EM estimate kf The elementwise mean of the EM estlmat%é []

=1,...,1600}, was computed as:
1600
ave(KEM 1600 Z K (46)
Figure 1 shows an image plot of the matHx= {ave(KEM)K{l}, whereK T is the true covariance
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matrix forn. We compare the matrid to the identity matrix, which gives a visual representation

of how close the mean of the EM estimatekofs to the true valud .
—— Figure 1 approximately here ——

We also computed tragély K1), for | = 1,...,1600. Now, had we observayl'), the ML

estimate oK would be given by:

>~

I[\l/}L;r] = nmn[l]—rv (47)

for which

traceRmnK2) = tracgn'In!1 K4 = nll Tk 71! ~ x2. (48)

Consequently, we might expect the distribution of t(&%\,,K;l) to look similar to ax? distribu-
tion. Recall that =29 in our case. Figure 2 shows a histogran{tn&ce(ﬁ@MK{l) =1, 1600},
upon which ax%Q density is superimposed. The sample mean and the sampietvanf{trace(R @MK;l)}

are 29.4194 and 59.821, respectively, which we comparéé,E= 29 and vafx3,) = 58.
—— Figure 2 approximately here ——

Overall, the EM algorithm seems to perform well, despiteapproximations involved in the
E-step of the EM algorithm. Next, we shall investigate thedictive properties of our EHM

approach.

5.3 Predictive Properties

In this section, we assess the predictive properties foEtH® approach described in Sections

100

2—-4. Here, we again hela fixed at 20000, and we generated 100 datasﬂ_é%,...,zg . For

each of the simulated datas{tz[g =1, 100}, we implemented the EM algorithm to obtain

é[E”M = (fs[QM, R@M,ffg;“éM). Then, using the MCMC algorithm described in Section 3, wizioled

samples from the empirical predictive distributi@m,ﬁdZ@ , é[E”M]: For each of the 100 simulated
datasets, we generated 25,000 MCMC samples, after diagaadburn-in sample of size 2,000.

Recall that our EHM approach yields the predictoY ¢f) based orzg, as the mean of the resulting
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MCMC samples from the empirical predictive distributiMJ\Z@,é@M]. Here we compare this

to one derived from a spatially independent GLM, namely

Y()=X()"B+E(), (49)

whereg(-) ~i.i.d. Gauo, og). To estimate the parameters of the resulting EHM, we useékhe
algorithm described in Section 4 with= 0, that is, with no spatial random-effects component.
The MCMC algorithm from which the empirical predictive dibution is obtained is, likewise, a
special case of that given in Section 3, wigh= 0.

In what follows, we denote the 20,000 locations with dat®gsand the complementary set
of 70,000 locations without data &%,. Recall thaDo was obtained by random sampling frdin
without replacement; for the 100 datasets, the set of logabo (and henc®y ) are held fixed.

Using obvious notation where “S” denotes “spatial” and “Brubtes “independent,” define

YL () ana¥, L., () to be the means of their respective predictive distributipf(-) |25, “]

and[Y(~)\Z@,él[léM]. Importantly,Zy, e ,Z%Oq were simulated according to the set-up given in
Section 5.1.

Consider the ratio of the mean squared prediction errors,

o(s) = 10023 (Y Vatrm(s) — Y“](S))Z; seD, (50)

1002100( I[I|E]HM(S) Ylli(s))?

WhereY['](-) is the true process (Section 5.1). From (50), we made kekeatity plots showing
the distribution ok(-) for locations inDg and for those iy, separately. These plots are shown in
the left panel of Figure 3, from which we see that SEHM has éigeélative efficiency for locations
in Dy than for those iDp. Clearly, for locations without data (i.eD;), SEHM borrows strength
efficiently from nearby observations, and hence it performgh better than IEHM in terms of

smaller mean squared prediction error.
—— Figure 3 approximately here ——

Now we shall investigate the performance of our EHM apprdactihe locations with and
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without data. We made kernel-density plots that compareligtebution of mean squared predic-

tion errors,
1 100

[ | 2

1002 YSI]EHM H(S)> ’
for locationssin Do to those inDy (see Figure 3, right panel). Generally, the right panel gliFe
3 shows that mean squared prediction errors are small®pithan inDy. Since a datunz(s) at

locations s very informative about the hidden val¥és) ats, this is to be expected.

5.4 Computational Time: EHM versus BHM

In this section, we illustrate the computational gain aebikeby using an EHM approach as op-
posed to using a comparable BHM approach. In what followgnelkier we say EHM (BHM), we
mean a spatial EHM (spatial BHM).

Recall that part of our EHM approach involves estimatinguhknown parameters using an
EM algorithm, followed by an MCMC algorithm that generatasples from the empirical predic-
tive distribution,[n, EO|Zo,GEM] wherefgy = (BEM,KEM, EEM) In a BHM approach, priors
are put o3, K, andoz, and an MCMC algorithm is used to generate samples from teeepor
distribution, [n,§,08|Zp]. Priors are assigned following Kang and Cressie (2011)d#tails of
which are given in the Appendix.

Generally, the MCMC algorithm mixes more slowly for the BHNah for the EHM. Hence,
we need to calibrate the MCMC sample sizes properly beforecave compare the computa-
tional times. Suppose the number of MCMC samples from theirrappredictive distribution,
N, &olZo, éEM], isLeqm, and suppose thagyy is the number of MCMC samples obtained from
the posterior distributiorin, §,0|Zo].

To calibrate the MCMC sample sizes, there are differentribatic measures that could be used
(e.g., Robert and Casella, 2004, Chapter 12). In this artveé shall use the diagnostics proposed
by Gelman and Rubin (1992) and Brooks and Gelman (1998). Tdim&h-Rubin statistic, or
potential scale reduction factor (PSRF), is based on theafigenerating several MCMC chains,

each of length., and then comparing the variability based on these indalidhains to that based
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on the combined chain. If PSRF is close to 1, we can concluatestich set of simulated values
is close to the target distribution; if PSRF is largenay be too small. Brooks and Gelman (1998)
proposed the multivariate potential scale reduction fa@®SRF), which is a multivariate exten-
sion of the PSREF, that can be used for assessing convergeseeeoal parameters simultaneously.

For fixed data siz@, we generated five MCMC chains, each of lengthThen we found the
values ofLgym andLgym that had comparable MSPRFs close to 1. We startediwitlb, 000 and
found that for the elements §f mixing was achieved quickly for both EHM and BHM. However,
mixing for n is comparatively slow for EHM and even slower for BHM, so wédilwated the
MCMC sample sizes based on the convergence diagnostiay. fétigure 4 shows plots of the
MPSRF and the maximum of elementwise PSRFs as functiohs Bfom Figure 4, we selected
Lepm = 15,000, andLgym = 40,000, which resulted in MPSRFs of 1.08 for EHM and 1.07 for
BHM.

—— Figure 4 approximately here ——

Next we investigated how the MPSRF and the PSRFs changadchanged. By holding
Lenym = 15,000 andLgym = 40,000, and varyingn, Table 2 shows that the Gelman-Rubin and
Gelman-Brooks statistics are robust to change in the sasigpden. Consequently, we compare

the computational times for EHM and BHM, for @j usingLeym = 15,000 andLgym = 40,000.

—— Table 2 approximately here ——

The simulation experiment was performed on a dual quad c8 &Rz 2x Xeon X5560 pro-
cessor, with 96 Gbytes of memory. The computational timeshie EHM and BHM are given in
Table 3. From Table 3 we see that EHM is on the order of 6-10gifaster than BHM. Neverthe-
less, in both cases, the computational time increases @ppately linearly inn, which is due to

the dimension reduction afforded by the SRE model given &y. (1

—— Table 3 approximately here ——
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5.5 Sensitivity Study Comparing EHM to BHM

In this section, we describe a sensitivity study to demastthe precision and accuracy of the
EHM predictions, when compared to BHM predictions (e.g.néeat al., 2009).

Using the methods described in Section 5.1, we simuldtgdwvith n = 20,000. From those
simulated data, we obtained samples from the empiricaligireel distribution [Y(-)|Zo,éEM],
which is our EHM approach, and from the posterior distribotiY(-)|Zo], which is the BHM
approach. First, we did a visual assessment of the predix;t?gEHM(-) = E(Y(-)|Zo,éEM) and
Ysgum(-) = E(Y(-)|Zo), which are shown in Figure 5, along with the dg&(s),i = 1,...,n = 20,000},
and the true underlying proced-). Figure 5 gives the visual impression that there is no differ
ence in the predictions obtained using EHM and BHM, whichoisfcmed with a kernel-density

plot showing the distribution of the differenCé;EHM(-) —YseH M(+); see Figure 6 (left panel).
—— Figure 5 approximately here ——
—— Figure 6 approximately here ——

Next we computed the ratio,

L (var(Y()[Zo))M?
~ (van(Y(")|Zo,Bem) Y2

(51)

The distribution of the ratio of the standard deviationshiseven on the right panel of Figure 6,
separately for locations iDp (where data are observed) aDd (where data are not observed).
From the right panel of Figure 6, we see that the ratio is mdatber than 1; it is always larger
than 1 inDy, and it is larger than 1 for 87.5% of locationsDy. Thus, our EHM approach tends
to yield credible intervals fo¥(-) that are narrower than those obtained from a BHM approach.
From this experiment, we see that 8¢ Do, EHM-based credible intervals tend to be narrower by
a factor of 0.8, while fos € Dy, the factor is 0.75. These results are consistent with cpatial

studies (e.g., Kang et al., 2009).
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6 Analysis of Aerosol Optical Depth from the MISR Instru-
ment

In this section, we use the methodology presented in theqaresections to analyze a large, spa-
tial, remotely sensed dataset on aerosol optical depth (Aéitieved by the Multi-angle Imaging
SpectroRadiometer (MISR) instrument on NASA's Terra $isgelAn analysis of this dataset was
done by Shi and Cressie (2007); they used a log transformaficthe data and then analyzed
log(AOD) using a Gaussian model, however they did not olgpatial predictions back on the
original AOD scale. The key feature of our current analysit®imodel AOD directly, using a hier-
archical spatial statistical model with a Gamma data motet methodology we have developed
in the previous sections allows us to obtain optimal spatiatiictions, posterior standard errors,

and 95% prediction intervals on the original AOD scale.

6.1 Background to the Dataset

The Terra satellite was launched by NASA on December 18, 1&9Part of the Earth Observing
System (EOS). The MISR instrument is one of the key instrumen board that collects global
aerosol information, and it covers the entire globe in 16sdayevel-2 AOD data are collected
at a 17.6 kmx 17.6 km spatial resolution; they can then be converted tel{&\AOD data at a
lower spatial resolution (of.68° x 0.5°) by averaging all the level-2 observations that fall within
the level-3 pixels. (Here, and in what follows, when we sagle pixel, we mean a pixel at the
spatial resolution of ®° x 0.5°.) Due to orbit geometry, clouds, or non-retrievals, data loa
missing in many regions. We use our model to predict the trQ® At level-3 pixels, both where
there are data and where there are no data.

We analyze here a spatial dataset of lattice data consisfiteyel-3 AOD values observed
between August 2-9, 2001, within a study regidrbounded by longitudes 125" and+3° and
latitudes—20° and+44°. This is the same dataset that was analyzed in Shi and C(266ié), and
was part of a spatio-temporal dataset in Kang et al. (201ibpwagh exclusively on the log(AOD)

scale. The region covers North and South America, the weptat of the Sahara desert in Africa,
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the Iberian Peninsula in Europe, and parts of the Atlantet Bacific Oceans (see Kang et al.,
2010, for a map of the study region). There Bres 128x 256= 32,768 level-3 pixels irD. The
n= 21759 data inDp are shown in the top-left panel of Figure 9, where white @xdgfine the

no-data locations (i.eDy); a histogram for the data is shown on the top-right paneigidie 9.

6.2 Hierarchical Spatial Statistical Modeling of AOD

In this section, we do some initial data analysis of the AORaget by fitting a weighted gen-
eralized linear model that does not contain spatial depsed@cCullagh and Nelder, 1989),
followed by a full spatial analysis of the dataset. RecalhirSection 6.1 thaZ(s) is the average
AOD obtained by averaging all the level-2 observations taktwithin the level-3 pixel located
ats. Let m(s) denote the number of level-2 observations that are avermebtainZ(s), for
i =1,...,n. We denote the level-2 observations within the level-3 ppigeated ats asZ;(s),
j=1,...,m(s), sothaz(s) = 313 Z(s)/m(s).

Conditional on an underlying spatial proce&s), we assume independent Gamma distribu-
tions for the level-2 observations. That is, conditionaMdn), Zj(s) andZ(u) are independent,

except whers = u andj = k. We further assume local homogeneity within a level-3 pittedt is,
Zj(s)[Y(s) ~ i.i.d Gammav, kzy(s)/V); | =1,...m(s), (52)

wherezy(s) =E(Z(s[Y(:)) =E(Z(s)|Y(s)) is the mean of the conditional distributi¢fy (s )Y (s)];
v > 0 is the shape parameter of the Gamma distribution; andecoesitly iy (s)/v (> 0) is its
scale parameter for the level-3 pixelsat That is, the density function fafj(s)|Y(s), under this
parameterization, is

(zj(s)v)" exp(—zj(s)V/bzv(S)) . _
Zj(S)I (V)izv(s)Y 7(s) =0 (53)

fzv(zj(s)[Y(s)) =
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From (52), and (53), we obtain the conditional distributodithe level-3 datum & as,

Z(s)|Y(s)) ~ Gammam(s)Vv, lzy(s)/(M(s)v)); i =1,...,n, (54)

where the distributions are assumed independent. Thugewhat the between-pixel heterogene-
ity shows up in the scale and the shape parameters, altie(ig(is;)|Y(s)) is Lzy(s) and does
not depend om(s). This yields the loglikelihood,

n

L(B.v) = 5 { (mls)u—1)log(Z(s) + mis viog(mis v

_ Z(s)m(s)v
exp(X(s) 'B)

~logT (m(s))v) — m(s)v(X(s) ") }. (55)

The canonical link for the Gamma distribution is the recgaidink, namelyy(s) = (uz‘y(s))—l,
which leads to constraints on the conditional mean that areasy to model. Guided by previous

analyses of AOD where log data were analyzed, we use a logTimt is,

log(kzv(s) = X(s) "B i=1,...,N, (56)

whereX(s) is ap-dimensional vector of known covariates, and there is ngebflermCy(-) in this
model. After some initial exploratory data analysis coesitg the covariates used in Kang et al.
(2010), we selected the covariates in (56) to be the indidatections for each of the Americas,
Africa (the Sahara desert), the south-western tip of Euftdperian Peninsular), and oceans; and
we also included latitude as a covariate.

From the weighted GLM (WGLM) given by (53) and (56), we ob&inthe ML estimate,
é’vveLM' of B, which does not depend on Note that the estimalﬁ,\,el_,\,I is different than what
one would obtain using a standard R or Matlab package, siiegedo not consider the different
{m(s):i=1,...,n} that appear in the loglikelihood given by (55). The maximukellhood
estimate ob is obtained by maximizing(f.’»WGLM,v) with respect tay and results irv = 0.3637.

These ML estimates are used in the hierarchical statigtizalysis that follows.
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As an aside, if we transform the data @$s) = m(s)Z(s); i = 1,...,n, then the distribution

of Z(s) is Gammam(s)v, bz (S)), wherelsy (s) = m(s)Hzv(s). Hence, the log link is:

log(zy (s)) = log(m(s)kzy (s)) = log(m(s))) +X(s) "B, (57)

where there is now an offset ter@(s) = log(m(s)). Since the information content c{fZ(si)}
and{Z(s)} are the same, the ML estimatesféndv are unchanged.

Our spatial hierarchical statistical model consists of @ aaodel and a process model; recall
that unknown parameters are estimated. The data modelas @iy (54), wherev = 0.3637,

obtained above. We assume the log link,

Y () =log(kzv (), (58)

and the process model is:

Y(s)=X(s) ' B+S(s) 'n+&(s);i=1,...N, (59)

where recall thall = 128x 256= 32 768 level-3 pixels, anX(-) is a 5-dimensional vector made
up of the same covariates used in the initial data analysig59), ther-dimensional vector of
random effectsn, is assumed to have a G&uK) distribution, where the covariance matkx

is fixed but unknown and will be estimated. We use mutiresahal \W-wavelet basis functions
for S(-); see Kang et al. (2010) and Kang and Cressie (2011). Thatdsch@ose all 32 W-
wavelets from the first resolution, and 62 W-wavelets from siecond resolution, resulting in
r=32+62=94. TheN x r matrix S of basis functions is further rescaled by dividing each
column of S by the standard deviation of the elements of the correspgneblumn. Finally, the
componeng(-) denotes the fine-scale-variation parameter, and we modsing a Ga(0, og)

distribution.
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6.3 Parameter Estimation and Optimal Spatial Mapping of AOD

We use the EM algorithm (Section 4) to estimate the parametef{B,K,og}. To implement
the EM algorithm, we obtain the starting values using theho@$ discussed in Section 4.3, with
é’vaLM used as the starting value f The EM estimatesBgy = {ﬁEM,REM,Gg;EM}, are
then substituted into an MCMC algorithm (Appendix C) to abtsamples from the empirical
predictive distribution{n,EO|Zo,éEM]. We generated 20,000 MCMC samples, after discarding
2,000 samples as burn-in. These MCMC samples, togetheM@C samples fromg,, |6§;EM],
give us the entire empirical predictive diStribUti(ﬂTszo,éEM], or any desired transformation or
summary of it. For example, we can obtgipy|Zo, Oew), wherepzy = (Mzy (S1), .- -, Mz (sn)) T
andpzy (-) = exp(Y(+)), whose moments and quantiles are immediately computable.

Using the MCMC samples, we first computed the predictive nagahthe predictive standard
deviation of the procesg(-); see the left panels of Figure 7. These panels are compdratiie
optimal predictions in Shi and Cressie (2007), Kang et &l1(8, and Kang and Cressie (2011),
which are on the log scale. The predictive mear¥ ¢f) shows that high aerosol particles are
emitted from the Sahara desert and make their way acrossttaeti& Ocean to North America
via mid-latitude trade winds. The map of predictive staddieviations reflects the satellite tracks
and regions of missing data, as it should. The additive ratfithe model foiY(-) allows us to
map and interpret different sources of variability sepyatSpecifically, the right panels of Figure
7 show image plots for the trend componkir@t)TﬁEM, for the predictive mean of the small-scale
variation componen$(-) 'n, and for the predictive mean of the fine-scale-variation ponent
&(-). Adding them together, we obtain the predictive meal @f shown in the middle-left panel

of Figure 7.
—— Figure 7 approximately here ——

Recall that the daturd(s) was obtained by averaging(s) level-2 observations observed in
the level-3 pixel located &; i = 1,...,n. We incorporated that heterogeneity in our hierarchical
model through (54), and to assess its impact we made sidgdiyboxplots showing how the

predictive standard deviation ¥{ -) varies for different values ofi(s); see Figure 8. As expected,
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the predictive standard deviation¥fs) decreases as(s) increases, reflecting the importance of

the data model in this spatial statistical analysis.
—— Figure 8 approximately here ——

Our goal in this analysis is to make inference on the orighk@D scale. Here we obtained
maps of the mean, the standard deviation, the 2.5 percemtitethe 97.5 percentile of each of the
N elements oft,y in the (empirical) predictive distributio[pz‘y|zo,éEM]; see Figure 9. Notice
that the map of the predictive standard deviation shows anraaaance relationship, which is the
consequence of the Lognormal process modelfoy(-). The maps showing the 2.5 percentile
and the 97.5 percentile give the upper bound and lower bowwspectively, of pixelwise 95%
credible intervals. All panels in Figure 9 show maps on thigioal AOD scale, where they are

most interpretable scientifically.

—— Figure 9 approximately here ——

7 Discussion and Conclusions

In this article, we have developed a hierarchical spatélstical model where the data model be-
longs to the exponential family of distributions. The presenodel is spatially dependent and is
based on a hidden SRE model for the underlying latent randooeps. This allows for nonstation-
arity and dimension reduction, which is advantageous whatyaing big, spatially heterogeneous
datasets. The spatially independent fine-scale variaion is an important component of the SRE
model and is an attempt to account for the variability thatftked-rank random-effects do not cap-
ture. The fixed-rank random-effects term, coupled with {hetially independent fine-scale vari-
ability term, enables efficient computation via repeateel afsthe Sherman-Morrison-Woodbury
formula. The model parameters are assumed fixed but unknegvara estimated.

The spatial independence of the fine-scale variation t€(m), assumed in this article can

be generalized to allow for some spatial dependence, fartwgparse-matrix-inversion techniques
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can be used to invertits covariance matrix. This situatesideen explored in Nguyen et al. (2012),
where the orbit geometry of the satellite leads to spatipéddence in the fine-scale variation term.

The model proposed in this article is spatial-only. Howeltezould be extended to a hierar-
chical spatio-temporal model in an obvious way. We couldtbeesame data model and a process
model where the reduced-dimensional basis function casftie evolve over time (e.g., Wikle
et al., 2001; Cressie et al., 2010). There remain the prableinestimation of spatio-temporal-
model parameters and optimal filtering, smoothing, andcfasng from the empirical predictive
distribution.

Because of ouempirical hierarchical modeling (EHM) approach, we are able to avpatial
confounding between fixed-effects and random-effects¢emthe process model. We have de-
veloped an EM algorithm to estimate the unknown paramesansg the expectations required in
the E-step of the EM algorithm are not available in closedffove developed a Laplace approxi-
mation for them.

Based on a simulation experiment, we assessed the perfoenodM estimation of the pa-
rameters, and then we investigated the predictive pragseofiour EHM approach. We further used
the simulation set-up to compare the performance of our EldgM@ach to that of a comparable
BHM approach, both in terms of computational efficiency (Ei4N6-10 times faster) and in terms
of width of credible intervals (EHM is 75-80% more liberal).

Finally, we used our methodology to analyze a big, spatiadiierogeneous dataset on AOD.
Based on a Gamma data model and a Lognormal process modelftangroperly accounting for
sources of heterogeneity, we obtained a map of optimalagatdictions of AOD on the original
scale, along with maps quantifying the uncertainty of thhatiction.

In conclusion, we have presented an empirical hierarchieadeling (EHM) approach that
captures non-linear, non-Gaussian, spatial variabitifig a geostatistical process model, and is

well suited to the analysis of big data.
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Appendix

A Approximations Involved in the EM Algorithm

Letd = (r]T,E,T)T be anm (m=r + n)-dimensional vector. Here we derive the Laplace approxi-
mation to the densit|Zo, 8] Letﬁm maximize the complete data log likelihodg(8'|Zo,5).

Now, the density for the distribution ¢d|Z o, 6“]] is given by:
p(8Z0,6") Dexp(Lo(8"[20,8)) (A1)

A second-order Taylor-series approximation_@m“] |Z0,90) aroundsm yields:

1, 4 02 Al
Lo(8[20,8) = Lo(8120,8") + 5(3-8")T { & 05Lc<9[”|2075>} 5 ol ®-8")
+ higher-order terms
2l 1 2l 2l
~L(@120,8") - 5(6-8") Qua(8",6120) (3-8 "), (A2)

WhereQLA(é[”,Gm\Zo) =— [aaizaaLc(e[”\Zo,é) 5l In (A.2) above, notice that the first-order
linear term is zero since the first-order derivativel_@¢6“]|zo,6) with respect td, evaluated at

o= Sm, is zero (recall thaﬁm maximizes_c(8(!|Zo, 8)). Therefore, for the density 38|20, 6!']],

we have approximately,
U M7~ &l U 1] gl sl
p(8|Zo,0") Oexp| Lc(0"]Z0,0 ") | xexp| —=(6—90 ) ' QLa(d",0"|Z0)(6—0 ) ). (A.3)

Thus, p(G\Zo,Gm) is approximately proportional to a Gaussian density. Eatahg the propor-

tionality constant on the right-hand side of (A.3) yields #ipproximation:

| p(8iz0.8")5  exp( Le(@"z0.8") ) (221 Qa8 0 Z0) H2 ()
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and hence the first two moments are approximately,

E(8(Z0,0!) =

var(8Zo,8") = Qua(8",8"Zo) ™. (A.5)
Next, fork = 1,2, we derive the expectation:

E (e (C(s)+X(3)"B+S(s) n+E(s)) 1Z0,0') =€ (he (C(s) + X(s) 'B+a(s)73) 20,6}

Using a second-order Taylor-series expansiomgd€(s) + X(s) B+q(s)'d) aroundsm, we

obtain:

he(C(s) +X(s) 'B+a(s) ' 8)

by (c<s> +X(S)TB+Q(S)T3[”)
3-8 (hL <C(s-) +X(S)TB+q(s)T3m) x Q(Si))

+5@-8" (r(c) +x(2) o) 8" ) xaiars) ) 6-8")

+ higher-order terms (A.6)

where the vectoh/ (o) = Sh(x)|, . , and the matrixy/(xo) = & M(X) ]y

X=Xg' = dxTdx

Taking expectations, we obtain:
E (h(C(s)+X(s)"B+a(s) '8)Z0,0" )
hy (c<s-> +X<s>TB+q<s>T8[”)
~ T ~
+£((8-8")120.0") (1 (cls)+x(s) B+aw)8") xa(s))

1
5
< (rt (o) +x(s)B+ate) 8" ) xatajat) ") . (A7)
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2l
The second term in (A.7) is zero, sinﬁ[e] is the expectation of the Gaussian density that approxi-

mates the posterior densi{ﬁ\zo,em]; see (A.5). Consequently, we obtain:

E(h(C(s)+X(s)"B+a(s)"8)|Zo,0")

N tr{QLA@“%e“Hzo)l (h’k’ C(s)+X(S)TB+Q(s)T3“]> x q<s>q<s>T>}

N

~hy (c<s> +><<s>Trs+q<s>T8[”)
1

+5h <c<s>+><<s>TB+q<s>T8“]) xa(s)" Qua@",8"(Z0) a(s). (A8)

Recall thatd = (nT,ET)T. Therefore, from (A.5) and (A.8), we obtain the approxiroas to

the expectations involved in the E-step of the EM algorittitaf are used in (23), (24), and (30).

B Evaluations for the One-Step Newton-Raphson Update fo

In this part of the Appendix, we evaluate the expressionsuad in the one-step Newton-Raphson
update fo3, which was discussed at the end of Section 4.2. Specifizedlyyill evaluate the score
functionR(0) and its derivative with respect ffy assuming as many derivatives far(-) andhay(-)

as necessary.

The expression foQ(+, -) given by (22), after substituting in the approximationgte tequired
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expectations, becomes

Q(6.6") = const:+ {ézm {mc(s)+x()"B+s(s) il +E%(s)
45t (C(s> +X(s) B+S(9) A+ E(s) ) q(sWQLA(é“%e“1|zo>-1q<s>}
—Zi{hz X(s)"B+s(s) A" +Y(s))
g (C(s> () B+ 5(s) A" +£s)) < a() Q@' 8"120) ta(s) | /7
——Iog|K|—}trace< E(nn"1zo.0") k)

1 Tz gl v-1
> IogoE — 2#‘gtrace<E (EOEO|ZO, 0 ) Vz;o) , (B.1)

whereq(s) andQLA(Gm .ol |Zo) are defined in Appendix A; the approximatiol:?s(r]r]T |Zo, 6['])
andE (zoaazo, Gm>, to the respective expectations, are given by (29) (whitlbvis from Ap-
pendix A).

Now, to obtain the score functioR(0), we differentiate (B.1) with respect f) resulting in:
:{_ZZ(S‘){hll(C(S')+X(S)TB+S(S)Tﬁm+ém(S‘))
1~ T 0, $1/a AT 1 all|7 \-1q(a _
+5h (c<s>+><< )"B+5(s) A" +8(s)) x a(s) " Qua@",8"1Z0) a(s) P X(s)

‘Zl{h/ (s)"B+S(s) A" +El(s))
2 (Cis) 4 X(8) B+ S() A+ E1(s)) < a(s) Qa8 0" Z0) s >} (s >}/r

(B.2)

The Newton-Raphson update (32) also requires the partigbdiee of R(0) with respect t@,
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which is given by:

{le ){i(C(s)+X(s) B+S(s) A +&)(s))

3 (Cls) +X(3)TB+S(3) AN +E(s)) « q(sWQLA(a“],e[”|zo>-1q<s>}x<s>x<s>T
—zi{h" (s)"B+5(s) A" +&"(s))

o (c<s>+><< ) B+(s) " +E(s >)xq(s)TQLAw“te“]\zo>-1q<s>}x<s>><<s>T}/rz.

(B.3)

Then (B.3) is evaluated &= 8!, and its matrix inverse is taken; it is then substituted BR).

C MCMC Algorithm

Here we describe the MCMC procedure that is used to obtaiplesnfrom the predictive distri-
bution, [n,&c|Z0,0]. We implement the MCMC procedure with a Gibbs sampler, ipomating
Metropolis-Hastings steps where necessary. The full ¢mmdil distributions, as well as details of
the Metropolis Hastings steps, are described in the foligyparagraph.

The joint distribution]Zo, N, &5 |0], can be written as:

[Z0,1n,%06] = [Zoln, &0, B] x N[K] x [&o|0F]. (C.1)

Let “[A|B,-]” denote the full conditional distribution of the unknowk given B and all other
unknowns (and the data). The Gibbs sampler uses the folipsieps to generate samples from

the predictive distributionn, &5|Zo, 9].
1. Att =0, we select starting valueg® andg_d
2. t=t+1; simulate successively from the full conditionatg!*J(€Y -] and[EL"™|nt+1 ).
3. Repeat step 2 to generate as many samples as needed.

4. Discard an initial number of samples as “burn-in.”
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The full conditionals are not available in closed form, souse a Metropolis-Hastings step within
the Gibbs sampler. A generic version of the algorithm thathaee used to draw samples from
the full conditionals[nt|€Y . and[E}™|n+Y, ] (at the(t + 1)-th stage), is discussed below.
Supposea is the random variable (or a block of random variables) theave updating, anay is

the most recently sampled value. We follow the steps belovbtain a new sample &t
1. Draw a trial value; from a proposal density, Géap, Z;).
2. GeneratéJ; uniformly on(0,1).

3. Compute the joint density afand all other unknowns$(ap, rest andl (a;, rest where “rest”

denotes all the other unknowns fixed at their most recenthpsed value.

4. IfUg < mln{:gg(l):izg , 1}, accept the trial valua; and keep it for the most current iteration;

otherwise, the valuey is retained.

When sampling fronjnt|€Y .}, we updatey as a block. To sample frofgs ™ nt+1 ], we

updateg 5 elementwise.

D BHM: Prior Specifications and the MCMC Algorithm

In this part of the Appendix, we present the prior distribng (or the parameter model) of BHM
and fully Bayesian inference using the MCMC algorithm.
Following Kang and Cressie (2011), the prior distributidrBc= (, K,og) is assumed to be

made up of mutually independent components:

[B.K,og] = [B] - [K] - [oF]. (D.1)

Next we assume that thedimensional fixed-effects parametefls,have a Gaussian prior distri-

bution,

B~ Gal’(pﬁ?zﬁ)v (D.2)
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wherepyg and2pg = diag(oé;l, . ,oé;p) are known hyperparameters. For fine-scale-variance pa-
rametero%, we assume that; ~Uniform(0, K¢ ), wherek; is a known hyperparameter. Finally, the

prior distribution orK is based on the spectral decomposition,
K =PAP', (D.3)

whereA = diag(A1,...,Ar), A1 > A2 > ... > A, > 0, andP is an orthogonal matrix that can be

parametrized in terms of thr¢r — 1) /2 Givens angles,
Oc={6j:i=1....,r—Lj=i+1,...r}.

In terms of these Givens angles, we can wiHtas (e.g., Kang and Cressie, 2011):
P = (G12G13...G1r)(Gzs...Gzr) ...Gr 1y,

whereGij is the Givens rotation matrix corresponding to the Givergleij, which is obtained
by modifying ther x r identity matrix as follows: Thé!" and thej® diagonal elements of 1 are
both replaced by co8fj), and the(i, i) and(j,i)" elements of 0 are replaced bysin(®;j) and
sin(jj), respectively.

We assign priors to the eigenvalu@s : i =1,...,r} and the Givens anglég, using models

discussed in Kang and Cressie (2011). That is,
[)\1, . ,)\r] = [)\171, P ,)\17q1] e [)\KJ_, P ,)\K7qK |)\K_17QK—1]7 (D4)

whereA 1,. .., Ak g are the eigenvalues corresponding todhbasis functions from thke-th reso-
lution,k=1,...,K, andzE:1 Ok = r. Finally, Ag 1,...,Akq, are assumed to be distributed as order
statistics corresponding to i.i.d. truncated Lognormatan variables with known hyperparame-

ters, meany and variancesﬁ, fork=1,... K, where the Lognormal distribution is restricted to

(O, )\k717qk71) .
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We define the prior 08j; through a prior on the logit transformation @&f, namely

h(6ij) = log <%ﬁg:j) : (D.5)
Then we assign independent priorsigf;j) as
h(6ij) ~ Gau(c, T§), (D.6)
if i, ] both belong to the same resolutibnwherek = 1,... K; otherwise,
h(ij) ~ Gau0, ), (D.7)

if i, j belong to different resolutions. The hyperparamefeg$, {17}, andt3 are assumed known.
We also specify the hyperparameters following the recontdatons in Kang and Cressie

(2011). In the simulation study described in this artiches true parameter valuey, were used

to specify the hyperparameters. We selegige- B, and the elements of the covariance matrix

23 were specified as three times the square of the standand-@ftained by fitting a classical

fixed-effects Poisson GLM (e.g., McCullagh and Nelder, 198Bapter 6) to the data, with the

same covariates that were used for the simulation. Next weest = 100;.7.

Finally, to specify the hyperparameters in the priokonwe first obtained:
Kt =PrArPT,
whereAtr = (A11,...,Ar:7). We also computed the Givens anglesKar, namely,

{6jr:i=1,...r=1;j=i+1,...r}.
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Fork=1, ... K, we specified:

Ok
M=) log(Aki:T)/dk
2,100

Ok
ok = 3 (1090t - Wo?/ (ak—1). (D-8)
=
Similarly, we specified cc}, {12}, andt3 as:

= > hBiT)/IN,

(i7j)ENk
=3 (hijT) —c)?/(INd = 1),
(i7j)ENk
5= h(6ij;1)%/INol, (D.9)
(i,))ENo

whereh(-) is given by (D.5)Nk = {(i, j) : thei-th and thej-th basis functions are both of thketh
resolutior}, k= 1,...,K, andNp = {(i, j) : thei-th and thej-th basis functions are of different
resolutions .

Finally, we implemented the MCMC procedure with a Gibbs sl@mije generate samples from
the posterior distributionn,&q,&y,0|Zo]. The full conditionals obg and§, can be derived in

closed form. The full conditional & is:

[&u1Z0,N,&0,8] = [&y]6].

The full conditional ob% is a truncated Inverse-Gamma distribution, namely(Nc-1) /2, ETZ/Z) :

1 (0 < 0z <K) (see Kang and Cressie, 2011), where recall{hat(ig,EJ)T. The other full con-
ditionals are not available in closed form, so we incorpedad Metropolis-Hastings step, with
random walk proposals, to simulate from them. Details ofNfetropolis-Hastings algorithm is
given in Appendix B. We updatefl andn in blocks, and§ elementwise. When sampling the
eigenvalues, we updated in blocks according to resolutfdhe total ordering of the eigenvalues

was broken, we rejected the sample and a new sample was dnéhth@ ordering of the eigenval-
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ues was preserved (Kang and Cressie, 2011). When sampéir@ivkens angles, we updated the
Givens angles corresponding to the same resolu{iﬁm,: (i,j) € Nk}, as ablock, fok=1,... K,

and the Givens angle{seij (i, ]) € No} were updated as a block.
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Figure Captions

Figure 1: The left panel shows the identity matrix, and thghtipanel shows the ma-
trix, ave(KEM)Kgl, where avéKgym) is the elementwise average of the EM estimates

{K[E”M =1, 1600}. The common color bar is shown on the right.

Figure 2: Plot showing a histogram %frace(R@MK{l) =1..., 1600}. The chi-squared den-
sity with degrees of freedom equalite= 29 is overlayed on the histogram.

Figure 3: The left panel corresponds to kernel-densitysgbbwing the distribution of the SEHM
mean squared prediction error divided by the IEHM mean sglprediction error, for locations
with data (solid line) and for locations without data (dakkiee). The right panel corresponds to
kernel-density plots comparing the SEHM mean squared giedierrors obtained for locations
with data (solid line) and for locations without data (dathee)

Figure 4: Plots showing the Gelman-Rubin-Brooks stassfior EHM (left panel) and for BHM
(right panel), as a function of the number of MCMC samplese $blid line corresponds to the
MPSRF fom; the dashed line corresponds to the maximum of the elemsa®$RFs fon. Here,
the number of observationsnis= 5, 000.

Figure 5: Plots show the observed data (top-left panel)irtreesimulated proces¥|-) (top-right
panel), the mean of the empirical predictive dis‘EributhM(-) =E(Y(-)|Zo,0em) (bottom-left
panel), and the mean of the posterior distributdypm(-) = E(Y(+)|Zo) (bottom-right panel).

Figure 6: The left panel corresponds to the kernel-dendidy ghowing the distribution of the
difference,\?SEHM(-) —\?SBHM(-). The right panel corresponds to kernel-density plots shguhe
distribution of the ratio(var(Y(s)|Zo))Y?/(var(Y(s)|Zo,0em)Y?, separately for locations with
data and for locations without data.

53



Figure 7: Maps to the left show the log(AOD) (top-left panéfle mean (middle-left panel) and
standard deviation (bottom-left panel) of the predictiigribution ofY (-), namely{Y(-)|Zo, Bgm].
Maps to the right show the predictive mean of the differemhponents of variability inY(-),
namely, the components due to trexd) "Bey (top-right panel), the random-effects component,
E[S(-) 'n|Zo,8em] (middle-right panel), and the fine-scale-variation conggurE [ (-)|Zo, Oewm]
(bottom-right panel). The middle-left panel which is a mdphe mean of the predictive distribu-
tion of Y(-), namelyE[Y(-)|Zo, Bem], is the sum of the three panels shown on the right

Figure 8: Boxplots showing the variability of the predigtistandard deviation of(s) for values
ofm(s)=1,2,...,21.

Figure 9: AOD data i (top-left panel) and histogram showing their distributftop-right panel).
Maps show the predictive mean (middle-left panel), the lpiiee predictive standard deviation
(middle-right panel), the pixelwise predictive 2.5 perttenbottom-left panel), and the pixelwise
predictive 97.5 percentile (bottom-right panel) obtaifredn the empirical predictive-distribution,
[Mziv(-)|Z0o,0em]. The plots of the predictive mean and the predictive peileanhave the same
color scale, where any value greater than 1 has been asslgnbiijhest color-value.

Tables

Table 1: True parameter values and the sample mean of the Edvhpter estimates based on 1600
simulated datasets. Each dataset is of size20,000. The empirical root mean squared errors
(RMSEsSs) of the parameter estimates are also reported.

Parameter True value| Sample mean based on th&MSE
1600 simulated datasets

B1 2.0 1.922 0.0954
B2 0.0125 0.01262 0.0002
0% 0.05 0.0507 0.002
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Table 2: Gelman-Rubin-Brooks statistics for varying saengkes f). The number of MCMC
samples generated are L=15,000 for EHM, and L=40,000 for BNMASRF is the multivariate
potential scale reduction factor, and max(PSRF) is the mam of the elementwise potential
scale reduction factors (PSRFs).

EHM (L=15,000) BHM (L=40,000)

n €o n 3
Sample size (n) MPSRF | max(PSRF) max(PSRF) MPSRF| max(PSRF) max(PSRF)
5,000 1.08 1.028 1.0025 1.07 1.021 1.0011
10,000 1.07 1.028 1.0028 1.09 1.016 1.0011
15,000 1.09 1.027 1.0027 1.06 1.018 1.0014
20,000 1.07 1.027 1.0028 1.09 1.014 1.0012
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Table 3: Computational time for varying sample siz®s For EHM, the EM algorithm was used to
estimate the parameters, and then an MCMC algorithm wastaggheraté.gyv = 15,000 sam-
ples from the empirical predictive distributiom,&5|Zo,0em]. For BHM, an MCMC algorithm
was used to generatgyv = 40,000 samples from the posterior distributidn, &, 0|Zo].

Computational Time (in hours)

EHM (L=15,000) BHM
(L=40,000)
Sample size (n) EM Estima-| MCMC Im- | Total | MCMC Im- | Ratio of computational
tion plementation plementation| time (BHM/EHM)
5,000 0.02 0.16 0.18 | 3.95 21.94
20,000 0.02 0.62 0.64 | 5.79 9.04
35,000 0.02 1.01 1.03 | 7.61 7.38
50,000 0.04 1.45 1.49 | 8.70 5.83
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