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Hierarchical Statistical Modeling of Big Spatial

Datasets Using the Exponential Family of Distributions

Aritra Sengupta∗ Noel Cressie∗†

Abstract

Big spatial datasets are very common in scientific problems,such as those involving re-

mote sensing of the earth by satellites, climate-model output, small-area samples from national

surveys, and so forth. In this article, our interest lies primarily in very large, non-Gaussian

datasets. We consider a hierarchical statistical model consisting of a conditional exponential-

family model for the data and an underlying (hidden) geostatistical process for some transfor-

mation of the (conditional) mean of the data model. Within this hierarchical model, dimen-

sion reduction is achieved by modeling the geostatistical process as a linear combination of

a fixed number of spatial basis functions, which results in substantial computational speed-

ups. These models do not rely on specifying a spatial-weights matrix, and no assumptions

of homogeneity, stationarity, or isotropy are made. Our approach to inference using these

models is empirical-Bayesian in nature. We develop maximumlikelihood (ML) estimates of

the unknown parameters using Laplace approximations in an expectation-maximization (EM)

algorithm. We illustrate the performance of the resulting empirical hierarchical model using

a simulation study. We also apply our methodology to analyzea remote sensing dataset of

aerosol optical depth.

Keywords: Aerosol optical depth; EM algorithm; empirical Bayes; geostatistical process; Laplace

approximation; maximum likelihood estimation; MCMC; SRE model
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1 Introduction

Big spatial datasets are very common in scientific problems,such as those involving remote sensing

of the earth by satellites, climate-model output, small-area samples from national surveys, and so

forth. In this article, our interest lies primarily in datasets that are very large and non-Gaussian

in form. We consider a hierarchical statistical model consisting of two levels. At the first level,

we have an exponential-family model for the data given a spatial process and parameters (which

we call the data model). At the second level, we assume a geostatistical process given parameters

(which we call the process model), for some transformation of the mean of the data model.

The exponential family of distributions include commonly used continuous and discrete distri-

butions; for a detailed review, see McCullagh and Nelder (1989, Section 2.2.2). All members of

the exponential family have a density or probability mass function that can be written as:

p(z|γ) = exp
{

(zγ−b(γ))/τ2−c(z,τ)
}

, (1)

whereγ is called the canonical parameter or the natural parameter,b(γ) is a function that depends

only on γ, c(z,τ) is a function independent ofγ, andτ is a scaling constant. The representation

above is called the canonical form, or the natural form, of the exponential family.

Here, and in what follows, we use the notation[A|B] to denote the conditional probability dis-

tribution ofA givenB. Suppose we have data,Z1, . . . ,Zn, coming from a member of the exponential

family such that{[Zi |γ1, . . . ,γn] : i = 1, . . . ,n} are mutually independent, and[Zi|γ1, . . . ,γn]≡ [Zi |γi],

where[Zi |γi] has density given by (1). Then one may proceed by modeling a transformation of the

expectation of[Zi|γi ], namelyE(Zi |γi) = b′(γi), as

g(E(Zi|γi)) = X⊤
i βββ, (2)

whereg(·) is the link function,X i denotes ap-dimensional vector of known covariates, andβββ is a

p-dimensional vector of regression coefficients. There are alot of possible choices forg(·). The

maximum likelihood (ML) estimator ofβββ can be obtained via iteratively reweighted least squares.
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For a detailed review of the literature on GLMs, see McCullagh and Nelder (1989) or McCulloch

et al. (2001).

When Z1, . . . ,Zn are associated with locations in space, the assumption of independence is

doubtful. A way to extend the framework above, that takes into account spatial variability, is to

replaceγ in (1) with a spatial process,{Y(s) : s∈ D}, whereD is the spatial domain of interest.

The covariance betweenY(s) andY(u), for s,u ∈ D, is defined as:

CY(s,u)≡ cov(Y(s),Y(u)).

Now consider spatial dataZ(s1), . . . ,Z(sn) from a GLM such that{[Z(si)|Y(·)] : i = 1, . . . ,n}

are mutually independent, and

g(E(Z(si)|Y(·))) =Y(si); i = 1, . . . ,n, (3)

whereg(·) is the link function. The hierarchical modeling framework defined above yields a spatial

version of the GLM framework; it was proposed by Diggle et al.(1998), who assumed a Gaussian

model forY(·) and a prior distribution on its parameters. See also Omre andTjelmeland (1997)

for an exposition of the same framework for solving complex problems in petroleum geostatistics.

Lindley and Smith (1972) introduced a Bayesian-linear-model framework, where conditional

and prior distributions come from a multivariate Gaussian distribution. In the spatial context,

Omre (1987) defined Bayesian kriging for the linear model; for further extensions, see Cressie

(1993, Sec. 3.4.4). Besag et al. (1991) showed how a spatial model for counts in small areas

could be decomposed hierarchically, where the hidden processY(·) was used to model the spatial

dependence. They assumed that the counts were (conditionally) Poisson distributed, and that the

log means were a Gaussian spatial process, specifically a Gaussian Markov Random Field (MRF)

known as the conditional autoregressive (CAR) model. However, a simultaneous autoregressive

(SAR) model, or a geostatistical model could also be used. Indeed Diggle et al. (1998) employed

spatial generalized linear mixed models (GLMMs) for spatially dependent non-Gaussian variables

observed potentially anywhere inD, and they assumed a hidden geostatistical processesY(·) with
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both fixed effects and random effects. Their hierarchical model was fully Bayesian and required

a Markov chain Monte Carlo (MCMC) algorithm to obtain the posterior distribution. In a spatio-

temporal context, Wikle et al. (1998) developed a fully Bayesian hierarchical-model formulation

for modeling a dataset of monthly maximum temperatures.

In contrast, Heagerty and Lele (1998) developed a method forbinary data where they used

a composite-likelihood (e.g., Lindsay, 1988) approach to estimate the spatial hierarchical model

parameters. Zhang (2002) gave a Monte Carlo version of the EMGradient Algorithm to analyze

non-Gaussian data, and Monestiez et al. (2006) developed a method called Poisson kriging for

mapping the relative abundance of species.

Despite the popularity of the spatial models discussed above, these models might suffer from

two major drawbacks: (1) there might be spatial confounding, and (2) there is often a computa-

tional bottleneck when the size of the dataset is large. Spatial confounding between the fixed and

the random effects was pointed out in articles by Reich et al.(2006), Hodges and Reich (2010),

and Paciorek (2010). Reich et al. (2006) and Hodges and Reich(2010) proposed a modeling ap-

proach that gets around the problem of spatial confounding by introducing random effects that are

orthogonal to the column space of the matrix of covariates. We shall discuss this in more detail in

Section 2.2.

The computational bottleneck arises due to the general computational cost ofO(n3) to obtain

the inverse of ann×n covariance matrix. It is often referred to as a “bign” problem. Many geo-

physical and environmental datasets are high-dimensional. When the data are Gaussian, reduced-

rank-modeling approaches for the hidden Gaussian processY(·) have been developed to deal with

this computational challenge (e.g., Wikle et al., 2001; Cressie and Johannesson, 2006, 2008; Baner-

jee et al., 2008; Stein, 2008; Lopes et al., 2008). When the data are non-Gaussian, Lopes et al.

(2011) take the GLMM approach in Diggle et al. (1998), but with reduced-rank factor analysis

models forY(·) in place of the intrinsically stationary models used by Diggle et al. (1998). A num-

ber of spatial and spatio-temporal applications for very-large-to-massive datasets center around

this reduced-rank representation of the hidden continuousGaussian process (e.g., see the review in

Wikle, 2010).
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The reduced-rank methods discussed above are based on geostatistical models, where a contin-

uously indexed Gaussian process{Y(s) : s∈ D} is used to specify the hidden process. In the case

whereD≡{s1, . . . ,sN} is a spatial lattice of sites, a geostatistical model forY ≡ (Y(s1), . . . ,Y(sN))
⊤

can still be used; such a model captures the spatial dependence through the covariance matrix,

ΣΣΣY ≡ cov(Y).

A Gaussian MRF that is used to capture the spatial dependencein Y, does so through the

(typically sparse) precision matrixΣΣΣ−1
Y . A detailed discussion of this can be found in Rue and

Held (2005, Chapter 5) and Cressie and Wikle (2011, Pages 185-186). Rue and Held (2005,

Chapter 5) discuss a way to approximate a geostatistical model with a sparse CAR model, and this

relationship has been used by Lindgren et al. (2011) and Simpson et al. (2012) to build hierarchical

spatial models with Gaussian-MRF process models that allowfast computations. However, by

necessity, they use only a small number of parameters, whichcould be problematic when modeling

spatial dependence over large, continental-scale, heterogeneous regions. In a recent article, Hughes

and Haran (2013) consider a Bayesian hierarchical model with a hidden Gaussian MRF and use

a dimension-reduction approach to deal with spatial confounding and computational complexity

that arise when analyzing a large spatial dataset. They parameterize the precision matrix using an

underlying graph,G= (V,E), where edges represent spatial dependence, and they assumeonly a

small number of parameters.

In this article, we assume that there are small areas{Ai : i = 1, . . . ,N} at locationsD≡{s1, . . . ,sN},

respectively. The order of the small areas is immaterial, sowe choose to order them such that

A1, . . . ,An have observationsZ(s1), . . . ,Z(sn), respectively, associated with them, wheren ≤ N.

Define the observation vector (i.e., data) to be

ZO = (Z(s1), . . . ,Z(sn))
⊤; 1≤ n≤ N.

We propose a flexible class of spatial models for analyzing these (potentially) non-Gaussian lattice

data. The models are hierarchical, where the data model comes from the exponential family of

distributions, and the process model is geostatistical andnonstationary (Section 2). These models
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are computationally efficient to implement, and we take an empirical hierarchical modeling (EHM)

approach where any unknown parameters are estimated by ML estimation. Hence, the model is

not fully Bayesian, but Bayes’ Theorem is used to obtain the all-important predictive distribution;

for the special case where data are spatial counts, we have demonstrated its feasibility (Sengupta

and Cressie, 2013). For a more complete discussion of the EHMapproach, see Cressie and Wikle

(2011, Chapter 2).

Our spatial statistical analysis of the lattice dataZO is a combination of the GLMM framework

of Diggle et al. (1998), the use of the Spatial Random Effects(SRE) model of Cressie and Johan-

nesson (2006, 2008), developed for Gaussian data with a continuous spatial index, and a fast EM

algorithm for estimating any unknown parameters. The SRE model is a geostatistical model that

achieves dimension reduction by modeling the underlying spatial process as a linear combination

of specified spatial basis functions on a spatially continuous domain; in what is to follow, we use it

on a discrete spatial lattice. The dimension reduction is important for spatial best linear unbiased

prediction (i.e., kriging), since it involves inverting the n×n covariance matrix ofZO. Using the

SRE model, the matrix inversion is a relatively simple task,the model is well suited to change-

of-support, and it avoids any stationarity assumptions forthe covariance matrix. Unlike the model

used in Lopes et al. (2011), the SRE model does not assume a diagonal covariance matrix for the

spatial random effects. Instead, it captures spatial-statistical dependence using both the modeler-

specified spatial basis functionsand correlated random effects. Assuming the data are Gaussian,

Katzfuss and Cressie (2009) gave an EM algorithm to obtain MLestimates for SRE-model param-

eters; and there is also a Bayesian-hierarchical-model (BHM) version that puts prior distributions

on the parameters rather than estimating them (Kang and Cressie, 2011).

When the data are non-Gaussian, estimation of the parameters in a hierarchical statistical model

is not as straightforward. In the EHM proposed in Section 2, we use the EM algorithm (Dempster

et al., 1977) to obtain ML estimates of the parameters in the model. Since the expectations in

the E-step of the algorithm are not available in closed form,we use a Laplace approximation to

approximate the intractable integrals. Having obtained the estimates for the unknown parameters,

we substitute them into the predictive distribution and usean MCMC algorithm to generate sam-
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ples from it. Thus, our use of EHM for non-Gaussian data, withparameter estimates substituted

into optimal predictors, is the direct analogue of kriging (used ubiquitously in geostatistical and

environmental applications). We handle big spatial datasets by embedding the SRE model into our

hierarchical statistical model.

The plan of this article is as follows. In Section 2, we describe a hierarchical model for non-

Gaussian spatial data, whose data model comes from the exponential family and whose process

model is based on a hidden SRE model. We also address the issueof spatial confounding in

Section 2. In Section 3, we outline statistical inference based on generating MCMC samples from

the predictive distribution. Then, in Section 4, we describe the EM algorithm for obtaining ML

estimates of the model parameters described in Section 2. InSection 5, we carry out a simulation

experiment to assess the performance of our EHM approach. InSection 6, we use our EHM

approach to analyze a large, spatial, remote sensing dataset of aerosol optical depth (AOD) from

the MISR instrument on the Terra satellite. Discussion and conclusions follow in Section 7, and

technical derivations are given in the Appendix.

2 Hierarchical Statistical Model

In this section, we give details of the hierarchical statistical model that we use to model non-

Gaussian data. Specifically, thedata modelcomes from the exponential family of distributions,

and theprocess modelis a (transformed) Gaussian spatial process. We consider lattice data ob-

tained from among small areas{Ai : i = 1, . . . ,N}, located at{si : i = 1, . . . ,N}, respectively, al-

though some locations have missing data. Thus, the spatial domain is the discrete spatial lat-

tice D ≡ {s1, . . . ,sN}. Without loss of generality, the locations where there are observations

are denoted as{s1, . . . ,sn} ⊂ D, where 1≤ n ≤ N. Hence, the set of unobserved locations are

{si : i = n+1, . . . ,N}, if n< N.

2.1 Components of the Hierarchical Statistical Model

1. Conditional distribution of the data given the process (data model)
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RecallZO = (Z(s1), . . . ,Z(sn))
⊤ denotes the vector of observations, andY(s) denotes the

hidden process at locations∈ D. Further, define the random processY(·)≡ {Y(s) : s∈ D}.

Then assume that[Z(si)|Y(·)] = [Z(si)|Y(si)], and furthermore that it is a member of the ex-

ponential family (e.g., McCullagh and Nelder, 1989, Chapter 2). Conditional independence

of the data given the process yields,

[ZO|Y(·)] =
n

∏
i=1

[Z(si)|Y(si)],

where

Z(si)|Y(si)∼ ind. exponential family
(

µZ|Y(si),V(µZ|Y(si))
)

, i = 1, . . .n; (4)

the conditional mean,µZ|Y(si) ≡ E(Z(si)|Y(si)), depends onY(si); and the variance of the

conditional distribution,[Z(si)|Y(si)], is expressed as a function of the conditional mean

throughV(µZ|Y(si)). The functionV(·) denotes the mean-variance relationship for the expo-

nential family. The distribution in (4) can be written as:

fZ|Y(z(si)|Y(si)) = exp
{

(z(si)γ(si)−b(γ(si)))/τ2−c(z(si),τ)
}

, (5)

where for convenience we have written the distribution in itscanonical form. The quantities

γ(si) andb(γ(si)) depend onY(si) in a way determined by which member of the exponential

family in (4) is chosen.

2. Link function

We proceed by modeling a transformation,g(·), of the meanµZ|Y(·) as a sum of the two

components:

g(µZ|Y(s)) = t(s)+ν(s); s∈ D, (6)

whereg(µZ|Y(s)) is thelink functionevaluated at the (conditional) mean,t(s) is deterministic

large-scale spatial variation (or the trend term), andν(s) denotes random, mean-zero, small-
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scale spatial variation, which is assumed to be a Gaussian process. Ifg(µZ|Y(·)) ≡ γ(·) in

(5), theng(·) is the canonical link function, which plays an important role in the GLM

(McCullagh and Nelder, 1989, Section 2.2.3). Examples of canonical links include the logit

link for the Binomial distribution, the log link for the Poisson distribution, and the inverse

link for the Gamma distribution. However, the canonical link is not the only choice. Some

popular non-canonical links include the probit link for theBinomial distribution and the log

link for the Gamma distribution (Section 6.2).

3. Process model

The processY(·) is defined as:

Y(·)≡ g(µZ|Y(·)). (7)

Thus,Y(·) is related to the mean of the observed process through the link function. If we

work with the canonical link, we have the special caseY(·)≡ γ(·).

From (6),

Y(·) = t(·)+ν(·), (8)

where recall thatt(·) is thedeterministicspatial trend andν(·) is arandommean-zero spatial

Gaussian process.

4. Spatial trend

The trend, or large-scale spatial variation, is modeled as alinear combination of known

covariates,X(s)≡ (X1(s), . . . ,Xp(s))
⊤:

t(s) =C(s)+X(s)⊤βββ, (9)

whereC(s) is a known offset term, andβββ is a p-dimensional vector of unknown regression

coefficients that need to be estimated. Recall thatY = (Y(s1), . . . ,Y(sN))
⊤, and hence (8)

becomes,

Y = C+Xβββ+ννν, (10)
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whereX ≡
(

X⊤
O,X

⊤
U

)⊤
, XO≡ (X(s1), . . . ,X(sn))

⊤, XU ≡ (X(sn+1), . . .X(sN))
⊤, ννν≡

(

ννν⊤O,ννν
⊤
U

)⊤
,

νννO ≡ (ν(s1), . . . ,ν(sn))
⊤, νννU ≡ (ν(sn+1), . . . ,ν(sN))

⊤, andC ≡ (C(s1), . . . ,C(sN))
⊤.

5. Spatial Random Effects (SRE) model forν(·)

We use a geostatistical model forν(·), in contrast to the MRF used by Besag et al. (1991)

and Lindgren et al. (2011). In what follows, Gau(µµµ,ΣΣΣ) is an abbreviation for a multivariate

Gaussian distribution with meanµµµ and covariance matrixΣΣΣ. The possibility of big data,ZO,

motivates us to propose the Spatial Random Effects (SRE) model:

ν(·) = S(·)⊤ηηη+ξ(·), (11)

whereS(·) is anr-dimensional vector of known spatial basis functions;ηηη is a vector of ran-

dom effects that is assumed to have a Gau(0,K) distribution; andξ(·) is a fine-scale-variation

component that is assumed to be spatially independent with aGau(0,vξ(·)σ2
ξ) distribution

and vξ(·) known. Other possible approaches to spatial prediction where datasets are very-

large-to-massive are discussed in Section 1.

Recall that|D| = N ≥ n, wheren may be very large; however, the random-effects vector

ηηη is only of dimensionr (r ≪ n). We do not assume any particular structure for ther × r

covariance matrixK , nor do we necessarily try to parameterize it using just a fewparameters.

The spatial dependence inY is captured using bothK and the spatial basis functionsS(·).

Dimension reduction is achieved by modeling the underlyingN-dimensional spatial process

as a linear combination ofr fixed spatial basis functions over the entire spatial domainof

interest. In Section 5, we show that this leads to substantial computational gain, which

is especially significant when dealing with very large datasets. As well as computational

speed-ups, the hierarchical model given by (5), (10), and (11) avoids making second-order

stationarity assumptions, and it is well suited to change-of-support.
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2.2 Spatial Confounding of Fixed and Random Effects

Our interest in this article lies primarily in inference on the hidden spatial processY(·) or, equiva-

lently, in inference onµZ|Y(·) = g−1(Y(·)). That is, we wish to predictY(·) over the entire spatial

domainD, based on the dataZO = (Z(s1), . . . ,Z(sn))
⊤. We first discuss confounding for the case

where there is no dimension reduction, namely for a full-rank spatial generalized linear mixed

model (SGLMM). The process model for a full-rank SGLMM is given by:

g(µZ|Y(·)) = X(·)⊤βββ+ν(·), (12)

where recall thatX(·) is a p-dimensional vector of known covariates,βββ is a p-dimensional vec-

tor of fixed but unknown regression coefficients, andν(·) is the random effect. DefinegO ≡

(g(µZ|Y(s1)), . . . ,g(µZ|Y(sn)))
⊤, and rewrite (12) in vector notation as,

gO = XOβββ+νννO = XOβββ+ InνννO, (13)

whereXO ≡ (X(s1), . . . ,X(sn))
⊤, andνννO ≡ (ν(s1), . . . ,ν(sn))

⊤. The last equality emphasizes the

matrix coefficients of the fixed and random effects. Reich et al. (2006) and Hodges and Reich

(2010) used a reparameterization of (13) to show that such a SGLMM exhibits spatial confounding

for fully Bayesian inference. Specifically, posterior inference forβββ tends to be biased, and its

posterior variance is inflated. This happens because a subspace of the column space ofIn coincides

with the column space ofXO (see Paciorek, 2010). They also proposed a way to mitigate this spatial

confounding by setting some random effects equal to zero, but Hughes and Haran (2013) pointed

out that for a Gaussian MRF, this can result in negative spatial dependence. Hughes and Haran

(2013) proposed a model that alleviates spatial confounding, reduces the dimension of the random

effects, and only allows for positive spatial dependence among the random effects.

Our approach to modeling is also based on reducing the dimension of the random effects. We

use spatial basis functions to achieve dimension reductionbut allow general dependence between
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the random effects. Recall the SRE model (11), which gives

νννO = SOηηη+ξξξO, (14)

whereSO ≡ (S(s1), . . . ,S(sn))
⊤ is typically sparse, andξξξO ≡ (ξ(s1), . . . ,ξ(sn))

⊤. The basis func-

tions are introduced to capture the small-scale spatial variation in the model, and their optimal

choice is an area of ongoing research (e.g., Bradley et al., 2011). As long asXO is not perfectly

collinear withSO, the large-scale variability that is captured by the fixed-effects component will

not be fully explained by the random effects. In this article, we take an empirical-Bayesian ap-

proach, where we use the EM algorithm to estimate the unknownparameters (Section 4), and then

we substitute in the estimates to obtain MCMC samples from the empirical predictive distribution

(Section 3). That is, the EM estimate ofβββ (andK andσ2
ξ) is held fixed in the MCMC, which is

consistent with the treatment of large-scale variation in kriging when, in practice, the spatial trend

(and the variogram) is unknown and has to be estimated (e.g.,Cressie, 1993, Section 3.5). Whenβββ

is held fixed in the MCMC, (empirical) Bayesian inference on the random-effects term is no longer

confounded. Consequently, an EHM approach mitigates spatial confounding in the SGLMM (12)

used in the process model.

3 Empirical-Bayesian Inference

Our main focus in this paper is on prediction ofY(·) or of µZ|Y(·). That is, after having observedZO

at locations{s1, . . . ,sn}, we wish to make inference onY = (Y(s1), . . . ,Y(sN))
⊤ or some function

of Y. The parametersθθθ ≡
{

βββ,K ,σ2
ξ

}

are also of interest, but instead of putting a prior distribution

on them, weestimatethem using an EM algorithm (Section 4). Our hierarchical model becomes

an empirical hierarchical model when we substitute the estimated parameterŝθθθ in place ofθθθ, into

the predictive distribution,[Y|ZO,θθθ]. With a slight abuse of notation, we write this as[Y|ZO, θ̂θθ]

and refer to it as theempiricalpredictive distribution.
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Recall thatZO = (Z(s1), . . . ,Z(sn))
⊤, and writeY ≡

(

Y⊤
O,Y

⊤
U

)⊤
, where

YO ≡ (Y(s1), . . . ,Y(sn))
⊤ , andYU ≡ (Y(sn+1), . . . ,Y(sN))

⊤ .

Similarly, X ≡
(

X⊤
O,X

⊤
U

)⊤
, S≡

(

S⊤
O,S

⊤
U

)⊤
, andξξξ ≡

(

ξξξ⊤O,ξξξ
⊤
U

)⊤
. Now,

[ξξξU |ZO,ηηη,ξξξO,θθθ] =
[ξξξO,ξξξU ,ZO,ηηη, |θθθ]
[ξξξO,ZO,ηηη, |θθθ]

=
[ZO|ηηη,ξξξO,θθθ][ηηη|K ][ξξξO|σ2

ξ][ξξξU |σ2
ξ]∫

[ZO|ηηη,ξξξO][ηηη|K ][ξξξO|σ2
ξ][ξξξU |σ2

ξ]dξξξU

= [ξξξU |σ
2
ξ]. (15)

Thus, givenθθθ, ξξξU is conditionally independent of(ZO,ηηη,ξξξO), and hence for an unobserved site in

{si : i = n+1, . . . ,N}, we have:

E
(

Y(si)|ZO,βββ,K ,σ2
ξ

)

=C(si)+X(si)
⊤βββ+S(si)

⊤E
(

ηηη|ZO,βββ,K ,σ2
ξ

)

var
(

Y(si)|ZO,βββ,K ,σ2
ξ

)

= S(si)
⊤var

(

ηηη|ZO,βββ,K ,σ2
ξ

)

S(si)+σ2
ξvξ(si). (16)

For a sitesi ∈ {s1, . . . ,sn}, where an observation is available, we have

E
(

Y(si)|ZO,βββ,K ,σ2
ξ

)

=C(si)+X(si)
⊤βββ+S(si)

⊤E
(

ηηη|ZO,βββ,K ,σ2
ξ

)

+E
(

ξ(si)|ZO,βββ,K ,σ2
ξ

)

var
(

Y(si)|ZO,βββ,K ,σ2
ξ

)

=S(si)
⊤var

(

ηηη|ZO,βββ,K ,σ2
ξ

)

S(si)+var
(

ξ(si)|ZO,βββ,K ,σ2
ξ

)

+2S(si)
⊤cov

(

ηηη,ξ(si)|ZO,βββ,K ,σ2
ξ

)

. (17)

The goal here is to predictY (or some function ofY), given the data. However, the predictive

distribution,[Y|ZO,θθθ], is not available in closed form, nor isθθθ known. We shall use a combination

of EM estimation ofθθθ to yield θ̂θθEM, and we shall use an MCMC algorithm (see, e.g., Robert and

Casella, 2004) to yield samples from the predictive distribution, [Y|ZO,θθθ], whereθ̂θθEM is substi-

tuted in forθθθ. In actuality, this is achieved by obtaining samples from the predictive distribution,

[ηηη,ξξξO|ZO,θθθ], and the distribution[ξξξU |σ2
ξ], whereθθθ = θ̂θθEM andσ2

ξ = σ̂2
ξ;EM are respectively substi-
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tuted in. The EM algorithm to obtain̂θθθEM is presented in the next section, where it is seen that the

E-step cannot be evaluated exactly; we propose a Laplace approximation. The MCMC algorithm

to obtain the predictive distribution is described in the Appendix.

4 EM Estimation of Parameters

In this section, we obtain the ML estimates of the parametersusing the EM algorithm. The EM

algorithm (Dempster et al., 1977) has been employed for estimation of parameters in the presence

of missing data; for more details, see McLachlan and Krishnan (2008). For the hierarchical model

described in Section 2, the random effects,ηηη, and the fine-scale variation,ξξξO, are not known and

can be treated as “data” that complete the likelihood. The EMalgorithm involves iterating between

an E (expectation)-step and an M (maximization)-step, and in our case the E-step is the most prob-

lematic. We resolve this problem by using Laplace approximations to evaluate the expectations

required in the E-step.

Recall that

g(µZ|Y(·)) =Y(·),

whereg(·) is the link function. We now rewriteγ(·) andb(γ(·)) in (5) as functions ofY(·). Define:

γ(·)≡ h1(Y(·))

b(γ(·))≡ h2(Y(·)). (18)

Then, under this re-parameterization, the conditional density of [Z(s)|Y(s)], for s∈ {s1, . . . ,sn}, is

given by:

fZ|Y(z(s)) = exp
{

(z(s)h1(Y(s))−h2(Y(s)))/τ2−c(z(s),τ)
}

. (19)
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Note that if the canonical link is considered, we haveγ(·) =Y(·), and hence

h1(Y(·)) =Y(·)

h2(Y(·)) = b(Y(·)). (20)

The “complete data” log likelihood,Lc, for the unknown parameters is made up of the obser-

vationsZO and the unobservedηηη andξξξO. ThenLc is simply the logarithm of the joint distribution

of ZO, ηηη, andξξξO, given the parametersθθθ =
{

βββ,K ,σ2
ξ

}

. That is,

Lc(θθθ|ZO,ηηη,ξξξO) = log[ZO|βββ,ηηη,ξξξO]+ log[ηηη|K ]+ log
[

ξξξO|σ
2
ξ

]

=const.+

{

n

∑
i=1

Z(si)h1(C(si)+X(si)
⊤βββ+S(si)

⊤ηηη+ξ(si))

−
n

∑
i=1

h2(C(si)+X(si)
⊤βββ+S(si)

⊤ηηη+ξ(si))

}

/τ2

−
1
2

log|K |−
1
2

trace
(

ηηηηηη⊤K−1
)

−
n
2

logσ2
ξ −

1

2σ2
ξ
trace

(

ξξξOξξξ⊤OV−1
ξ;O

)

, (21)

where recall that[A|B] denotes the density function ofA givenB, Vξ;O ≡ diag(vξ(s1), . . . ,vξ(sn)),

and “const.” denotes a generic constant that does not dependon θθθ. The EM algorithm is based on

Lc and an iteration procedure that we now describe. Assume we have completed thel -th iteration

of the EM algorithm; that is, we have an estimateθθθ[l ] of θθθ.
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4.1 The E-step

At the (l +1)-th iteration, the E-step is:

Q(θθθ,θθθ[l ])≡ E
(

Lc(θθθ|ZO,ηηη,ξξξO)|θθθ
[l ]
)

= const.+

{

n

∑
i=1

Z(si)E
(

h1(C(si)+X(si)
⊤βββ+S(si)

⊤ηηη+ξ(si))|ZO,θθθ[l ]
)

−
n

∑
i=1

E
(

h2(C(si)+X(si)
⊤βββ+S(si)

⊤ηηη+ξ(si))|ZO,θθθ[l ]
)

}

/τ2

−
1
2

log|K |−
1
2

trace
(

E
(

ηηηηηη⊤|ZO,θθθ[l ]
)

K−1
)

−
n
2

logσ2
ξ −

1

2σ2
ξ
trace

(

E
(

ξξξOξξξ⊤O|ZO,θθθ[l ]
)

V−1
ξ;O

)

. (22)

The expectations involved in the E-step of the EM algorithm are with respect to the unobserved

variablesηηη andξξξO, and they are not available in closed form.

When the integrals in the E-step are problematic, one approach may be to implement a stochas-

tic EM (SEM) algorithm (e.g., see Robert and Casella, 2004; McLachlan and Krishnan, 2008),

where the expectations are evaluated using Monte Carlo integration. When datasets are large, this

computation can be very slow, and hence the EM algorithm can be very slow to converge. In our

approach, we derive Laplace approximations (LA) to approximate the expectations involved in

(22), which are based on second-order Taylor-series expansions of the logarithm of the integrands

around their respective modes.

To apply the LA, we need to obtain the mode,(η̂ηη[l ], ξ̂ξξ
[l ]
O ), of Lc considered as a function ofηηη

andξξξO. Sengupta and Cressie (2013) use a coordinate-wise ascent method for the Poisson GLM

and canonical log link, which maximizes alternately with respect toηηη, and then with respect toξξξO,

until convergence. We do the same here for the general hierarchical model described in Section 2.

We use a second-order Taylor-series approximation to approximate the posterior distribution of

[ηηη,ξξξO|ZO,θθθ[l ]] with a Gaussian distribution with mean and variance given bythe posterior mode

and the inverse of the negative Hessian of the posterior evaluated at the mode; see the justification

given in Kass and Steffey (1989). Details of our approximations can be found in the Appendix,

16



where it is seen that the posterior distribution,[ηηη,ξξξO|ZO,θθθ[l ]], is approximately a multivariate

Gaussian density, with approximate mean and approximate variance given by

E













ηηη

ξξξO







∣

∣

∣
ZO,θθθ[l ]






=







η̂ηη[l ]

ξ̂ξξ
[l ]
O






, (23)

and

var













ηηη

ξξξO







∣

∣

∣ZO,θθθ[l ]






=

















− ∂2

∂ηηη∂ηηη⊤

(

Lc(θθθ[l ]|ZO,ηηη,ξξξO)
)

− ∂2

∂ηηη∂ξξξ⊤O

(

Lc(θθθ[l ]|ZO,ηηη,ξξξO)
)

− ∂2

∂ξξξO∂ηηη⊤

(

Lc(θθθ[l ]|ZO,ηηη,ξξξO)
)

− ∂2

∂ξξξO∂ξξξ⊤O

(

Lc(θθθ[l ]|ZO,ηηη,ξξξO)
)







∣

∣

∣

ηηη=η̂ηη[l ],ξξξO=ξ̂ξξ
[l ]
O











−1

,

(24)

respectively. To obtain var(ηηη|ZO,θθθ[l ]) and var(ξξξO|ZO,θθθ[l ]), we need to invert the matrix of partial

derivatives shown just above. LetA denote anr × r matrix andB denote ann×n matrix. Further,

let U be anyr ×n matrix andV be anyn× r matrix. Then, a block-matrix-inversion formula (e.g.,

Duncan, 1944) is given by:







A U

V B







−1

=







(A −UB−1V)−1 −(A −UB−1V)−1UB−1

−(B−VA−1U)−1VA−1 (B−VA−1U)−1






. (25)

Now recall the Sherman-Morrison-Woodbury formula (e.g., Henderson and Searle, 1981):

(B−VA−1U)−1 = B−1+B−1V(A −UB−1V)−1UB−1.

We use this formula in the block-matrix-inversion formula (25) to obtain the following equivalent

block-matrix-inversion formula, which we use to obtain theinverse in (24):







A U

V B







−1

=







(A −UB−1V)−1 −(A −UB−1V)−1UB−1

−B−1V(A −UB−1V)−1 B−1+B−1V(A −UB−1V)−1UB−1






, (26)

where the lower off-diagonal block is obtained using the Sherman-Morrison-Woodbury formula as
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follows:

(B−VA−1U)−1VA−1 =
{

B−1V(A −UB−1V)−1UB−1+B−1}VA−1

= B−1V(A −UB−1V)−1{UB−1VA−1+(A −UB−1V)A−1}

= B−1V(A −UB−1V)−1. (27)

Now, for generic variablesu andv, define

J(u0,v0) =−
∂2

∂u∂v⊤

(

Lc(θθθ[l ]|ZO,u,v)
)∣

∣

∣

u=u0,v=v0

.

We consider the different component matrices in the(r +n)× (r +n) matrix of partial derivatives

given in (24). The matrixJ(ξ̂ξξ
[l ]
O , ξ̂ξξ

[l ]
O ) is ann×n diagonal matrix; its inversion is easy. The matrix

J(η̂ηη[l ], η̂ηη[l ]) is of dimensionr × r, wherer ≪ n. The other two matrices,J(ξ̂ξξ
[l ]
O , η̂ηη[l ]) andJ(η̂ηη[l ], ξ̂ξξ

[l ]
O ),

have dimensionn× r andr ×n, respectively. We can then use formula (26) to invert the matrix in

(24), which gives, approximately,

var(ηηη|ZO,θθθ[l ]) =
(

J(η̂ηη[l ], η̂ηη[l ])−J(η̂ηη[l ], ξ̂ξξ
[l ]
O )J(ξ̂ξξ

[l ]
O , ξ̂ξξ

[l ]
O )−1J(ξ̂ξξ

[l ]
O , η̂ηη[l ])

)−1

var(ξξξO|ZO,θθθ[l ]) =J(ξ̂ξξ
[l ]
O , ξ̂ξξ

[l ]
O )−1+J(ξ̂ξξ

[l ]
O , ξ̂ξξ

[l ]
O )−1J(ξ̂ξξ

[l ]
O , η̂ηη[l ])

×

(

J(η̂ηη[l ], η̂ηη[l ])−J(η̂ηη[l ], ξ̂ξξ
[l ]
O )J(ξ̂ξξ

[l ]
O , ξ̂ξξ

[l ]
O )−1J(ξ̂ξξ

[l ]
O , η̂ηη[l ])

)−1

J(η̂ηη[l ], ξ̂ξξ
[l ]
O )J(ξ̂ξξ

[l ]
O , ξ̂ξξ

[l ]
O )−1

cov(ηηη,ξξξO|ZO,θθθ[l ]) =−

(

J(η̂ηη[l ], η̂ηη[l ])−J(η̂ηη[l ], ξ̂ξξ
[l ]
O )J(ξ̂ξξ

[l ]
O , ξ̂ξξ

[l ]
O )−1J(ξ̂ξξ

[l ]
O , η̂ηη[l ])

)−1

×J(η̂ηη[l ], ξ̂ξξ
[l ]
O )J(ξ̂ξξ

[l ]
O , ξ̂ξξ

[l ]
O )−1. (28)

In the formulas given just above, all we need to invert is then×n diagonal matrix,J(ξ̂ξξ
[l ]
O , ξ̂ξξ

[l ]
O ), and

some fixed-rankr × r matrices. This makes the computations extremely efficient and allows us to
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obtain the expressions forE(ηηηηηη⊤|ZO,θθθ[l ]) andE(ξξξOξξξ⊤O|ZO,θθθ[l ]) in (22) as follows:

E(ηηηηηη⊤|ZO,θθθ[l ]) = var(ηηη|ZO,θθθ[l ])+E(ηηη|ZO,θθθ[l ])E(ηηη|ZO,θθθ[l ])⊤

E(ξξξOξξξ⊤O|ZO,θθθ[l ]) = var(ξξξO|ZO,θθθ[l ])+E(ξξξO|ZO,θθθ[l ])E(ξξξO|ZO,θθθ[l ])⊤, (29)

where the terms on the right-hand side of (29) are evaluated approximately using (23) and (28).

The remaining terms in (22), for which we need an approximation, are

E
(

hk(C(s)+X(s)⊤βββ+S(s)⊤ηηη+ξ(s))|ZO,θθθ[l ]
)

; s∈ {s1, . . .sn} , k= 1,2.

For the particular case of count data and the canonical link considered in Sengupta and Cressie

(2013), analytical expressions were obtained based on the Gaussian approximation for[ηηη,ξξξO|ZO,θθθ[l ]]

discussed above. In the general case considered here, a second-order Taylor-series expansion is

needed to evaluate the required expectations. From the Appendix, we see that, approximately,

E
(

hk(C(si)+X(si)
⊤βββ+S(si)

⊤ηηη+ξ(si))|ZO,θθθ[l ]
)

= hk(C(si)+X(si)
⊤βββ+S(si)

⊤η̂ηη[l ]+ ξ̂[l ](si))

+
1
2

h′′k(C(si)+X(si)
⊤βββ+S(si)

⊤η̂ηη[l ]+ ξ̂[l ](si))×
(

S(si)
⊤var(ηηη|ZO,θθθ[l ])S(si)

+ 2S(si)
⊤cov(ηηη,ξξξO|ZO,θθθ[l ])e(si)+e(si)

⊤var(ξξξO|ZO,θθθ[l ])e(si)
)

, (30)

wherek= 1,2, ande(si) is a vector of lengthn whosei-th element is 1 and all other entries are 0,

for i = 1, . . . ,n.

4.2 The M-step

Following the E-step, we perform the M-step, which involvesmaximizing (22) with respect to each

of the parameters inθθθ. The maximization with respect toK andσ2
ξ is obtained by differentiating

(22) with respect toK andσ2
ξ, equating to zero, and solving the resulting equations. Thesolutions
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at the(l +1)-th iteration are:

σ2[l+1]
ξ =

1
n

trace
((

E(ξξξO|ZO,θθθ[l ])E(ξξξO|ZO,θθθ[l ])⊤+var
(

ξξξO|ZO,θθθ[l ]
))

V−1
ξ;O

)

K [l+1] = E(ηηη|ZO,θθθ[l ])E(ηηη|ZO,θθθ[l ])⊤+var
(

ηηη|ZO,θθθ[l ]
)

. (31)

However, the maximization of (22) with respect toβββ is not available in closed form; we use a

Newton-Raphson update at each M-step as follows:

βββ[l+1] = βββ[l ]−

[

∂
∂βββ

R(θθθ)
]−1

θθθ=θθθ[l ]
R(θθθ[l ]). (32)

In (32),R(θθθ) denotes the score function obtained by taking the partial derivative ofQ(θθθ,θθθ[l ]), given

by (22), with respect toβββ, andR(θθθ[l ]) is obtained by evaluatingR(θθθ) at θθθ[l ]. The score function

and the derivative required in (32) are evaluated in the Appendix.

4.3 Starting Values for the EM Algorithm

In order to implement the EM algorithm, we need to specify some starting values for the parame-

ters. Although in the simulation study described in Section5, we use the true parameter values as

our starting values, for real data applications we do not have that luxury. In this section, we give a

recommendation for initializing the EM algorithm. We shalluse this method to obtain the starting

values for the EM algorithm when analyzing the large remote sensing dataset in Section 6.

One may proceed by using the classical fixed-effects GLM estimate,β̂ββGLM, as the starting value

for βββ; here,β̂ββGLM is obtained using the iterated reweighted least squares algorithm (see McCulloch

et al., 2001, Chapter 5).

Recall that the spatial trend is

t(si) =C(si)+X(si)
⊤βββ;
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consider the detrended process,

U(si)≡Y(si)− t(si), (33)

which has mean zero and

var(U(si)) = S(si)
⊤KS(si)+σ2

ξvξ(si). (34)

Writing UO ≡ (U(s1), . . . ,U(sn))
⊤, we obtain:

cov(UO)≡ ΣΣΣU ;O = SOKS⊤
O +σ2

ξVξ;O, (35)

where recall thatVξ;O is a known diagonal matrix.

To obtain method-of-moments estimates ofK andσ2
ξ that can be used as starting values, we

replaceY(si) with g(Z(si)+ c), wherec is some user-specified constant that is added to the data

to ensure that the transformation is defined everywhere within the range of the data and recall that

g(·) is the link function. For example, for Poisson data and the canonical log link, log(Z(si)+0.5)

avoids a singularity whenZ(si) = 0.

Consequently, an approximation forU(·) is obtained as:

Û(si)≡ g(Z(si)+c)−C(si)−X(si)
⊤β̂ββGLM, i = 1, . . . ,n. (36)

Defines2
U ≡ 1

n ∑n
i=1Û(si)

2, and choose

Σ̂ΣΣU ;O = s2
U In, (37)

simply to capture the total variation through the trace operator. We apportion approximately 90%

of this to the smooth small-scale variation and 10% to the fine-scale variation (e.g., Katzfuss and
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Cressie, 2011). That is, we select our starting values forK andσ2
ξ to satisfy

SOK [0]S⊤
O ≈ 0.9× Σ̂ΣΣU ;O

σ2[0]
ξ = 0.1× trace(Σ̂ΣΣU ;O)/trace(Vξ;O), (38)

as follows. Using (38), and theQ-R decomposition,SO = QSRS, we obtain the starting value for

K as

K [0] = R−1
S Q⊤

S

(

0.9× Σ̂ΣΣU ;O

)

QS(R⊤
S)

−1. (39)

Note that this approximate 90-10 apportionment of the totalvariability could be done differently,

depending on the data’s smooth-scale variation relative totheir fine-scale variation.

4.4 Properties of the Resulting EM Algorithm

Suppose that the algorithm is initialized with parameter valuesθθθ[0] ∈ Θ, whereΘ is the parameter

space. Then it can be seen from (31) thatθθθ[l ] ∈ Θ, l = 1,2, . . ., which is a desirable property. For

example, this means that if the starting value forK is a covariance matrix, then all future EM

updates will also be symmetric and at least non-negative definite. Likewise, if we chooseσ2[0]
ξ > 0,

then it is guaranteed that the EM estimate satisfiesσ̂2
ξ;EM ≥ 0.

The most appealing feature of the resulting EM algorithm is computational. The E-step requires

one optimization to obtain the posterior mode. Then the SRE-model assumption and the Sherman-

Morrison-Woodbury formula make the LA computations extremely efficient. The computational

complexity of the EM algorithm is linear in the sample sizen (see Section 5.4). This is a highly

desirable property when dealing with big data. In Section 5,the computational performance of this

algorithm and the variability of the estimates are assessedthrough simulation.

5 A Simulation Study

In this section, we investigate statistical properties of our EHM approach using a simulation exper-

iment, where we simulatePoissondata over a regular spatial domain using the hierarchical model
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set-up as described in Section 2. Further, we demonstrate the computational gain that is achieved

by using an EHM approach as opposed to a BHM approach. The R-functions for the EM algorithm

and the MCMC algorithm relevant to our EHM are available on request.

5.1 Simulation Set-Up

We generated count data from a Poisson distribution whose mean was obtained by exponentiat-

ing an underlying spatial Gaussian processY(·). We considered a regular spatial domain,D =

{s1, . . .sN}, consisting ofN = 300×300= 90,000 points on{−149.5, . . . ,−0.5,0.5, . . . ,149.5}2.

In this simulation, the hidden processY(·) given by (8), (9), and (11) was made up of three additive

components:

Y(s) = X(s)⊤βββ+S(s)⊤ηηη+ξ(s); s∈ D, (40)

where the fine-scale heterogeneity term vξ(·) = 1, and the offset termC(·) = 0. The large-scale

variation, or trend, was assumed to be,

X(s)⊤βββ = β0+β1×s2, (41)

wheres= (s1,s2)
⊤ andβββ = (β0,β1)

⊤.

Recall that the random-effects vectorηηη ∼ Gau(0,K), and hereξ(·) is a process of independent

and identically distributed (i.i.d.) Gau(0,σ2
ξ) random variables, independent ofηηη. For the vector

of basis functions,S(·), we used the bisquare functions. The centers of the bisquarefunctions

were selected using two scales of resolution and were regularly spaced within a resolution. The

number of basis functions used at the two resolutions were, respectively, 4 and 25. Consequently,

r = 4+25= 29.

To specify the SRE model’s covariance matrixK , we started with an exponential covariance

function given by

C(u,v) = c0exp

(

−
||u−v||

a0

)

, (42)

wherec0 is the sill anda0 is the scale parameter. Here we specifiedc0 = 1 (without loss of general-
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ity) anda0 = 100 (to capture moderate-to-strong spatial dependence). Let ννν ≡ (ν(s1), . . .ν(sN))
⊤

be a mean-zero spatial Gaussian process defined overD, whose covariance matrix is obtained from

the exponential covariance model (42); that is,ννν ∼ Gau(0,ΣΣΣν). We calibratedK andσ2
ξ using the

procedure given in Kang and Cressie (2011). For just the calibration, we considered only 9,000

regularly spaced locations (sampling every tenth locationfrom the list of all 90,000 locations) that

covered the entire spatial domain, rather than using all 90,000 locations.

First we calculatedK0 such that||SK0S⊤−ΣΣΣν|| was minimized, where|| · || is the Frobenius

norm (e.g., Cressie and Johannesson, 2008). Finally, to control the variability of Y, we chose

K = kK0, wherek was chosen to preserve the total variation. That is,

trace(ΣΣΣν)/N = 1= trace(kSK0S⊤+σ2
ξIN)/N. (43)

For selecting the large-scale-variation parameterβββ, we defined the variation of the “signal,”Vs,

as:

Vs≡
1
N

trace
(

SKS⊤+σ2
ξIN

)

+
1
N

N

∑
i=1

(

X(si)
⊤βββ− ave

si∈D
(X(si)

⊤βββ)
)2

.

The parameterβββ was selected such thatVs was approximately 2 (see Aldworth and Cressie, 1999,

Section 3.2.4). Note thatβ0 is a free parameter that does not impactVs. We fixedβ0 = 2. Spec-

ifying β1 = 0.0125 givesVs = 2.17. Consequently, in our simulation study,βββ = (2,0.0125)⊤.

Additionally, we specified thefine-scale-variation proportion (FVP),

FVP≡
trace

(

σ2
ξIN

)

trace
(

SKS⊤+σ2
ξIN

) , (44)

which from (43) is equal toσ2
ξ. In our simulation,FVP was held at 5%; hence,σ2

ξ = 0.05. Using

(43), we obtainedk= 1.22.

We simulatedηηη and ξξξ from the Gaussian process defined above and then, using (40),we

obtainedY over the entire domainD. Next, we used the inverse of the log link function,

µZ|Y(·) = exp(Y(·)) , (45)
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to simulate a realization of the conditionally (conditional on Y(·)) independent Poisson random

variables,ZO, for only n locations (n ≤ N); the n locations{s1, . . . ,sn} were randomly sampled

without replacement from theN = 90,000 possible locations.

We will use this set-up to investigate the performance of theEM-based parameter estimates

(Section 5.2), to compare the predictive performance of ourEHM approach to that of an inde-

pendent hierarchical GLM (Section 5.3), to compare the computational efficiency of our EHM

approach to that of a competing Bayesian hierarchical modeling (BHM) approach (Section 5.4),

and finally to do a sensitivity study of the EHM and the BHM approaches (Section 5.5). In Sections

5.2, 5.3, and 5.5, we holdn fixed at 20,000. In Section 5.4, we varyn and tabulate the computa-

tional efficiency as a function ofn. We use the true parameter values as starting values for the EM

algorithm and for specifying hyperparameters for the BHM approach.

5.2 Assessment of the EM Estimates

In this section, we assess the performance of the EM estimates. Holdingn fixed at 20,000, we

simulated 1600 vectorsZ[1]
O , . . . ,Z[1600]

O as specified in Section 5.1. For each of the simulated

datasets,Z[l ]
O , wherel = 1, . . . ,1600, we used the EM algorithm described in Section 4 to estimate

the unknown parameters.

We calculated the average and the empirical root mean squared error (RMSE) for the parame-

tersβββ = (β0,β1)
⊤ andσ2

ξ; the results are summarized in Table 1, and they show very good agree-

ment with the true values.

—— Table 1 approximately here ——

Now we consider the EM estimate ofK . The elementwise mean of the EM estimates,
{

K̂ [l ]
EM :

l = 1, . . . ,1600}, was computed as:

ave(K̂EM)≡
1

1600

1600

∑
l=1

K̂ [l ]
EM. (46)

Figure 1 shows an image plot of the matrixH ≡
{

ave(K̂EM)K−1
T

}

, whereKT is the true covariance
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matrix for ηηη. We compare the matrixH to the identity matrix, which gives a visual representation

of how close the mean of the EM estimate ofK is to the true valueKT .

—— Figure 1 approximately here ——

We also computed trace(K̂ [l ]
EMK−1

T ), for l = 1, . . . ,1600. Now, had we observedηηη[l ], the ML

estimate ofK would be given by:

K̂ [l ]
ML;η = ηηη[l ]ηηη[l ]⊤, (47)

for which

trace(K̂ML;ηK−1
T ) = trace(ηηη[l ]ηηη[l ]⊤K−1

T ) = ηηη[l ]⊤K−1
T ηηη[l ] ∼ χ2

r . (48)

Consequently, we might expect the distribution of trace(K̂ [l ]
EMK−1

T ) to look similar to aχ2
r distribu-

tion. Recall thatr =29 in our case. Figure 2 shows a histogram of
{

trace(K̂ [l ]
EMK−1

T ) : l = 1, . . . ,1600
}

,

upon which aχ2
29 density is superimposed. The sample mean and the sample variance of

{

trace(K̂ [l ]
EMK−1

T )
}

are 29.4194 and 59.821, respectively, which we compare to E(χ2
29) = 29 and var(χ2

29) = 58.

—— Figure 2 approximately here ——

Overall, the EM algorithm seems to perform well, despite theapproximations involved in the

E-step of the EM algorithm. Next, we shall investigate the predictive properties of our EHM

approach.

5.3 Predictive Properties

In this section, we assess the predictive properties for theEHM approach described in Sections

2–4. Here, we again heldn fixed at 20,000, and we generated 100 datasetsZ[1]
O , . . . ,Z[100]

O . For

each of the simulated datasets
{

Z[l ]
O : l = 1, . . . ,100

}

, we implemented the EM algorithm to obtain

θ̂θθ
[l ]
EM ≡ (β̂ββ

[l ]
EM, K̂

[l ]
EM, σ̂

2[l ]
ξ;EM). Then, using the MCMC algorithm described in Section 3, we obtained

samples from the empirical predictive distribution,[ηηη,ξξξO|Z
[l ]
O , θ̂θθ

[l ]
EM]: For each of the 100 simulated

datasets, we generated 25,000 MCMC samples, after discarding a burn-in sample of size 2,000.

Recall that our EHM approach yields the predictor ofY(·) based onZ[l ]
O , as the mean of the resulting
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MCMC samples from the empirical predictive distribution[Y(·)|Z[l ]
O , θ̂θθ

[l ]
EM]. Here we compare this

to one derived from a spatially independent GLM, namely

Y(·) = X(·)⊤βββ+ξ(·), (49)

whereξ(·)∼ i.i.d. Gau(0,σ2
ξ). To estimate the parameters of the resulting EHM, we used theEM

algorithm described in Section 4 withηηη = 0, that is, with no spatial random-effects component.

The MCMC algorithm from which the empirical predictive distribution is obtained is, likewise, a

special case of that given in Section 3, withηηη = 0.

In what follows, we denote the 20,000 locations with data asDO and the complementary set

of 70,000 locations without data asDU . Recall thatDO was obtained by random sampling fromD

without replacement; for the 100 datasets, the set of locationsDO (and henceDU ) are held fixed.

Using obvious notation where “S” denotes “spatial” and “I” denotes “independent,” define

Ŷ[l ]
SEHM(·) andŶ[l ]

IEHM(·) to be the means of their respective predictive distributions,[Y(·)|Z[l ]
O , θ̂θθ

[l ]
SEM]

and[Y(·)|Z[l ]
O , θ̂θθ[l ]IEM]. Importantly,Z[1]

O , . . . ,Z[100]
O were simulated according to the set-up given in

Section 5.1.

Consider the ratio of the mean squared prediction errors,

e(s)≡
1

100∑100
l=1(Ŷ

[l ]
SEHM(s)−Y[l ](s))2

1
100∑100

l=1(Ŷ
[l ]
IEHM(s)−Y[l ](s))2

; s∈ D, (50)

whereY[l ](·) is the true process (Section 5.1). From (50), we made kernel-density plots showing

the distribution ofe(·) for locations inDO and for those inDU , separately. These plots are shown in

the left panel of Figure 3, from which we see that SEHM has higher relative efficiency for locations

in DU than for those inDO. Clearly, for locations without data (i.e.,DU ), SEHM borrows strength

efficiently from nearby observations, and hence it performsmuch better than IEHM in terms of

smaller mean squared prediction error.

—— Figure 3 approximately here ——

Now we shall investigate the performance of our EHM approachfor the locations with and
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without data. We made kernel-density plots that compare thedistribution of mean squared predic-

tion errors,
1

100

100

∑
l=1

(Ŷ[l ]
SEHM(s)−Y[l ](s))2,

for locationss in DO to those inDU (see Figure 3, right panel). Generally, the right panel of Figure

3 shows that mean squared prediction errors are smaller inDO than inDU . Since a datumZ(s) at

locations is very informative about the hidden valueY(s) at s, this is to be expected.

5.4 Computational Time: EHM versus BHM

In this section, we illustrate the computational gain achieved by using an EHM approach as op-

posed to using a comparable BHM approach. In what follows, whenever we say EHM (BHM), we

mean a spatial EHM (spatial BHM).

Recall that part of our EHM approach involves estimating theunknown parameters using an

EM algorithm, followed by an MCMC algorithm that generates samples from the empirical predic-

tive distribution,[ηηη,ξξξO|ZO, θ̂θθEM], whereθ̂θθEM ≡ (β̂ββEM, K̂EM, σ̂2
ξ;EM). In a BHM approach, priors

are put onβββ, K , andσ2
ξ, and an MCMC algorithm is used to generate samples from the posterior

distribution, [ηηη,ξξξ,θθθ|ZO]. Priors are assigned following Kang and Cressie (2011), thedetails of

which are given in the Appendix.

Generally, the MCMC algorithm mixes more slowly for the BHM than for the EHM. Hence,

we need to calibrate the MCMC sample sizes properly before wecan compare the computa-

tional times. Suppose the number of MCMC samples from the empirical predictive distribution,

[ηηη,ξξξO|ZO, θ̂θθEM], is LEHM, and suppose thatLBHM is the number of MCMC samples obtained from

the posterior distribution,[ηηη,ξξξ,θθθ|ZO].

To calibrate the MCMC sample sizes, there are different diagnostic measures that could be used

(e.g., Robert and Casella, 2004, Chapter 12). In this article, we shall use the diagnostics proposed

by Gelman and Rubin (1992) and Brooks and Gelman (1998). The Gelman-Rubin statistic, or

potential scale reduction factor (PSRF), is based on the idea of generating several MCMC chains,

each of lengthL, and then comparing the variability based on these individual chains to that based
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on the combined chain. If PSRF is close to 1, we can conclude that each set ofL simulated values

is close to the target distribution; if PSRF is large,L may be too small. Brooks and Gelman (1998)

proposed the multivariate potential scale reduction factor (MPSRF), which is a multivariate exten-

sion of the PSRF, that can be used for assessing convergence of several parameters simultaneously.

For fixed data sizen, we generated five MCMC chains, each of lengthL. Then we found the

values ofLEHM andLBHM that had comparable MSPRFs close to 1. We started withn= 5,000 and

found that for the elements ofξξξ, mixing was achieved quickly for both EHM and BHM. However,

mixing for ηηη is comparatively slow for EHM and even slower for BHM, so we calibrated the

MCMC sample sizes based on the convergence diagnostics forηηη. Figure 4 shows plots of the

MPSRF and the maximum of elementwise PSRFs as functions ofL. From Figure 4, we selected

LEHM = 15,000, andLBHM = 40,000, which resulted in MPSRFs of 1.08 for EHM and 1.07 for

BHM.

—— Figure 4 approximately here ——

Next we investigated how the MPSRF and the PSRFs changed asn changed. By holding

LEHM = 15,000 andLBHM = 40,000, and varyingn, Table 2 shows that the Gelman-Rubin and

Gelman-Brooks statistics are robust to change in the samplesize,n. Consequently, we compare

the computational times for EHM and BHM, for alln, usingLEHM = 15,000 andLBHM = 40,000.

—— Table 2 approximately here ——

The simulation experiment was performed on a dual quad core 2.8 GHz 2x Xeon X5560 pro-

cessor, with 96 Gbytes of memory. The computational times for the EHM and BHM are given in

Table 3. From Table 3 we see that EHM is on the order of 6-10 times faster than BHM. Neverthe-

less, in both cases, the computational time increases approximately linearly inn, which is due to

the dimension reduction afforded by the SRE model given by (11).

—— Table 3 approximately here ——
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5.5 Sensitivity Study Comparing EHM to BHM

In this section, we describe a sensitivity study to demonstrate the precision and accuracy of the

EHM predictions, when compared to BHM predictions (e.g., Kang et al., 2009).

Using the methods described in Section 5.1, we simulatedZO, with n= 20,000. From those

simulated data, we obtained samples from the empirical predictive distribution[Y(·)|ZO, θ̂θθEM],

which is our EHM approach, and from the posterior distribution [Y(·)|ZO], which is the BHM

approach. First, we did a visual assessment of the predictions,ŶSEHM(·) ≡ E(Y(·)|ZO, θ̂θθEM) and

ŶSBHM(·)≡E(Y(·)|ZO), which are shown in Figure 5, along with the data,{Z(si), i = 1, . . . ,n= 20,000},

and the true underlying process,Y(·). Figure 5 gives the visual impression that there is no differ-

ence in the predictions obtained using EHM and BHM, which is confirmed with a kernel-density

plot showing the distribution of the difference,ŶSEHM(·)−ŶSBHM(·); see Figure 6 (left panel).

—— Figure 5 approximately here ——

—— Figure 6 approximately here ——

Next we computed the ratio,

r(·) =
(var(Y(·)|ZO))

1/2

(var(Y(·)|ZO, θ̂θθEM)1/2
. (51)

The distribution of the ratio of the standard deviations is shown on the right panel of Figure 6,

separately for locations inDO (where data are observed) andDU (where data are not observed).

From the right panel of Figure 6, we see that the ratio is mostly larger than 1; it is always larger

than 1 inDU , and it is larger than 1 for 87.5% of locations inDO. Thus, our EHM approach tends

to yield credible intervals forY(·) that are narrower than those obtained from a BHM approach.

From this experiment, we see that fors∈DO, EHM-based credible intervals tend to be narrower by

a factor of 0.8, while fors∈ DU , the factor is 0.75. These results are consistent with otherspatial

studies (e.g., Kang et al., 2009).
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6 Analysis of Aerosol Optical Depth from the MISR Instru-

ment

In this section, we use the methodology presented in the previous sections to analyze a large, spa-

tial, remotely sensed dataset on aerosol optical depth (AOD) retrieved by the Multi-angle Imaging

SpectroRadiometer (MISR) instrument on NASA’s Terra satellite. An analysis of this dataset was

done by Shi and Cressie (2007); they used a log transformation of the data and then analyzed

log(AOD) using a Gaussian model, however they did not obtainspatial predictions back on the

original AOD scale. The key feature of our current analysis is to model AOD directly, using a hier-

archical spatial statistical model with a Gamma data model.The methodology we have developed

in the previous sections allows us to obtain optimal spatialpredictions, posterior standard errors,

and 95% prediction intervals on the original AOD scale.

6.1 Background to the Dataset

The Terra satellite was launched by NASA on December 18, 1999, as part of the Earth Observing

System (EOS). The MISR instrument is one of the key instruments on board that collects global

aerosol information, and it covers the entire globe in 16 days. Level-2 AOD data are collected

at a 17.6 km× 17.6 km spatial resolution; they can then be converted to level-3 AOD data at a

lower spatial resolution (of 0.5◦ × 0.5◦) by averaging all the level-2 observations that fall within

the level-3 pixels. (Here, and in what follows, when we say level-3 pixel, we mean a pixel at the

spatial resolution of 0.5◦ × 0.5◦.) Due to orbit geometry, clouds, or non-retrievals, data can be

missing in many regions. We use our model to predict the true AOD at level-3 pixels, both where

there are data and where there are no data.

We analyze here a spatial dataset of lattice data consistingof level-3 AOD values observed

between August 2-9, 2001, within a study regionD bounded by longitudes−125◦ and+3◦ and

latitudes−20◦ and+44◦. This is the same dataset that was analyzed in Shi and Cressie(2007), and

was part of a spatio-temporal dataset in Kang et al. (2010), although exclusively on the log(AOD)

scale. The region covers North and South America, the western part of the Sahara desert in Africa,
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the Iberian Peninsula in Europe, and parts of the Atlantic and Pacific Oceans (see Kang et al.,

2010, for a map of the study region). There areN ≡ 128×256= 32,768 level-3 pixels inD. The

n= 21,759 data inDO are shown in the top-left panel of Figure 9, where white pixels define the

no-data locations (i.e.,DU ); a histogram for the data is shown on the top-right panel of Figure 9.

6.2 Hierarchical Spatial Statistical Modeling of AOD

In this section, we do some initial data analysis of the AOD dataset by fitting a weighted gen-

eralized linear model that does not contain spatial dependence (McCullagh and Nelder, 1989),

followed by a full spatial analysis of the dataset. Recall from Section 6.1 thatZ(si) is the average

AOD obtained by averaging all the level-2 observations thatfall within the level-3 pixel located

at si. Let m(si) denote the number of level-2 observations that are averagedto obtainZ(si), for

i = 1, . . . ,n. We denote the level-2 observations within the level-3 pixel located atsi asZ j(si),

j = 1, . . . ,m(si), so thatZ(si)≡ ∑m(si)
j=1 Z j(si)/m(si).

Conditional on an underlying spatial processY(·), we assume independent Gamma distribu-

tions for the level-2 observations. That is, conditional onY(·), Z j(s) andZk(u) are independent,

except whens= u and j = k. We further assume local homogeneity within a level-3 pixel; that is,

Z j(si)|Y(si)∼ i.i.d Gamma(ν,µZ|Y(si)/ν); j = 1, . . .m(si), (52)

whereµZ|Y(si)≡E(Z(si|Y(·))=E(Z(si)|Y(si)) is the mean of the conditional distribution[Z j(si)|Y(si)];

ν > 0 is the shape parameter of the Gamma distribution; and, consequently,µZ|Y(si)/ν (> 0) is its

scale parameter for the level-3 pixel atsi. That is, the density function forZ j(si)|Y(si), under this

parameterization, is

fZ|Y(zj(si)|Y(si)) =
(zj(si)ν)ν exp(−zj(si)ν/µZ|Y(si))

zj(si)Γ(ν)µZ|Y(si)ν ; zj(si)≥ 0. (53)
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From (52), and (53), we obtain the conditional distributionof the level-3 datum atsi as,

Z(si)|Y(si)∼ Gamma(m(si)ν,µZ|Y(si)/(m(si)ν)); i = 1, . . . ,n, (54)

where the distributions are assumed independent. Thus, we see that the between-pixel heterogene-

ity shows up in the scale and the shape parameters, althoughE(Z(si)|Y(si)) is µZ|Y(si) and does

not depend onm(si). This yields the loglikelihood,

L(βββ,ν) =
n

∑
i=1

{

(m(si)ν−1) log(Z(si))+m(si)ν log(m(si)ν)−
Z(si)m(si)ν

exp(X(si)⊤βββ)

− logΓ(m(si)ν)−m(si)ν(X(si)
⊤βββ)

}

. (55)

The canonical link for the Gamma distribution is the reciprocal link, namely,γ(s)= (µZ|Y(s))−1,

which leads to constraints on the conditional mean that are not easy to model. Guided by previous

analyses of AOD where log data were analyzed, we use a log link. That is,

log(µZ|Y(si)) = X(si)
⊤βββ; i = 1, . . . ,N, (56)

whereX(si) is a p-dimensional vector of known covariates, and there is no offset termC(·) in this

model. After some initial exploratory data analysis considering the covariates used in Kang et al.

(2010), we selected the covariates in (56) to be the indicator functions for each of the Americas,

Africa (the Sahara desert), the south-western tip of Europe(Iberian Peninsular), and oceans; and

we also included latitude as a covariate.

From the weighted GLM (WGLM) given by (53) and (56), we obtained the ML estimate,

β̂ββWGLM, of βββ, which does not depend onν. Note that the estimatêβββWGLM is different than what

one would obtain using a standard R or Matlab package, since they do not consider the different

{m(si) : i = 1, . . . ,n} that appear in the loglikelihood given by (55). The maximum likelihood

estimate ofν is obtained by maximizingL(β̂ββWGLM,ν) with respect toν and results in̂ν = 0.3637.

These ML estimates are used in the hierarchical statisticalanalysis that follows.
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As an aside, if we transform the data as,Z̃(si) ≡ m(si)Z(si); i = 1, . . . ,n, then the distribution

of Z̃(si) is Gamma(m(si)ν,µZ̃|Y(si)), whereµZ̃|Y(si)≡ m(si)µZ|Y(si). Hence, the log link is:

log(µZ̃|Y(si)) = log(m(si)µZ|Y(si)) = log(m(si))+X(si)
⊤βββ, (57)

where there is now an offset termC(si) = log(m(si)). Since the information content of
{

Z̃(si)
}

and{Z(si)} are the same, the ML estimates ofβββ andν are unchanged.

Our spatial hierarchical statistical model consists of a data model and a process model; recall

that unknown parameters are estimated. The data model is given by (54), whereν = 0.3637,

obtained above. We assume the log link,

Y(·) = log(µZ|Y(·)), (58)

and the process model is:

Y(si) = X(si)
⊤βββ+S(si)

⊤ηηη+ξ(si); i = 1, . . .N, (59)

where recall thatN = 128×256= 32,768 level-3 pixels, andX(·) is a 5-dimensional vector made

up of the same covariates used in the initial data analysis. In (59), ther-dimensional vector of

random effects,ηηη, is assumed to have a Gau(0,K) distribution, where the covariance matrixK

is fixed but unknown and will be estimated. We use mutiresolutional W-wavelet basis functions

for S(·); see Kang et al. (2010) and Kang and Cressie (2011). That is, we choose all 32 W-

wavelets from the first resolution, and 62 W-wavelets from the second resolution, resulting in

r = 32+ 62= 94. TheN× r matrix S of basis functions is further rescaled by dividing each

column ofS by the standard deviation of the elements of the corresponding column. Finally, the

componentξ(·) denotes the fine-scale-variation parameter, and we model itusing a Gau(0,σ2
ξ)

distribution.
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6.3 Parameter Estimation and Optimal Spatial Mapping of AOD

We use the EM algorithm (Section 4) to estimate the parameters θθθ =
{

βββ,K ,σ2
ξ

}

. To implement

the EM algorithm, we obtain the starting values using the methods discussed in Section 4.3, with

β̂ββWGLM used as the starting value forβββ. The EM estimates,̂θθθEM ≡
{

β̂ββEM, K̂EM, σ̂2
ξ;EM

}

, are

then substituted into an MCMC algorithm (Appendix C) to obtain samples from the empirical

predictive distribution,[ηηη,ξξξO|ZO, θ̂θθEM]. We generated 20,000 MCMC samples, after discarding

2,000 samples as burn-in. These MCMC samples, together withMCMC samples from[ξξξU |σ̂2
ξ;EM],

give us the entire empirical predictive distribution,[Y|ZO, θ̂θθEM], or any desired transformation or

summary of it. For example, we can obtain[µµµZ|Y|ZO, θ̂θθEM], whereµµµZ|Y ≡ (µZ|Y(s1), . . . ,µZ|Y(sN))
⊤

andµZ|Y(·) = exp(Y(·)), whose moments and quantiles are immediately computable.

Using the MCMC samples, we first computed the predictive meanand the predictive standard

deviation of the processY(·); see the left panels of Figure 7. These panels are comparableto the

optimal predictions in Shi and Cressie (2007), Kang et al. (2010), and Kang and Cressie (2011),

which are on the log scale. The predictive mean ofY(·) shows that high aerosol particles are

emitted from the Sahara desert and make their way across the Atlantic Ocean to North America

via mid-latitude trade winds. The map of predictive standard deviations reflects the satellite tracks

and regions of missing data, as it should. The additive nature of the model forY(·) allows us to

map and interpret different sources of variability separately. Specifically, the right panels of Figure

7 show image plots for the trend componentX(·)⊤β̂ββEM, for the predictive mean of the small-scale

variation componentS(·)⊤ηηη, and for the predictive mean of the fine-scale-variation component

ξ(·). Adding them together, we obtain the predictive mean ofY(·) shown in the middle-left panel

of Figure 7.

—— Figure 7 approximately here ——

Recall that the datumZ(si) was obtained by averagingm(si) level-2 observations observed in

the level-3 pixel located atsi; i = 1, . . . ,n. We incorporated that heterogeneity in our hierarchical

model through (54), and to assess its impact we made side-by-side boxplots showing how the

predictive standard deviation ofY(·) varies for different values ofm(si); see Figure 8. As expected,
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the predictive standard deviation ofY(si) decreases asm(si) increases, reflecting the importance of

the data model in this spatial statistical analysis.

—— Figure 8 approximately here ——

Our goal in this analysis is to make inference on the originalAOD scale. Here we obtained

maps of the mean, the standard deviation, the 2.5 percentile, and the 97.5 percentile of each of the

N elements ofµµµZ|Y in the (empirical) predictive distribution[µµµZ|Y|ZO, θ̂θθEM]; see Figure 9. Notice

that the map of the predictive standard deviation shows a mean-variance relationship, which is the

consequence of the Lognormal process model forµZ|Y(·). The maps showing the 2.5 percentile

and the 97.5 percentile give the upper bound and lower bound,respectively, of pixelwise 95%

credible intervals. All panels in Figure 9 show maps on the original AOD scale, where they are

most interpretable scientifically.

—— Figure 9 approximately here ——

7 Discussion and Conclusions

In this article, we have developed a hierarchical spatial statistical model where the data model be-

longs to the exponential family of distributions. The process model is spatially dependent and is

based on a hidden SRE model for the underlying latent random process. This allows for nonstation-

arity and dimension reduction, which is advantageous when analyzing big, spatially heterogeneous

datasets. The spatially independent fine-scale variation term is an important component of the SRE

model and is an attempt to account for the variability that the fixed-rank random-effects do not cap-

ture. The fixed-rank random-effects term, coupled with the spatially independent fine-scale vari-

ability term, enables efficient computation via repeated use of the Sherman-Morrison-Woodbury

formula. The model parameters are assumed fixed but unknown and are estimated.

The spatial independence of the fine-scale variation term,ξ(·), assumed in this article can

be generalized to allow for some spatial dependence, for which sparse-matrix-inversion techniques
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can be used to invert its covariance matrix. This situation has been explored in Nguyen et al. (2012),

where the orbit geometry of the satellite leads to spatial dependence in the fine-scale variation term.

The model proposed in this article is spatial-only. However, it could be extended to a hierar-

chical spatio-temporal model in an obvious way. We could usethe same data model and a process

model where the reduced-dimensional basis function coefficients evolve over time (e.g., Wikle

et al., 2001; Cressie et al., 2010). There remain the problems of estimation of spatio-temporal-

model parameters and optimal filtering, smoothing, and forecasting from the empirical predictive

distribution.

Because of ourempiricalhierarchical modeling (EHM) approach, we are able to avoid spatial

confounding between fixed-effects and random-effects terms in the process model. We have de-

veloped an EM algorithm to estimate the unknown parameters;since the expectations required in

the E-step of the EM algorithm are not available in closed form, we developed a Laplace approxi-

mation for them.

Based on a simulation experiment, we assessed the performance of EM estimation of the pa-

rameters, and then we investigated the predictive properties of our EHM approach. We further used

the simulation set-up to compare the performance of our EHM approach to that of a comparable

BHM approach, both in terms of computational efficiency (EHMis 6-10 times faster) and in terms

of width of credible intervals (EHM is 75-80% more liberal).

Finally, we used our methodology to analyze a big, spatiallyheterogeneous dataset on AOD.

Based on a Gamma data model and a Lognormal process model, andafter properly accounting for

sources of heterogeneity, we obtained a map of optimal spatial predictions of AOD on the original

scale, along with maps quantifying the uncertainty of that prediction.

In conclusion, we have presented an empirical hierarchicalmodeling (EHM) approach that

captures non-linear, non-Gaussian, spatial variability,has a geostatistical process model, and is

well suited to the analysis of big data.
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Appendix

A Approximations Involved in the EM Algorithm

Let δδδ ≡ (ηηη⊤,ξξξ⊤)⊤ be anm (m= r +n)-dimensional vector. Here we derive the Laplace approxi-

mation to the density[δδδ|ZO,θθθ[l ]]. Let δ̂δδ
[l ]

maximize the complete data log likelihood,Lc(θθθ[l ]|ZO,δδδ).

Now, the density for the distribution of[δδδ|ZO,θθθ[l ]] is given by:

p(δδδ|ZO,θθθ[l ]) ∝ exp
(

Lc(θθθ[l ]|ZO,δδδ)
)

. (A.1)

A second-order Taylor-series approximation ofLc(θθθ[l ]|ZO,δδδ) aroundδ̂δδ
[l ]

yields:

Lc(θθθ[l ]|ZO,δδδ) = Lc(θθθ[l ]|ZO, δ̂δδ
[l ]
)+

1
2
(δδδ− δ̂δδ

[l ]
)⊤

[

∂2

∂δδδ⊤∂δδδ
Lc(θθθ[l ]|ZO,δδδ)

]

δδδ=δ̂δδ
[l ]
(δδδ− δ̂δδ

[l ]
)

+higher-order terms

≈ Lc(θθθ[l ]|ZO, δ̂δδ
[l ]
)−

1
2
(δδδ− δ̂δδ

[l ]
)⊤QLA(δδδ[l ],θθθ[l ]|ZO)(δδδ− δ̂δδ

[l ]
), (A.2)

whereQLA(δδδ[l ],θθθ[l ]|ZO)≡−
[

∂2

∂δδδ⊤∂δδδ
Lc(θθθ[l ]|ZO,δδδ)

]

δδδ=δ̂δδ
[l ]. In (A.2) above, notice that the first-order

linear term is zero since the first-order derivative ofLc(θθθ[l ]|ZO,δδδ) with respect toδδδ, evaluated at

δδδ = δ̂δδ
[l ]

, is zero (recall that̂δδδ
[l ]

maximizesLc(θθθ[l ]|ZO,δδδ)). Therefore, for the density of[δδδ|ZO,θθθ[l ]],

we have approximately,

p(δδδ|ZO,θθθ[l ]) ∝ exp

(

Lc(θθθ[l ]|ZO, δ̂δδ
[l ]
)

)

×exp

(

−
1
2
(δδδ− δ̂δδ

[l ]
)⊤QLA(δδδ[l ],θθθ[l ]|ZO)(δδδ− δ̂δδ

[l ]
)

)

. (A.3)

Thus, p(δδδ|ZO,θθθ[l ]) is approximately proportional to a Gaussian density. Evaluating the propor-

tionality constant on the right-hand side of (A.3) yields the approximation:

∫
p(δδδ|ZO,θθθ[l ])dδδδ = exp

(

Lc(θθθ[l ]|ZO, δ̂δδ
[l ]
)

)

(2π)m/2|QLA(δδδ[l ],θθθ[l ]|ZO)|
−1/2, (A.4)
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and hence the first two moments are approximately,

E(δδδ|ZO,θθθ[l ]) = δ̂δδ
[l ]

var(δδδ|ZO,θθθ[l ]) = QLA(δδδ[l ],θθθ[l ]|ZO)
−1. (A.5)

Next, fork= 1,2, we derive the expectation:

E
(

hk

(

C(si)+X(si)
⊤βββ+S(si)

⊤ηηη+ξξξ(si)
)

|ZO,θθθ[l ]
)

≡E
(

hk

(

C(si)+X(si)
⊤βββ+q(si)

⊤δδδ
)

|ZO,θθθ[l ]
)

.

Using a second-order Taylor-series expansion ofhk(C(si)+X(si)
⊤βββ+q(si)

⊤δδδ) aroundδ̂δδ
[l ]

, we

obtain:

hk(C(si)+X(si)
⊤βββ+q(si)

⊤δδδ)

= hk

(

C(si)+X(si)
⊤βββ+q(si)

⊤δ̂δδ
[l ]
)

+(δδδ− δ̂δδ
[l ]
)⊤

(

h′k

(

C(si)+X(si)
⊤βββ+q(si)

⊤δ̂δδ
[l ]
)

×q(si)

)

+
1
2
(δδδ− δ̂δδ

[l ]
)⊤

(

h′′k

(

C(si)+X(si)
⊤βββ+q(si)

⊤δ̂δδ
[l ]
)

×q(si)q(si)
⊤

)

(δδδ− δ̂δδ
[l ]
)

+higher-order terms, (A.6)

where the vectorh′k(x0)≡
d
dxhk(x)

∣

∣

x=x0
, and the matrixh′′k(x0)≡

d2

dx⊤dxhk(x)
∣

∣

x=x0
.

Taking expectations, we obtain:

E
(

hk(C(si)+X(si)
⊤βββ+q(si)

⊤δδδ)|ZO,θθθ[l ]
)

≈ hk

(

C(si)+X(si)
⊤βββ+q(si)

⊤δ̂δδ
[l ]
)

+E

(

(δδδ− δ̂δδ
[l ]
)|ZO,θθθ[l ]

)⊤(

h′k

(

C(si)+X(si)
⊤βββ+q(si)

⊤δ̂δδ
[l ]
)

×q(si)

)

+
1
2

tr

{

E

(

(δδδ− δ̂δδ
[l ]
)(δδδ− δ̂δδ

[l ]
)⊤|ZO,θθθ[l ]

)

×

(

h′′k

(

C(si)+X(si)
⊤βββ+q(si)

⊤δ̂δδ
[l ]
)

×q(si)q(si)
⊤

)}

. (A.7)
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The second term in (A.7) is zero, sinceδ̂δδ
[l ]

is the expectation of the Gaussian density that approxi-

mates the posterior density,[δδδ|ZO,θθθ[l ]]; see (A.5). Consequently, we obtain:

E(hk(C(si)+X(si)
⊤βββ+q(si)

⊤δδδ)|ZO,θθθ[l ])

≈ hk

(

X(si)
⊤βββ+q(si)

⊤δ̂δδ
[l ]
)

+
1
2

tr

{

QLA(δδδ[l ],θθθ[l ]|ZO)
−1

(

h′′k

(

C(si)+X(si)
⊤βββ+q(si)

⊤δ̂δδ
[l ]
)

×q(si)q(si)
⊤

)}

= hk

(

C(si)+X(si)
⊤βββ+q(si)

⊤δ̂δδ
[l ]
)

+
1
2

h′′k

(

C(si)+X(si)
⊤βββ+q(si)

⊤δ̂δδ
[l ]
)

×q(si)
⊤QLA(δδδ[l ],θθθ[l ]|ZO)

−1q(si). (A.8)

Recall thatδδδ ≡ (ηηη⊤,ξξξ⊤)⊤. Therefore, from (A.5) and (A.8), we obtain the approximations to

the expectations involved in the E-step of the EM algorithm,that are used in (23), (24), and (30).

B Evaluations for the One-Step Newton-Raphson Update forβββ

In this part of the Appendix, we evaluate the expressions involved in the one-step Newton-Raphson

update forβββ, which was discussed at the end of Section 4.2. Specifically,we will evaluate the score

functionR(θθθ) and its derivative with respect toβββ, assuming as many derivatives forh1(·) andh2(·)

as necessary.

The expression forQ(·, ·) given by (22), after substituting in the approximations to the required
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expectations, becomes

Q(θθθ,θθθ[l ]) = const.+

{

n

∑
i=1

Z(si)
{

h1(C(si)+X(si)
⊤βββ+S(si)

⊤η̂ηη[l ]+ ξ̂[l ](si))

+
1
2

h′′1
(

C(si)+X(si)
⊤βββ+S(si)

⊤η̂ηη[l ]+ ξ̂[l ](si)
)

×q(si)
⊤QLA(δδδ[l ],θθθ[l ]|ZO)

−1q(si)

}

−
n

∑
i=1

{

h2(C(si)+X(si)
⊤βββ+S(si)

⊤η̂ηη[l ]+ ξ̂[l ](si))

+
1
2

h′′2
(

C(si)+X(si)
⊤βββ+S(si)

⊤η̂ηη[l ]+ ξ̂[l ](si)
)

×q(si)
⊤QLA(δδδ[l ],θθθ[l ]|ZO)

−1q(si)

}}

/τ2

−
1
2

log|K |−
1
2

trace
(

Ê
(

ηηηηηη⊤|ZO,θθθ[l ]
)

K−1
)

−
n
2

logσ2
ξ −

1

2σ2
ξ
trace

(

Ê
(

ξξξOξξξ⊤O|ZO,θθθ[l ]
)

V−1
ξ;O

)

, (B.1)

whereq(s) andQLA(δδδ[l ],θθθ[l ]|ZO) are defined in Appendix A; the approximations,Ê
(

ηηηηηη⊤|ZO,θθθ[l ]
)

andÊ
(

ξξξOξξξ⊤O|ZO,θθθ[l ]
)

, to the respective expectations, are given by (29) (which follows from Ap-

pendix A).

Now, to obtain the score function,R(θθθ), we differentiate (B.1) with respect toβββ, resulting in:

R(θθθ) =

{

n

∑
i=1

Z(si)
{

h′1(C(si)+X(si)
⊤βββ+S(si)

⊤η̂ηη[l ]+ ξ̂[l ](si))

+
1
2

h′′′1

(

C(si)+X(si)
⊤βββ+S(si)

⊤η̂ηη[l ]+ ξ̂[l ](si)
)

×q(si)
⊤QLA(δδδ[l ],θθθ[l ]|ZO)

−1q(si)

}

X(si)

−
n

∑
i=1

{

h′2(C(si)+X(si)
⊤βββ+S(si)

⊤η̂ηη[l ]+ ξ̂[l ](si))

+
1
2

h′′′2

(

C(si)+X(si)
⊤βββ+S(si)

⊤η̂ηη[l ]+ ξ̂[l ](si)
)

×q(si)
⊤QLA(δδδ[l ],θθθ[l ]|ZO)

−1q(si)

}

X(si)

}

/τ2

(B.2)

The Newton-Raphson update (32) also requires the partial derivative ofR(θθθ) with respect toβββ,
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which is given by:

∂
∂βββ

R(θθθ) =

{

n

∑
i=1

Z(si)
{

h′′1(C(si)+X(si)
⊤βββ+S(si)

⊤η̂ηη[l ]+ ξ̂[l ](si))

+
1
2

hiv
1

(

C(si)+X(si)
⊤βββ+S(si)

⊤η̂ηη[l ]+ ξ̂[l ](si)
)

×q(si)
⊤QLA(δδδ[l ],θθθ[l ]|ZO)

−1q(si)

}

X(si)X(si)
⊤

−
n

∑
i=1

{

h′′2(C(si)+X(si)
⊤βββ+S(si)

⊤η̂ηη[l ]+ ξ̂[l ](si))

+
1
2

hiv
2

(

C(si)+X(si)
⊤βββ+S(si)

⊤η̂ηη[l ]+ ξ̂[l ](si)
)

×q(si)
⊤QLA(δδδ[l ],θθθ[l ]|ZO)

−1q(si)

}

X(si)X(si)
⊤

}

/τ2.

(B.3)

Then (B.3) is evaluated atθθθ = θθθ[l ], and its matrix inverse is taken; it is then substituted into(32).

C MCMC Algorithm

Here we describe the MCMC procedure that is used to obtain samples from the predictive distri-

bution, [ηηη,ξξξO|ZO,θθθ]. We implement the MCMC procedure with a Gibbs sampler, incorporating

Metropolis-Hastings steps where necessary. The full conditional distributions, as well as details of

the Metropolis Hastings steps, are described in the following paragraph.

The joint distribution,[ZO,ηηη,ξξξO|θθθ], can be written as:

[ZO,ηηη,ξξξO|θθθ]≡ [ZO|ηηη,ξξξO,βββ]× [ηηη|K ]× [ξξξO|σ
2
ξ]. (C.1)

Let “[A|B, ·]” denote the full conditional distribution of the unknownA given B and all other

unknowns (and the data). The Gibbs sampler uses the following steps to generate samples from

the predictive distribution,[ηηη,ξξξO|ZO,θθθ].

1. At t = 0, we select starting valuesηηη[0] andξξξ[0]O .

2. t=t+1; simulate successively from the full conditionals, [ηηη[t+1]|ξξξ[t]O , ·] and[ξξξ[t+1]
O |ηηη[t+1], ·].

3. Repeat step 2 to generate as many samples as needed.

4. Discard an initial number of samples as “burn-in.”
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The full conditionals are not available in closed form, so weuse a Metropolis-Hastings step within

the Gibbs sampler. A generic version of the algorithm that wehave used to draw samples from

the full conditionals,[ηηη[t+1]|ξξξ[t]O , ·] and[ξξξ[t+1]
O |ηηη[t+1], ·] (at the(t+1)-th stage), is discussed below.

Supposea is the random variable (or a block of random variables) that we are updating, anda0 is

the most recently sampled value. We follow the steps below toobtain a new sample ofa:

1. Draw a trial valuea1 from a proposal density, Gau(a0,ΣΣΣa).

2. GenerateU1 uniformly on(0,1).

3. Compute the joint density ofa and all other unknowns,l(a0, rest) andl(a1, rest) where “rest”

denotes all the other unknowns fixed at their most recently sampled value.

4. If U1 < min
{

l(a1,rest)
l(a0,rest) ,1

}

, accept the trial valuea1 and keep it for the most current iteration;

otherwise, the valuea0 is retained.

When sampling from[ηηη[t+1]|ξξξ[t]O , ·], we updateηηη as a block. To sample from[ξξξ[t+1]
O |ηηη[t+1], ·], we

updateξξξO elementwise.

D BHM: Prior Specifications and the MCMC Algorithm

In this part of the Appendix, we present the prior distributions (or the parameter model) of BHM

and fully Bayesian inference using the MCMC algorithm.

Following Kang and Cressie (2011), the prior distribution of θθθ = (βββ,K ,σ2
ξ) is assumed to be

made up of mutually independent components:

[βββ,K ,σ2
ξ] = [βββ] · [K ] · [σ2

ξ]. (D.1)

Next we assume that thep-dimensional fixed-effects parameters,βββ, have a Gaussian prior distri-

bution,

βββ ∼ Gau(µµµβ,ΣΣΣβ), (D.2)
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whereµµµβ andΣΣΣβ ≡ diag(σ2
β;1, . . . ,σ

2
β;p) are known hyperparameters. For fine-scale-variance pa-

rameterσ2
ξ, we assume thatσξ ∼Uniform(0,κξ), whereκξ is a known hyperparameter. Finally, the

prior distribution onK is based on the spectral decomposition,

K = PΛΛΛP⊤, (D.3)

whereΛΛΛ ≡ diag(λ1, . . . ,λr), λ1 ≥ λ2 ≥ . . . ≥ λr > 0, andP is an orthogonal matrix that can be

parametrized in terms of ther(r −1)/2 Givens angles,

θθθG ≡
{

θi j : i = 1, . . . , r −1, j = i +1, . . . , r
}

.

In terms of these Givens angles, we can writeP as (e.g., Kang and Cressie, 2011):

P= (G12G13. . .G1r)(G23. . .G2r) . . .G(r−1)r ,

whereGi j is the Givens rotation matrix corresponding to the Givens angle θi j , which is obtained

by modifying ther × r identity matrix as follows: Theith and thej th diagonal elements of 1 are

both replaced by cos(θi j ), and the(i, j)th and( j, i)th elements of 0 are replaced by−sin(θi j ) and

sin(θi j ), respectively.

We assign priors to the eigenvalues{λi : i = 1, . . . , r} and the Givens anglesθθθG, using models

discussed in Kang and Cressie (2011). That is,

[λ1, . . . ,λr ] = [λ1,1, . . . ,λ1,q1] · · · [λK,1, . . . ,λK,qK |λK−1,qK−1], (D.4)

whereλk,1, . . . ,λk,qk are the eigenvalues corresponding to theqk basis functions from thek-th reso-

lution, k= 1, . . . ,K, and∑K
k=1qk = r. Finally, λk,1, . . . ,λk,qk are assumed to be distributed as order

statistics corresponding to i.i.d. truncated Lognormal random variables with known hyperparame-

ters, meanµk and varianceσ2
k, for k = 1, . . . ,K, where the Lognormal distribution is restricted to

(0,λk−1,qk−1).
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We define the prior onθi j through a prior on the logit transformation ofθi j , namely

h(θi j )≡ log

(

π/2+θi j

π/2−θi j

)

. (D.5)

Then we assign independent priors onh(θi j ) as

h(θi j )∼ Gau(ck,τ2
k), (D.6)

if i, j both belong to the same resolutionk, wherek= 1, . . . ,K; otherwise,

h(θi j )∼ Gau(0,τ2
0), (D.7)

if i, j belong to different resolutions. The hyperparameters{ck},
{

τ2
k

}

, andτ2
0 are assumed known.

We also specify the hyperparameters following the recommendations in Kang and Cressie

(2011). In the simulation study described in this article, the true parameter values,θθθT , were used

to specify the hyperparameters. We selectedµβ = βββT , and the elements of the covariance matrix

ΣΣΣβ were specified as three times the square of the standard-errors obtained by fitting a classical

fixed-effects Poisson GLM (e.g., McCullagh and Nelder, 1989, Chapter 6) to the data, with the

same covariates that were used for the simulation. Next we choseκξ = 10σξ;T .

Finally, to specify the hyperparameters in the prior onK , we first obtained:

KT = PTΛΛΛTP⊤
T ,

whereΛΛΛT ≡ (λ1;T , . . . ,λr;T). We also computed the Givens angles forKT , namely,

{

θi j ;T : i = 1, . . . , r −1, ; j = i +1, . . . , r
}

.

50



Fork= 1, . . . ,K, we specified:

µk =
qk

∑
i=1

log(λk,i;T)/qk

σ2
k =

qk

∑
i=1

(log(λk,i;T −µk)
2/(qk−1). (D.8)

Similarly, we specified{ck},
{

τ2
k

}

, andτ2
0 as:

ck = ∑
(i, j)∈Nk

h(θi j ;T)/|Nk|,

τ2
k = ∑

(i, j)∈Nk

(h(θi j ;T)−ck)
2/(|Nk|−1),

τ2
0 = ∑

(i, j)∈N0

h(θi j ;T)
2/|N0|, (D.9)

whereh(·) is given by (D.5),Nk ≡ {(i, j) : the i-th and thej-th basis functions are both of thek-th

resolution}, k = 1, . . . ,K, and N0 ≡ {(i, j) : the i-th and thej-th basis functions are of different

resolutions} .

Finally, we implemented the MCMC procedure with a Gibbs sampler to generate samples from

the posterior distribution,[ηηη,ξξξO,ξξξU ,θθθ|ZO]. The full conditionals ofσ2
ξ andξξξU can be derived in

closed form. The full conditional ofξξξU is:

[ξξξU |ZO,ηηη,ξξξO,θθθ] = [ξξξU |θθθ].

The full conditional ofσ2
ξ is a truncated Inverse-Gamma distribution, namely, IG((N−1)/2,ξξξ⊤ξξξ/2) ·

I(0< σξ < k) (see Kang and Cressie, 2011), where recall thatξξξ = (ξξξ⊤O,ξξξ
⊤
U )

⊤. The other full con-

ditionals are not available in closed form, so we incorporated a Metropolis-Hastings step, with

random walk proposals, to simulate from them. Details of theMetropolis-Hastings algorithm is

given in Appendix B. We updatedβββ andηηη in blocks, andξξξO elementwise. When sampling the

eigenvalues, we updated in blocks according to resolution.If the total ordering of the eigenvalues

was broken, we rejected the sample and a new sample was drawn until the ordering of the eigenval-
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ues was preserved (Kang and Cressie, 2011). When sampling the Givens angles, we updated the

Givens angles corresponding to the same resolution,
{

θi j : (i, j) ∈ Nk
}

, as a block, fork= 1, . . . ,K,

and the Givens angles
{

θi j : (i, j) ∈ N0
}

were updated as a block.
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Figure Captions

Figure 1: The left panel shows the identity matrix, and the right panel shows the ma-
trix, ave(K̂EM)K−1

T , where ave(K̂EM) is the elementwise average of the EM estimates
{

K̂ [l ]
EM : l = 1, . . . ,1600

}

. The common color bar is shown on the right.

Figure 2: Plot showing a histogram of
{

trace(K̂ [l ]
EMK−1

T ) : l = 1, . . . ,1600
}

. The chi-squared den-

sity with degrees of freedom equal tor = 29 is overlayed on the histogram.

Figure 3: The left panel corresponds to kernel-density plots showing the distribution of the SEHM
mean squared prediction error divided by the IEHM mean squared prediction error, for locations
with data (solid line) and for locations without data (dashed line). The right panel corresponds to
kernel-density plots comparing the SEHM mean squared prediction errors obtained for locations
with data (solid line) and for locations without data (dashed line)

Figure 4: Plots showing the Gelman-Rubin-Brooks statistics, for EHM (left panel) and for BHM
(right panel), as a function of the number of MCMC samples. The solid line corresponds to the
MPSRF forηηη; the dashed line corresponds to the maximum of the elementwise PSRFs forηηη. Here,
the number of observations isn= 5,000.

Figure 5: Plots show the observed data (top-left panel), thetrue simulated process,Y(·) (top-right
panel), the mean of the empirical predictive distribution,ŶSEHM(·)≡E(Y(·)|ZO, θ̂θθEM) (bottom-left
panel), and the mean of the posterior distribution,ŶSBHM(·)≡ E(Y(·)|ZO) (bottom-right panel).

Figure 6: The left panel corresponds to the kernel-density plot showing the distribution of the
difference,ŶSEHM(·)−ŶSBHM(·). The right panel corresponds to kernel-density plots showing the
distribution of the ratio,(var(Y(s)|ZO))

1/2/(var(Y(s)|ZO, θ̂θθEM)
1/2, separately for locations with

data and for locations without data.

53



Figure 7: Maps to the left show the log(AOD) (top-left panel), the mean (middle-left panel) and
standard deviation (bottom-left panel) of the predictive distribution ofY(·), namely[Y(·)|ZO, θ̂θθEM].
Maps to the right show the predictive mean of the different components of variability inY(·),
namely, the components due to trend,X(·)⊤β̂ββEM (top-right panel), the random-effects component,
E[S(·)⊤ηηη|ZO, θ̂θθEM] (middle-right panel), and the fine-scale-variation component,E[ξξξ(·)|ZO, θ̂θθEM]
(bottom-right panel). The middle-left panel which is a map of the mean of the predictive distribu-
tion of Y(·), namelyE[Y(·)|ZO, θ̂θθEM], is the sum of the three panels shown on the right

Figure 8: Boxplots showing the variability of the predictive standard deviation ofY(si) for values
of m(si) = 1,2, . . . ,21.

Figure 9: AOD data inD (top-left panel) and histogram showing their distribution(top-right panel).
Maps show the predictive mean (middle-left panel), the pixelwise predictive standard deviation
(middle-right panel), the pixelwise predictive 2.5 percentile (bottom-left panel), and the pixelwise
predictive 97.5 percentile (bottom-right panel) obtainedfrom the empirical predictive-distribution,
[µZ|Y(·)|ZO, θ̂θθEM]. The plots of the predictive mean and the predictive percentiles have the same
color scale, where any value greater than 1 has been assignedthe highest color-value.

Tables

Table 1: True parameter values and the sample mean of the EM parameter estimates based on 1600
simulated datasets. Each dataset is of sizen = 20,000. The empirical root mean squared errors
(RMSEs) of the parameter estimates are also reported.

Parameter True value Sample mean based on the
1600 simulated datasets

RMSE

β1 2.0 1.922 0.0954
β2 0.0125 0.01262 0.0002
σ2

ξ 0.05 0.0507 0.002
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Table 2: Gelman-Rubin-Brooks statistics for varying sample sizes (n). The number of MCMC
samples generated are L=15,000 for EHM, and L=40,000 for BHM. MPSRF is the multivariate
potential scale reduction factor, and max(PSRF) is the maximum of the elementwise potential
scale reduction factors (PSRFs).

EHM (L=15,000) BHM (L=40,000)
ηηη ξξξO ηηη ξξξ

Sample size (n) MPSRF max(PSRF) max(PSRF) MPSRF max(PSRF) max(PSRF)
5,000 1.08 1.028 1.0025 1.07 1.021 1.0011
10,000 1.07 1.028 1.0028 1.09 1.016 1.0011
15,000 1.09 1.027 1.0027 1.06 1.018 1.0014
20,000 1.07 1.027 1.0028 1.09 1.014 1.0012
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Table 3: Computational time for varying sample sizes (n). For EHM, the EM algorithm was used to
estimate the parameters, and then an MCMC algorithm was usedto generateLEHM = 15,000 sam-
ples from the empirical predictive distribution,[ηηη,ξξξO|ZO, θ̂θθEM]. For BHM, an MCMC algorithm
was used to generateLBHM = 40,000 samples from the posterior distribution,[ηηη,ξξξ,θθθ|ZO].

Computational Time (in hours)
EHM (L=15,000) BHM

(L=40,000)
Sample size (n) EM Estima-

tion
MCMC Im-
plementation

Total MCMC Im-
plementation

Ratio of computational
time (BHM/EHM)

5,000 0.02 0.16 0.18 3.95 21.94
20,000 0.02 0.62 0.64 5.79 9.04
35,000 0.02 1.01 1.03 7.61 7.38
50,000 0.04 1.45 1.49 8.70 5.83
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