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Abstract

Large-sample Wilson-type confidence intervals (CIs) are derived for a parameter
of interest in many clinical trials situations: the log-odds-ratio, in a two sample ex-
periment comparing binomial success proportions, say between cases and controls.
The methods cover several scenarios: (i) results embedded in a single 2× 2 contin-
gency table, (ii) a series of K 2×2 tables with common parameter, or (iii) K tables,
where the parameter may change across tables under the influence of a covariate.
The calculations of the Wilson CI require only simple numerical assistance, and for
example are easily carried out using Excel. The main competitor, the exact CI, has
two disadvantages: It requires burdensome search algorithms for the multi-table
case and results in strong over-coverage associated with long confidence intervals.
All the application cases are illustrated through a well-known example. A simula-
tion study then investigates how the Wilson CI performs among several competing
methods. The Wilson interval is shortest, except for very large odds ratios, while
maintaining coverage similar to Wald-type intervals. An alternative to the Wald
CI is the Agresti-Coull CI, calculated from Wilson and Wald CIs, which has same
length as the Wald CI but improved coverage.

Some key words: binomial proportions, case-control studies, exponential families, hyper-geometric

distributions, sufficient statistics.
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1 Introduction

The elementary problem of comparing two binomial success probabilities θ1 and θ2 is an

old one in Statistics, with many applications in medical and related fields. It can be

parametrized in several ways, for example through the difference θ1 − θ2, the ratio θ1/θ2,

the complementary ratio (1− θ1)/(1− θ2), or the log-odds-ratio,

α = log
{
θ1(1− θ2)

(1− θ1)θ2

}
.

Each of the above parametrizations has a corresponding practical setting for which it

is appropriate. A good discussion is in (Agresti 2002, p. 43 ff). Among these different

methods, the use of log-odds-ratio has some further advantages in terms of interpretations

within prospective studies; see Agresti (2002, p. 45 ff). The present paper considers the

problem of developing large sample confidence intervals (CIs) for α, for several differ-

ent experimental settings, in a way that parallels the Wilson CIs for a single binomial

probability; see Wilson (1927) or Brown et al. (2001).

Wilson-type intervals use an approximately normal pivotal statistic, standardized by

the correct standard deviation expression rather than a standard error estimate, and as

such, are generally superior to Wald intervals. Despite the elementary nature of the prob-

lem under consideration, Wilson CIs appear not to have been derived previously, current

popular intervals being the Wald CI and the exact CI. The former is based on a asymp-

totic result, as is the Wilson CI, and is usually provided as standard output by statistical

packages, e.g. the routine clogit of the R (R-Development-Core-Team 2006) package
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survival (Therneau and Lumley 2010) provides the Wald CI. The latter, the exact CI,

strictly maintains the nominal confidence level, but at two costs, namely strong over-

coverage plus a huge computational burden in order to compute coefficients necessary

to determine the conditional distribution for the multi-table case (Mehta et al. 1985).

This explains why the exact CI is not widely implemented in statistical packages, for

example it is not implemented in R. The phrase ”exact” refers to the exact (and not ap-

proximate) underlying discrete distribution, but the discreteness makes it impossible to

attain exact nominal confidence level, this explaining over-coverage, see Agresti

(2002, p.18-19) for a discussion for the binomial case. The Agresti-Coull CI, the sym-

metric interval around the mid point of the Wilson CI with length equal to Wald CI,

is computational attractive, since it only requires the Wald and the Wilson CIs, both

requiring relatively simple computations for the scenarios considered here.

The necessary theory for the Wilson CI is discussed in Section 2. Conditioning is used

to remove a nuisance parameter β = log{θ1θ2(1 − θ1)
−1(1 − θ2)

−1}. This conditioning

creates a 2 × 2 table with fixed marginals, and hence one degree of freedom. The single

random observable has a large sample approximate distribution, assuming all marginal

totals are large, of known form. The result is re-stated as Theorem 1 in a form appli-

cable to the CI problems considered here, with a simple proof. From it, a CI method

is formulated, in Section 3, for a single 2 × 2 table, with very regular numerical and

computational properties. The calculations are easy to implement, for example, with

Excel.
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The method is also applied, in Section 4, to find a CI for the assumed common value

of α across a series of K 2× 2 stratified tables. The numerical calculation properties are

not as strong as for the single table case, but are reliable nevertheless.

A more complex situation still is the case of K stratified tables, where the parameter

α changes across tables, through the influence of a covariate u. This creates a regression-

style situation where a ’slope’ parameter δ, measuring the influence of u on α, is of

interest. Once again the proposed procedures can be adapted to this case, in Section 5,

with reliable numerical convergence.

A well-known example is used in Section 6 to illustrate all cases of the methods.

Section 7 investigates the performance of the Wilson CI, the Wald CI, the Agresti-Coull

CI and the exact CI by conducting a simulation study and discusses results along

with future research directions.

2 Theory for a Single Table

For i = 1, 2, let θi be the ith sample success probability, with sample size ni and xi

observed successes, and let φi = log{θi/(1− θi)}. Then the likelihood is

L =
2∏
i=1

(
ni
xi

)
θxi
i (1− θi)ni−xi , ∝

2∏
i=1

eφixi

(1 + eφi)ni
.

Write α = φ1 − φ2 and β = φ1 + φ2. Then

L ∝
exp{x1(

α+β
2

) + x2(
β−α

2
)}

{1 + e(α+β)/2}n1{1 + e(β−α)/2}n2
,

implying that x1 + x2 = s, the total number of successes, is sufficient for the nuisance
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parameter β. Conditioning on s shows that x1−x2, or equivalently just x1 = x, is sufficient

for α, and that this conditional likelihood, given s, as a function of x is ∝ exp(αx).

Therefore the conditional probability for x, given s, must have the exponential form

px = P (X1 = x|X1 +X2 = s) =
axe

αx

m(α)
,

where {ax} is the corresponding probability distribution for the null case α = 0, which is

the hyper-geometric distribution Hg(n; s, n1), with N = n1 + n2. Also, m is the moment

generating function of this hyper-geometric distribution. With this exponential family

form, x is conditionally sufficient for α, and optimal large-sample inference for α will be

based upon the corresponding large-sample distribution of x.

The form of this distribution is non-central hyper-geometric, differing from the usual

Hg distribution through the factor eαx. Under conventional large-sample assumptions

n1, n2 and s are all assumed to be large, and the usual, well-known normal approximation

to the hyper-geometric corresponds to α = 0. This result also covers the cases α =

O(N−1/2), but the present case where α = O(1) is different. The required result is of

known form; see Breslow (1981), and earlier papers by Stevens (1951) and Hannan

and Harkness (1963). It is re-stated now in a form suitable for extension to confidence

interval derivation in the more complex cases of later sections.

Theorem 1. As N →∞, suppose that s/N → p and n1/N → q. Let y = x/N , and

z =
√
N(y − µ)/σ, where µ is given implicitly for fixed α by

α = g(µ) = log
{
µ(1− p− q + µ)

(p− µ)(q − µ)

}
, (1)
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and σ2 by

σ2
{

1

µ
+

1

p− µ
+

1

q − µ
+

1

1− p− q + µ

}
= σ2g′(µ) = 1. (2)

Then z →D N(0, 1) as N →∞.

A standard proof for this know result can be found in the Appendix.

The approximate mean µ and variance σ2/N of y are determined implicitly by

(1) and (2). Details of iterative confidence interval calculations for a single 2 × 2 table

are outlined in the next Section.

3 Confidence Interval Calculations for a Single Table

The equations (1) and (2), which determine the approximate mean and variance µ and

σ2/N , have the form α = g(µ) and σ−2 = g′(µ), where g′ is clearly a convex function,

being the sum of four convex functions of µ; see (2). An approximate 100(1− ε)% CI for

µ is found by solving

N(y − µ)2

σ2
= z2

1−ε/2, (3)

where zε is the level-ε quantile of N(0, 1). The two solutions µ1, µ2 are the required CI

end-points. A corresponding CI for α comes from (1), ie with end-points αi = g(µi) for

i = 1, 2.

Computing the CI for µ through solving (3) is numerically easy, because σ−2(y−µ)2 =

g′(µ)(y − µ)2 is also the sum of four convex functions of µ, and hence is convex. To see
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this, a typical term is

(y − µ)2

(p− µ)2
= p− µ+ 2(y − p) +

(y − p)2

p− µ
,

convex in µ.

In addition to being convex, the function g′(µ)(y − µ)2 asymptotes up to +∞ at the

two end points of the permissible range of µ-values, max(0, p + q − 1) ≤ µ ≤ min(p, q).

Thus (3) has only two solutions µ1, µ2 for µ, and the CI (µ1, µ2) converts easily to the CI

(g(µ1), g(µ2)) for α.

To set up a convergent iterative scheme for calculating the roots µ1, µ2 of (3), observe

that this equation can be re-written as

1 +
z2
1−ε/2

N
= 1 + g′(µ)(y − µ)2

=
y2

µ
+

(y − p)2

p− µ
+

(y − q)2

q − µ
+

(y + 1− p− q)2

1− p− q + µ

= f(µ)

say, so that

f ′(µ) = −y
2

µ2
+

(y − p)2

(p− µ)2
+

(y − q)2

(q − µ)2
− (y + 1− p− q)2

(1− p− q + µ)2
. (4)

We know that u < µ1 < y < µ2 < v, where u = max(0, p + q − 1) and v = min(p, q).

Begin the iterations with a trial value µ(0) with u < µ(0) < µ1 for the lower root µ1, or

µ2 < µ(0) < v for the upper root µ2. Then use the Newton-Raphson algorithm:

µ(j) = µ(j−1) −
f(µ(j−1))− 1− z2/n

f ′(µ(j−1))
.

The convexity of f guarantees that {µ(j)} converges rapidly and monotonically to µ1 or

µ2, as j increases.
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The routine is easy to implement, for example in Excel, and is illustrated in Section

6. It is based upon calculating a CI on the µ scale, where there are strong convexity

properties to aid the calculation, then converting to the α scale through use of α = g(µ).

Writing the inverse function as µ = h(α), the equivalent formulation on the α scale

satisfies N{y−h(α)}2/h′(α) = z2
1−ε/2, instead of (3). The function h does not necessarily

have the same strong convexity properties as g, but is monotone on either side of its single

zero, so CI endpoints calculated on the α scale are monotone in z, and unique. While

use of the µ scale is numerically easier, when applications to multiple 2 × 2 contingency

tables are considered in the Sections to follow, it is necessary to revert to calculations on

the α scale.

4 Stratified Tables with Common Log-Odds-Ratio

Consider a series of K stratified 2×2 tables, all with a common value of log-odds-difference

α. The ith table has nuisance parameter βi, removed by conditioning on the marginal total

of successes, si. Thus each table has fixed marginals and a single informative observable.

The result of Theorem 1 applies to each table, but to bring all such results under one

umbrella, a modified set-up is needed. Using subscripts i to refer to the ith table, X =

∑K
1 xi is sufficient for the common α value of interest. Letting N =

∑K
1 Ni, with λi =

Ni/N , it is easy to establish the following result, using the method of proof in Theorem

1. In working through the proof, it is useful to note that for all i we have 0 < pi < λi and

0 < qi < λi, so that max(0, pi + qi − λi) < µi < min(pi, qi).
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Theorem 2. For each i = 1, . . . , K, we have

α = log
{
µi(λi − pi − qi + µi)

(pi − µi)(qi − µi)

}
= gi(µi), (5)

with the inverse relation written as µi = hi(α). Also σ2
i = {g′i(µi)}−1 = h′i(α) and

yi = xi/N . Then the approximate distribution of each zi =
√
N(yi−µi)/σi is independent

standard normal.

Corollary. The approximate distribution of the sufficient statistic X is normal, with

mean N
∑K

1 µi = N
∑K

1 hi(α), and variance N
∑K

1 σ
2
i = N

∑K
1 h
′
i(α).

Note that it is necessary to work on the α-scale rather than µi scales as in the case of

a single table. The end-points of a 100(1− ε)% CI for α are the solutions of

{
X −N ∑K

1 hi(α)
}2

N
∑K

1 h
′
i(α)

= z2
1−ε/2. (6)

In the case of a single table K = 1, the criterion on the left-hand side is zero at the

estimated α̂, and monotone, moving away from α̂ on either side. The same properties

appear to hold for multiple tables, K ≥ 2, yielding reliable computation of CI endpoints,

but a formal proof has not yet been found.

In calculating the left-hand side of (6) for trial values of α, the derivatives h′i(α) are

awkward, and it is easier to revert back to the µi values. The expression for each µi is

given by inverting (5), requiring careful choice of a quadratic equation root. The general

result is A = eα − 1, B = −λ− (p+ q)A, C = pq(A+ 1), and

µ = h(α) =
−B −

√
B2 − 4AC

2A
,
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with subscripts i inserted for µi, hi(α), pi, qi and λi. Because g, h are inverse functions of

each other, we have
∑
i h
′
i(α) =

∑
i{g′i(µi)}−1, so that (6) becomes

(X −N ∑K
i=1 µi)

2

N
∑K
i=1{1/g′i(µi)}

. (7)

The values of each g′i are easy to calculate from the expression in (2), which is just

σ2g′(µ) = 1.

An example of the calculation of a CI for the common α value in a series of 2 × 2

tables in given in Section 6.

5 Stratified Tables with Varying Log-Odds-Ratios

Now consider a series of K stratified 2 × 2 tables as in Section 4, but with the ith table

value αi of the log-odds-ratio-difference given by αi = ω + δui, depending on a known

covariate ui. The coefficient δ measures the influence of the covariates {ui} upon {αi},

and is of interest. The parameter ω, measuring a common level of {αi} values, is another

nuisance parameter, additional to the parameters {βi} already removed by conditioning

on marginal success totals {si}.

Likelihood calculations as in Section 2 show that X =
∑K

1 xi is sufficient for ω and

Y =
∑K

1 uixi is sufficient for δ. Conditioning upon X will remove the nuisance parameter

ω. Then, following carefully the same method of proof as for Theorem 1 gives this result.

Theorem 3. Under the same conditions as Theorem 2, with yi = xi/N and λi = Ni/N ,

the approximate joint distribution of {yi} as N → ∞, conditional on X =
∑K

1 xi = Nt,
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is given by yi = µi +N−1/2σizi; the means {µi} are given by

gi(µi) = δui − c, or µi = hi(δui − c),

where the constant c is chosen so that
∑K

1 µi = t is satisfied; the variances σ2
i are given

by

σ2
i = {g′i(µi)}−1 = h′i(δui − c); (8)

and the {zi} are zero-mean normal random variables, with idempotent covariance matrix

cov(z) = I − vvT , where vi = σi/
√∑

j σ
2
j .

Corollary. The approximate conditional distribution of the sufficient statistic Y =

∑K
1 uixi is normal, with mean N

∑K
1 uiµi, and variance

N
{ K∑

1

σ2
i u

2
i −

[
∑K

1 σ
2
i ui]

2∑K
1 σ

2
i

}
. (9)

Remarks. (i) Equation (8) is useful in evaluating the variance in (9). The easiest path

is to use the explicit expression for hi in Section 4 to evaluate µi = hi(δui − c), and then

the expression for g′i implicit in (2).

(ii) The value of δ is unchanged if each ui is replaced by ui − b, for some constant b, and

the approximate distribution of Y , as described in Theorem 3, is also unchanged, because

the constant c therein is adjusted by any choice of b.

The end-points of a 100(1− ε)% CI for δ are the solutions of

z2
1−ε/2 =

{Y −N ∑K
1 uiµi}2

var(Y )
, (10)

where var(Y ) is given by (9). Section 6 contains an example of the calculation of such a CI,

using the results in Theorem 3 and its Corollary. Although there is no formal proof, the
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example suggests that the right-hand side of (10) has very regular monotonicity properties,

making calculation of the CI end-point solutions an easy numerical task.

6 Example

The following example shown in Table 1 comes from Kraus et al. (1989), and is re-

produced in Greenland (1989). The data is from a 1960 case-control study relating the

occurrence of sudden infant death syndrome (SIDS) to marital status. Here, the three

marital status categories married, single, and separated/divorced are combined into two,

partnered or alone. There are K = 4 tables, stratified according to four income levels.

To begin, use the first 2×2 table, the lowest income level, to illustrate the single-table

confidence interval method for α, the difference in log-odds-ratio for occurrence of SIDS,

between ’partnered’ and ’alone’ states.

We have y = 19/281 = 0.06762, p = 36/281 = 0.12811, q = 132/281 = 0.46975, and

for a 95% CI, 1 + z2/n = 1.01367. Thus u = 0 and v = 0.12811. For the lower root µ1,

beginning with µ(0) = 0.01 gives the iterates presented in Table 2. For the upper root µ2,

beginning with µ(0) = 0.1 gives the output shown in Table 3.

Applying the function α = g(µ) in (1) to (µ1, µ2) = (0.049, 0.086) gives the 95% CI

for α, the log-odds-ratio for SIDS between the two partnered states, as (−0.425,+0.958).

The corresponding Wald, Agresti-Coull and exact CI’s are (−0.433,+0.965), (−0.433,

+0.966) and (−0.495,+1.034) and the corresponding lengths are 1.383 (Wilson), 1.400

(Wald and Agresti) and 1.529 (exact). We also use the R (R-Development-Core-Team
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2006) package survival (Therneau and Lumley 2010) with conditional ML fitter clogit

to double check our own program. It offers the option ”exact” or ”approximate” con-

ditional ML. The difference between the two options is large, it gives the Wald CI

(−0.351,+0.621) with length 0.972. Looking at the other CIs we prefer to rely on

the exact conditional ML option. In fact for this example clogit does not provide an

”exact” solution (non-convergence), but only an approximate solution, because it seems

the search for the number of permutations is cumbersome.

Now consider calculation of a 95% CI for a common value of α for the first two tables,

corresponding to the two lowest income groups. The CI criterion (6) is monotone in α on

either side of the zero-value, so is easy to solve numerically, in Excel for example. The

resulting 95% CI is (−0.217,+0.776) with length 0.993.

When the same method is applied to find a CI for the assumed common α across all

four tables, the result is (−0.348,+0.424) with length 0.772. For multiple tables we have

not implemented the exact method, because of the complexity involved for computing the

resulting coefficients of the underlying distribution. For the first two tables, the alterna-

tive CIs are: (i) Wald (−0.434,+0.965) (length 1.40), (ii) Agresti-Coull (−0.421, 0.978)

(length 1.40) and across all four tables, the Wald CI is undefined, because conditional ML

estimation fails to provide estimates. Using the option ”approximate” of survival, the

Wald CI is (−0.176, 0.194), which again seems far too small, compared to the Wilson CI

(−0.217,+0.776). Unconditional ML estimation gives a Wald CI of (−0.341, 0.428) with

length 0.770 which is close to the Wilson CI in this instance.
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The CI for four tables is narrower than for the one found from the first two tables

only, as is expected from the larger total sample size, but centred more around zero. This

reflects the fact that the empirical odds-ratios from the first two tables 1.31 and 1.34 are

different to those for the last two tables, 0.60 and 0.82, suggesting the possibility that

the effect of being partnered upon prevention of SIDS may be beneficial in the higher

income groups, but the opposite in the lower income groups. Thus the assumption of a

common odds-ratio across all four tables is called into question, and the method of Section

5, assessing the effect of an income covariate, becomes relevant.

Therefore, as in Section 5 we propose the model αi = ω + δui, for i = 1, . . . , 4, where

to distinguish between low and high income levels, the covariate values −1,−1,+1,+1

are chosen for {ui}. The regression parameter δ measures the influence of the income

covariates.

To evaluate a 95% CI for δ by solving (10), an extra layer of computation is needed,

because each trial value of δ requires calculation of a tuning constant c to enforce the

conditioning constraint
∑
µi = t = 124/1915 = 0.06475196 which removed the nuisance

parameter ω. This can be dealt with in Excel by making simple modifications to the

columns used for the common α case of Section 4, and then using Excel’s Solver. The

resulting values of z2 on the right-hand side of (10) are monotone in δ on either side of the

zero-value, or estimate δ̂. Computation is slower than for the methods of earlier Sections,

but reliable nevertheless. The results of a numerical search are as shown in Table 4.

A 95% CI for δ is (−0.71,+0.05), just including the null point δ = 0, corresponding to
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a non-significant P-value 0.092 for z2 = 2.85. The estimate of δ is δ̂ = −0.329. Although

the result does not conclusively establish a non-zero value of δ, the analysis does open

the possibility that any beneficial effect of being partnered upon the prevention of SIDS

among upper income levels is reversed among lower income levels. The function clogit

does only allow conditioning on one variable, neither have we implemented any of the

other methods due to the complexity involved. Unconditional ML estimation gives an

estimate of −0.44879 and a Wald CI of (−0.946, 0.048).

7 Simulation Study and Discussion

In order to evaluate the performance of 95% Wilson CIs, we conducted a small-scale sim-

ulation study focusing on the single table scenario considered in Section 3. We compared

the Wilson CI with (i) the exact CI, which is based on inverting an exact test, see for

example Mehta et al. (1985), (ii) the standard Wald-type CI based on conditional max-

imum likelihood (CML), and (iii) the Agresti-Coull CI (Brown et al. 2001), which has

the same form as the Wald-type CI, except that its midpoint - the CML estimate - is re-

placed by the midpoint of the Wilson CI. Brown et al. (2001) considered CIs for binomial

proportions and compared the performance of many CIs, among them the Wilson CI, the

Agresti-Coull CI and the Wald-type CI.

We consider a small sample situation, single tables with n1 = n2 = 5, 10, 15, 30. The

Wilson CI is based on a large-sample approximation, hence we would not expect it to

perform well for small n1 = n2. Figures 1 and 2 show the exact coverage probabilities
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for the log odds ratio α = log{θ1(1−θ2)/(θ2(1−θ1))} for all four CIs and n1 = n2 = 5, 30.

over a dense grid of parameters θ1 and θ2 with θ1, θ2 ∈ {0.001, 0.002, . . . , 0.999}. Due to

the shading involved plotting the coverages along a line gives a better picture. Figures 3

and 4 show the coverages along the line θ1 = 1− θ2 for n1 = n2 = 10, 30.

Figures 5 and 6 show the differences in expected length between the exact and the

Wald-type CI, and between the Wald-type CI and the Wilson CI for n1 = n2 = 5, 15.

The same is illustrated in Figures 7-8 in form of boxplots. The exact CI is roughly

30% longer than the Wald CI, the Wilson CI is shortest roughly being 5% shorter than

the Wald CI, both statements in average and apply approximately for all four scenarios

n1 = n2 = 5, 10, 15, 30.

The coverage pattern of all CIs is very similar to those reported by Brown et al.

(2001), an alternating coverage probability fluctuating around 95%, see Figures 1-8. In

particular, the downward spikes for the Wald CI near the boundary of the parameter space

is problematic, but less severe than anticipated. The infimum coverage of the Wald CI here

is larger (≈ 89%) than that the infimum coverage (< 70%) for the problem of estimating

the probability of a binomal proportion, see plot Agresti (2002, p.19), and the infimum

coverage probability of the other competing methods, the Agresti-Coull CI (≈ 93%) and

the Wilson CI (≈ 89%), are also relatively high. Interestingly for n1 = n2 ≥ 10 the

infimum coverage probability for the Wilson CI is larger than that of the Wald CI.

The exact CI is the only method considered here that strongly maintains the required

confidence level of 95%. In fact the minimum coverage recorded is 97.5% owing to the
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”exact” discrete distribution making the exact CI strongly conservative. Attaining infi-

mum coverage probability seems to be the best criteria in evaluating CIs. The exact CI

does not attain the specified infimum nominal level of 95%, but that of 97.5%. Therefore

we do not consider the exact CI as the optimal CI, but are rather interested in a CI with

a coverage around the nominal 95% level. This view is shared for example by Agresti

(2002, p.19), who does not consider the Wald CI as a good option due to under-coverage,

but also more importantly does not consider the exact CI as good due to strong over-

coverage. In fact he considers another CI method as ”a good method” with fluctuating

coverage around 95%. Following the same argumentation as Agresti, we conclude that

the approximate methods considered here are favoured over the exact CI.

The expected length of the Wilson CI is shortest and that of the exact CI longest.

Only for very large α, the Wald-type CI has shorter expected length, which can be seen

from Figures 9-12. The results also show that the Agresti-Coull interval is better than

the Wald-type CI, having the same expected length, but higher coverage probabilities.

Figures 9-12 shows that the length of the Wilson CI is in roughly 91% (n1 = n2 = 5)

- 98% (n1 = n2 = 30) of the cases shorter than the Wald CI.

Even though our proposed Wilson CI is based on a large sample approximation, the

method performs well. Conditionally on some fixed parameter combination of θ1 and θ2 it

might have lower coverage than 95%, but unconditionally, by averaging over a (relatively

small) neighbourhood of the true parameter or alternatively over the whole parameter

space, the coverage level is maintained; see Figures 1-8,13-16.
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If accuracy, ie the expected length of the CI, is more important than conditional

coverage probability, then we suggest the Agresti-Coull CI (favouring coverage) for smaller

n1 and n2, for larger n1 and n2 we recommend the Wilson CI; otherwise if maintaining

infimum coverage is most important then there is no alternative to the exact CI. This

paper showed that the Wilson CI should also be included in standard statistical packages

that give CIs for such single and multiple case scenarios to provide the practitioner with

another ”shorter” alternative.

The results indicate that the Wilson CI is not only useful for the stratified situations

considered in this paper, but may also be more generally for conditional ML and logistic

regression. However this needs further investigation before such a generalisation can be

made. Furthermore, Brown et al. (2001) derived boundary modifications for the Wilson CI

to eliminate undesirable downwards coverage spikes near the boundary of the parameter

space. Their method reduced the downward bias dramatically. It remains to be seen

whether such a modification can also be developed for the two-sample log odds ratio due

to the higher complexity, compared to binomial proportions.
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A Proof of Theorem 1:

Proof. Use Stirling’s approximation to the factorial function, k! ∼ kk+1/2e−k
√

2π as k →

∞. The hypergeometric probability ax is given by

ax =
s! (N − s)! n1! n2!

x! (s− x)! (n1 − x)! (n2 − s+ x)! N !
,

for integer x with 0 ≤ x ≤ min(n1, s), so that, as a function of x,

px ∝ eαx

x!(s− x)!(n1 − x)!(n2 − s+ x)!
.

Use of Stirling’s formula then gives

log px ∝ αx−(x+
1

2
) log x−(s−x+

1

2
) log(s−x)−(n1−x+

1

2
) log(n1−x)−(n2−s+x+

1

2
) log(n2−s+x).

Substitute x = nµ + σzn1/2, and re-express this formula for log px in terms of z. This

is an elementary although lengthy task. Gathering up the terms in decreasing order of

magnitude gives:

(i) the coefficients of N log(N),
√
N log(N), N and log(N) do not depend on z, so are

part of a normalizing constant;

(ii) the coefficient of N1/2 is

σz
[

log
{

(p− µ)(q − µ)

µ(1− p− q + µ)

}
+ α + o(1)

]
, → 0, from (1);

and
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(iii) the coefficient of the constant term is

−σ
2z2

2

{
1

µ
+

1

p− µ
+

1

q − µ
+

1

1− p− q + µ

}
+ o(1), → −z2/2, from (2).

Thus, as a function of z, log px is constant − z2/2 + o(1), implying a N(0, 1) limit

distribution for z.
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Tables

Table 1. Data from the 1960 SIDS study (Kraus et al. 1989)(Kraus, Greenland and

Bulterys, 1989)

income(1960 $) disease status partnered alone
< 1, 500 case 19 17

control 113 132
1, 501− 2, 500 case 40 12

control 283 114
2, 501− 3, 500 case 27 10

control 308 69
> 3, 500 case 38 5

control 657 71

Table 2. iteration for the lower root µ1

j µ(j)

0 0.01
1 0.0179
2 0.0288
3 0.0399
4 0.0466
5 0.0485
≥ 6 0.0486
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Table 3. iteration for the upper root µ2

j µ(j)

0 0.1
1 0.09129
2 0.08695
3 0.08611
≥ 4 0.08609

Table 4. Searching for end-points of a 95% CI for δ.

δ c z2

−0.7 0.1096 3.61
−0.6 0.088 1.91
−0.5 0.077 0.76
−0.4 0.061 0.13
−0.3 0.042 0.02
−0.2 0.019 0.43
−0.1 −0.007 1.37
0.0 −0.038 2.85
0.1 −0.073 4.89
−0.712 0.097 3.85
−0.329 0.048 0.00
0.0523 −0.056 3.84
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Figures

Figure 1: Coverage of confidence intervals for the log odds ratio α for n1 = n2 = 5: (a)
Wald-type, (b) Agresti-Coull, (c) Exact and (d) Wilson.
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Figure 2: Figure 4: Coverage of confidence intervals for the log odds ratio α for n1 =
n2 = 30: (a) Wald-type, (b) Agresti-Coull, (c) Exact and (d) Wilson.
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Figure 3: Coverage of confidence intervals for the log odds ratio α for n1 = n2 = 10 along
the line θ1 = 1− θ2.

Figure 4: Coverage of confidence intervals for the log odds ratio α for n1 = n2 = 10 along
the line θ1 = 1− θ2.
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Figure 5: Differences between expected lengths of confidence intervals for the log odds
ratio α for n1 = n2 = 5: (a) Difference between exact and Wald-types, and (b) Difference
between the Wald-type and Wilson.

Figure 6: Differences between expected lengths of confidence intervals for the log odds
ratio α for n1 = n2 = 15: (a) Difference between exact and Wald-types, and (b) Difference
between the Wald-type and Wilson.
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Figure 7: (a) Boxplots for coverage probabilities and (b) Boxplots for the expected lengths
for the Wald-type CI, the Agresti-Coull CI, the Exact CI and the Wilson CI for n1 =
n2 = 5.

Figure 8: (a) Boxplots for coverage probabilities and (b) Boxplots for the expected lengths
for the Wald-type CI, the Agresti-Coull CI, the Exact CI and the Wilson CI for n1 =
n2 = 15.
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