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Abstract. One popular approach to small area estimation when data are spatially correlated is to employ Simultaneous 

Autoregressive (SAR) random effects models to define the Spatial Empirical Best Linear Unbiased Predictor (SEBLUP). See 

Singh et al. (2005) and Pratesi and Salvati (2008). SAR models allow for spatial correlation in the error structure. An 

alternative approach that incorporates the spatial information in the regression model is to use Geographically Weighted 

Regression (GWR). See Brunsdon et al. (1996) and Fotheringham et al. (1997). GWR extends the traditional regression 

model by characterising the relationship between the outcome variable and the covariates via local rather than global 

parameters. In this paper we investigate GWR-based small area estimation under the M-quantile modelling approach 

(Chambers and Tzavidis, 2006). In particular, we integrate the concepts of outlier-robust small area estimation and 

borrowing strength over space within a unified modelling framework by specifying an M-quantile GWR model that is a local 

model for the M-quantiles of the conditional distribution of the outcome variable given the covariates. This model is then 

used to define an outlier-robust predictor of the small area characteristic of interest that also accounts for spatial association 

in the data. An additional important spin-off from applying the M-quantile GWR small area model is more efficient 

synthetic estimation for out of sample areas. We demonstrate the usefulness of this framework through both model-based 

as well as design-based simulation, with the latter based on a realistic survey data set. The paper concludes with an 

application to environmental data for predicting average levels of the Acid Neutralizing Capacity at 8-digit Hydrologic Unit 

Code level in the Northeast states of the U.S.A. 

Keywords: Borrowing strength over space; Environmental data; Estimation for out of sample 

areas; Robust regression; Spatial dependency. 
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1. Introduction 

Sample survey data are extensively used for providing reliable direct estimates of totals and means for 

the survey population. However, reliable estimates for domains are also usually required, and 

geographically defined domains, for example regions, states, counties and metropolitan areas are of 

particular interest. In many cases, small (or even zero) domain-specific sample sizes result in direct 

estimators with high variability. This problem can be resolved by employing small area estimation 

(SAE) techniques. An approach that is now widely used in SAE is the so-called indirect or model-based 

approach. Indirect estimators for small areas are often based on unit level random effects models, and 

the Best Linear Unbiased Predictor (BLUP) is typically defined under the unit level random effects 

model that assumes independence of the random area effects. A detailed description of this predictor 

and of its empirical version (EBLUP) can be found in Rao (2003, Chap. 7), Rao (2005) and Jiang and 

Lahiri (2006). Chambers and Tzavidis (2006) describe an alternative approach to SAE that is based on 

regression M-quantiles. This approach avoids conventional Gaussian assumptions and problems 

associated with the specification of random effects, allowing between area differences to be 

characterized by the variation of area-specific M-quantile coefficients. Nevertheless, the assumption of 

unit level independence is also implicit in M-quantile small area estimation models. 

In economic, environmental and epidemiological applications, observations that are spatially close 

may be more related than observations that are further apart. This spatial correlation can be accounted 

for by extending the random effects model to allow for spatially correlated area effects using, for 

example, a Simultaneous Autoregressive (SAR) model (Anselin, 1992; Cressie, 1993). The application of 

SAR models in small area estimation enables researchers to borrow strength over space and hence 

potentially improve the precision of small area estimates. In this context, Singh et al. (2005) and Pratesi 

and Salvati (2008) have proposed the use of the Spatial Empirical Best Linear Unbiased Predictor 

(SEBLUP). 

SAR models allow for spatial correlation in the error structure. An alternative approach for 

incorporating spatial information in the regression model is by assuming that the regression coefficients 

themselves vary spatially across the geography of interest. Geographically Weighted Regression (GWR) 

(Brunsdon et al., 1996; Fotheringham et al., 1997; 2002; Yu and Wu, 2004) extends the traditional 

regression model by allowing local rather than global parameters to be estimated. That is, GWR directly 

models spatial non-stationarity in the mean structure of the model. In this paper we explore the use of 

GWR in small area estimation based on the M-quantile modelling approach. In doing so we first 

propose an M-quantile GWR model, i.e. a local model for the M-quantiles of the conditional 

distribution of the outcome variable given the covariates. This model is then used to define a predictor 

of the small area characteristic of interest (here we focus on small area means) that accounts for spatial 
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association in the data. The M-quantile GWR small area model integrates the concepts of outlier-robust 

small area estimation and borrowing strength over space within a unified modeling framework. In this 

context, Richardson and Welsh (1995) and Richardson (1997) have investigated outlier-robust inference 

for the linear mixed model and Sinha and Rao (2009) have proposed an outlier robust version of the 

small area EBLUP. However, we are not aware of any related extension to outlier-robust small area 

estimation under the SAR model or under another model that borrows strength over space. An 

additional important spin-off from applying the M-quantile GWR small area model appears to be more 

efficient predictors for out of sample areas. 

The structure of the paper is as follows. In section 2 we review unit level mixed models with 

random area effects and M-quantile models for small area estimation. In section 3 we describe GWR 

and extend this to define the M-quantile GWR model. In section 4 we show how the M-quantile GWR 

model can be utilised for small area estimation. In section 5 we discuss mean squared error estimation 

for small area predictors defined under the M-quantile GWR model. In section 6 we present a series of 

model-based and design-based simulation studies for assessing the performance of the different small 

area predictors considered in this paper. In section 7 we use data from the U.S. Environmental 

Protection Agency's Environmental Monitoring and Assessment Program (EMAP) to predict average 

levels of the Acid Neutralizing Capacity at 8-digit Hydrologic Unit Code (HUC) level in the Northeast 

states of the U.S.A. Finally, in section 8 we summarize our main findings. 

2. An overview of unit level models for small area estimation 

In what follows we assume that the target population can be divided into d small areas, each 

containing a known number  N j  of units, with the value   x ij  of a vector  x  of  p  auxiliary variables 

known for each unit  i  in small area  j  and with the value  yij  for the variable of interest  y  known for 

each unit in the sample. We assume that   x ij  contains 1 as its first component (so the model includes an 

intercept). The overall sample size is  n , with the sample size in area  j  equal to  nj  (this can be zero). 

The aim is to use this data to predict various area specific quantities, including (but not only) the area  j  

mean  mj  of  y . 

The most popular method used for this purpose employs linear mixed models. In the general case 

such a model has the form 

   yij = x ij
T

+ zij j + ij , i = 1, …,  nj , j = 1, …, d, (1) 

where  ij  is an individual random effect,  j  denotes a random area effect and  zij  is an auxiliary 

‘contextual’ variable whose value is known for all units in the population. The role of the  j  in (1) is to 
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characterise differences in the conditional distribution of  y  given  x  between the small areas. The 

empirical best linear unbiased predictor (EBLUP) of  mj  (Henderson, 1975; Rao, 2003, Chapter 7) is 

then 

 

   
m̂j

MX
= N j

1 yi
i s j

+ x i
T ˆ + zi

ˆ
j{ }

i rj

 (2) 

where  s j  denotes the  nj  sampled units in area j ,  rj  denotes the remaining  N j nj  units in the area 

and  
ˆ ,   

ˆ
j  are defined by substituting an optimal estimate of the covariance matrix of the random 

effects in (1) into the best linear unbiased estimator of  and the best linear unbiased predictor 

(BLUP) of  j  respectively. A widely used approach to mean squared error (MSE) estimation of the 

EBLUP is based on the approach taken by Prasad and Rao (PR) (1990). This estimator accounts for the 

variability due to the estimation of the random effects, regression parameters and variance components. 

In recent years there has been growing interest in methods that incorporate the spatial structure of 

the data in small area estimation. A popular approach does this by fitting a SAR model to the random 

area effects in (1). In matrix form the resulting model can be expressed as 

   y = X
T

+ Z I W( )
1

+ , (3) 

where  I  is a  d d  identity matrix,  Z  is a  n d  matrix of known positive constants, the  W  matrix 

describes the neighbourhood structure of the small areas and  defines the strength of the spatial 

relationship between the random effects of neighbouring areas. 

The application of SAR models in small area estimation enables researchers to borrow strength over 

space and hence potentially improve the precision of small area estimates. In this context, Petrucci and 

Salvati (2004), Singh et al. (2005) and Pratesi and Salvati (2008) have proposed the use of the Spatial 

Empirical Best Linear Unbiased Predictor (SEBLUP): 

 

   
m̂j

MX /SAR
= N j

1 yi
i s j

+ x i
T ˆ + zi v̂ j{ }

i rj

 (4) 

where 
   
v̂ j = b j

T
ĜZ

T
V̂ y X

T ˆ( ) , 
   
ˆ = X

T
V̂X( )

1
X

T
V̂y ,    V̂ = ˆ 2

In + ZĜZ
T  (  In  is an  n n  identity matrix), 

   
Ĝ = ˆ 2

I ˆW
T( ) I ˆW( )

1
, 

 
ˆ 2 ,  ˆ 2  and  ˆ  are asymptotically consistent estimators of the 

parameters obtained by Maximum Likelihood (ML) or Restricted Maximum Likelihood (REML) 

estimation and   b j
T  is   1 d  vector 

  0,0,…,1,…,0( )  with value 1 in the j-th position. These authors derive 

a MSE estimator for the SEBLUP following the results of Kackar and Harville (1984), Prasad and Rao 
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(1990) and Datta and Lahiri (2000). Note that due to the introduction of the additional parameter  

the last term of this MSE estimator, which measures the uncertainty arising from the estimation of the 

variance components, is not the same as in the case of the PR MSE estimator for the EBLUP. In 

practical applications, an approximately unbiased estimator of the MSE of SEBLUP can be obtained 

following the results of Harville and Jeske (1992) and Zimmerman and Cressie (1992) (Singh et al., 

2005; Pratesi and Salvati, 2008). Molina et al. (2008) recently proposed a computationally intensive 

parametric and nonparametric bootstrap-based estimator of the MSE of the Spatial Fay-Herriot model. 

These bootstrap procedures can be extended to the case of the unit level SAR model. 

An alternative approach to small area estimation is based on the use of M-quantile models. The M-

quantile of order q of a random variable  y  with distribution function   F( y)  is the value  mq  that 

satisfies 

  
q

y mq

q

dF( y) = 0  

where   q ( ) = (1 q)I ( < 0)+ qI ( 0){ } ( )  and  is an appropriately chosen influence function. 

Here  q  is a suitable measure of the scale of the random variable  Y mq . Note that when  ( ) =  we 

obtain the expectile of order q, which represents a quantile-like generalization of the mean, while when 

 ( ) = sgn( )  we obtain the standard quantile of order q. Both quantiles and expectiles have been 

extended to conditional distributions to provide quantile and expectile generalizations of the usual 

concept of a regression model (Koenker and Bassett, 1978; Newey and Powell, 1987). More generally, 

Breckling and Chambers (1988) define a linear M-quantile regression model as one where the M-

quantile   Qq (x; )  of order q of the conditional distribution of  y  given  x  corresponding to an 

influence function  satisfies 

 
   
Qq (x ij ; ) = x ij

T (q) . (5) 

 For specified q and continuous , an estimate 
  
ˆ (q)  of 

  
(q)  can be obtained via an iterative 

weighted least squares algorithm. Asymptotic theory for this estimator follows directly from well-

known M-estimation results and is set out in section 2.2 of Breckling and Chambers (1988). The M-

quantile coefficient  qi  of population unit i was introduced by Kokic et al. (1997) and is the value  qi  

such that 
   
Qqi

(x i ; ) = yi . M-quantile regression models can be used to characterise the entire 

conditional distribution f(y|x) of y given x, with the M-quantile coefficients,  qi , then characterising unit 

level differences in this conditional distribution. Extending this line of thinking to SAE, Chambers and 

Tzavidis (2006) observed that if variability between the small areas is a significant part of the overall 
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variability of the population data, then units from a particular small area can be expected to have similar 

M-quantile coefficients. Instead of using parametric random effects, these authors therefore propose 

the use of area-level M-quantile coefficients, i.e. suitably averaged area-specific unit-level M-quantile 

coefficients, for characterising area differences. 

In particular, when (5) holds, with 
  

(q)  a sufficiently smooth function of  q , they suggest a 

predictor of  mj  of the form 

 

   
m̂j

MQ
= N j

1 yi
i s j

+ Q̂ ˆ
j
(x i ; )

i rj

 (6) 

where 
   
Q̂ ˆ

j
(x i ; ) = x i

T ˆ ( ˆ
j )  and   

ˆ
j  is an estimate of the average value of the M-quantile coefficients of 

the units in area j . Typically this is the average of estimates of these coefficients for sample units in the 

area, where these unit level coefficients are estimated by solving 
   
Q̂qi

(x i ; ) = yi  for  qi . Here   Q̂q  denotes 

the estimated value of (5) at q. When there is no sample in the area, we can form a ‘synthetic’ M-

quantile predictor by setting   
ˆ

j = 0.5 . 

Tzavidis et al. (2008) refer to (6) as the ‘naive’ M-quantile predictor and note that it can be biased. To 

rectify this problem these authors propose a bias adjusted M-quantile predictor of  mj  of the form 

 

   
m̂j

MQ /CD
= tdF̂j (t) = N j

1 Q̂ ˆ
j
(x i ; )

i U j

+
N j

nj

yi Q̂ ˆ
j
(x i ; ){ }

i s j

, (7) 

where  U j = s j rj . Note that the superscript CD in (7) refers to the fact that it is based on evaluating 

the area j expected value functional defined by integrating with respect to the area j version of the 

distribution function estimator proposed by Chambers and Dunstan (1986). Tzavidis et al. (2008) note 

that, under simple random sampling within the small areas, predictor (7) can also be derived from the 

design-consistent and model-consistent estimator of the finite population distribution function 

proposed by Rao, Kovar and Mantel (1990). Due to the bias correction in (7), this predictor will have 

higher variability and so will be most effective when the naïve estimator (6) is expected to have 

substantial bias, e.g. when the functional form of (5) is incorrectly specified. An alternative approach to 

dealing with the bias-variance trade off in (7) in such a situation is to limit the variability of the bias 

correction term in (7) by using robust (huberized) residuals instead of raw residuals. A predictor of this 

type is described in Tzavidis et al. (2008). An estimator of the mean squared error of (7) was proposed 

in Tzavidis et al. (2008). See also Chambers et al. (2007) for a detailed discussion of this approach. 
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3. M-QUANTILE GEOGRAPHICALLY WEIGHTED REGRESSION 

In this section we define a spatial extension to linear M-quantile regression based on GWR. Since M-

quantile models do not depend on how areas are specified, we also drop the subscript  j  from our 

notation. 

Given n observations at a set of L locations  ul ; l = 1,..., L; L n{ } , with  nl  data values 

   yil ,x il ; i = 1,...,nl{ }  observed at location  ul , a linear GWR model is a special case of a locally linear 

approximation to a spatially non-linear regression model and is defined as follows 

    yil = x il
T (ul )+ il  (8) 

where   (ul )  is a   p 1( )  vector of regression parameters that are specific to the location  ul and the  il  

are independently and identically distributed random errors with zero expected value and finite 

variance. The value of the regression parameter ‘function’   (u)  at an arbitrary location u is estimated 

using weighted least squares 

 
   

ˆ(u) = w(ul ,u) x ilx il
T

i=1

nl

l=1

L
1

w(ul ,u) x il yil
i=1

nl

l=1

L

, 

where   w(ul ,u) is a spatial weighting function whose value depends on the distance from sample 

location  ul  to  u  in the sense that sample observations with locations close to  u  receive more weight 

than those further away. In this paper we use a Gaussian specification for this weighting function 

 
  
w(ul ,u) = exp dul ,u

2 / 2b2( )  , (9)  

where 
  
dul ,u  denotes the Euclidean distance between  ul  and u and b is the bandwidth. As the distance 

between  ul  and  u  increases the spatial weight decreases exponentially. For example,  if   w(ul ,u) = 0.5  

and   w(um ,u) = 0.25  then observations at location  ul  have twice the weight in determining the fit at 

location  u  compared with observations at location  um . Alternative weighting functions, corresponding 

to density functions other than the Gaussian, can also be used. The bandwidth b is a measure of how 

quickly the weighting function decays with increasing distance, and so determines the ‘roughness’ of the 

fitted GWR function. A spatial weighting function with a small bandwidth will typically result in a 

rougher fitted surface than the same function with a large bandwidth. For the purposes of this paper 

we use a global (i.e. single) bandwidth whose value is optimally defined by a cross validation criterion 

(Fotheringham et al., 2002): 
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CVa = yil ŷil b( )

2

i=1

nl

l=1

L

 

where   ŷil b( )  is the fitted value of  yil  using bandwidth  b . The value of  b  that minimizes  CVa  is then 

selected. An alternative approach is to use optimal local bandwidths. However, this significantly 

increases the computational intensity of the model fitting process. 

The GWR model (8) is a linear model for the conditional expectation of  y  given  x  at location  u . 

That is, this model characterises the local behaviour of the conditional expectation of  y  given  x  as a 

linear function of x. However, a more complete picture of the relationship between  y  and  x  at 

location  u  can be constructed by specifying a model for the conditional distribution of  y  given  x  at 

this location. Since the M-quantiles of a distribution serve to characterise it, such a model can be 

defined by extending (5) to specify a linear model for the M-quantile of order  q  of the conditional 

distribution of  y  given  x  at location  u , writing  

 
   
Qq (X; ,u) = X

T (u;q)  (10) 

where now 
  

(u;q)  varies with  u  as well as with q. Like (8), (10) can be interpreted as a local linear 

approximation, in this case to the (typically) non-linear order q M-quantile regression function of y on 

x, thus allowing the entire conditional distribution (not just the mean) of  y  given  x  to vary non-

linearly from location to location. The parameter 
  

(u;q)  in (8) at an arbitrary location  u  can be 

estimated by solving 

 
   

w(ul ,u)
l=1

L

q yil x il
T (u;q)( )x il = 0

i=1

nl

. (11) 

where   q ( ) = 2 (s 1 ) qI ( > 0)+ (1 q)I ( 0){ }  . Here  s  is a suitable robust estimate of the scale of 

the residuals 
   
yil x il

T (u;q) , e.g. 
   
s = median yil x il

T (u;q) / 0.6745  and we will typically assume a 

Huber Proposal 2 influence function,   ( ) = I ( c c)+ csgn( )I ( > c) . Provided  c  is bounded 

away from zero, we can solve (11) by combining the iteratively re-weighted least squares algorithm used 

to fit the ‘spatially stationary’ M-quantile model (5) and the weighted least squares algorithm used to fit 

a GWR model. Put 
  
w ( ) = q ( )  and 

  
w il = w ( il ) . Then (11) can be written as 

   
w(ul ,u)

l=1

L

w il yil x il
T (u;q){ }x il = 0

i=1

nl

. 

An R function (R Development Core Team, 2004) that implements an iterative re-weighted least 

squares algorithm for solving this equation is available from the authors. The steps in it are as follows: 
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1. For specified q and for each location  u  of interest, define initial estimates 
  

(0) (u;q) . 

2. At each iteration t, calculate residuals 
   il

t 1( )
= yil x il

T t 1( )(u;q)  and associated weights 

  
w il

(t 1) from the previous iteration. 

3. Compute the new weighted least squares estimates from 

 
   

t (u;q) = X
T
W

* t 1( )(u;q)X{ }
1
X

T
W

t 1( )(u;q)y . (12) 

Here 
 
y  is the vector of  n  sample values and  X  is the corresponding matrix of order  n p  of 

sample  x  values. The matrix    W
t 1( )(u;q)  is a diagonal matrix of order  n  with entry 

corresponding to a particular sample observation set equal to the product of this observation’s 

spatial weight, which depends on its distance from location  u , and the weight that this 

observation has when the sample data are used to calculate the ‘spatially stationary’ M-quantile 

estimate 
  
ˆ (q) . 

4.  Repeat steps 1-3 until convergence. Convergence is achieved when the difference between the 

estimated model parameters obtained from two successive iterations is less than a very small 

value. 

The fitted regression surface 
   
Q̂q (X; ,u) = X

T ˆ (u;q)  then defines the fit of the M-quantile GWR 

model for the regression M-quantile of order q of  y  given  x  at location  u . 

Street et al. (1988) proposed an estimator of the covariance matrix of a ‘standard’ M-estimator of the 

regression parameters. Their approach can be easily generalised to the estimation of the covariance 

matrix of the estimators of the M-quantile and M-quantile GWR regression coefficients. 

One may argue that (10) is over-parameterised as it allows for both local intercepts and local slopes. 

An alternative spatial extension of the M-quantile regression model (5) that has a smaller number of 

parameters is one that combines local intercepts with global slopes and is defined as 

 
   
Qq (X; ,u) = X

T (q)+ (u;q) .  (13) 

Here 
  

(u;q)  is a real valued spatial process with zero mean function over the space defined by 

locations of interest. The model (13) is fitted in two steps. At the first step we ignore the spatial 

structure in the data and estimate 
  

(q)  directly via the iterative re-weighted least squares algorithm 

used to fit the standard linear M-quantile regression model (5). Denote this estimate by 
  
ˆ (q) . At the 

second step we use geographic weighting to estimate 
  

(u;q)  via 
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ˆ (u;q) = n 1 w(ul ,u)

l=1

L

q yil x il
T ˆ (q)( )

i=1

nl

. (14) 

Choosing between (10) and (13) will depend on the particular situation and whether it is reasonable to 

believe that the slope coefficients in the M-quantile regression model vary significantly between 

locations. However, it is clear that since (13) is a special case of (10), the solution to (11) will have less 

bias and more variance than the solution to (14). Hereafter we refer to (10) and (13) as the MQGWR 

and MQGWR-LI (Local Intercepts) models respectively. 

Note that estimates of the local (GWR) M-quantile regression parameters are derived by solving the 

estimating equation (11) using iterative reweighted least squares, without any assumption about the 

underlying conditional distribution of y given x at each location u. That is, the approach is distribution-

free. Of course, if this conditional distribution is known, and can be appropriately parameterised by , 

say, then one can apply methods such as maximum likelihood to the sample data to estimate this 

parameter by  ˆ . The corresponding maximum likelihood estimate of 
  

(u,q)  in (8) is then defined by 

solving the estimating equation 

 
  

w(ul ,u) q y xil
T (u,q)( )dF( y xil ,u; ˆ )

i=1

nl

l=1

L

= 0  

where   w(v,u)  is the spatial weighting function of interest, e.g. (9), and   F( y x,v; )  is the conditional 

distribution of y given x at location v. A related question concerns the conditions under which the 

estimating equation (11) corresponds to a maximum likelihood scoring equation. Clearly, this will only 

be the case when 
  
xT (u,q)  is a parameter of the conditional distribution   F( y x,u; )  with the 

derivative of the corresponding log density equal to 
  q y xT (u,q)( ) x . For a normal conditional 

distribution,  equal to the identity function and q = 0.5 this condition is satisfied. Similarly, when  

is the sign function and the conditional distribution is Asymmetric Laplace, Koenker (2004) shows that 

(11) leads to a maximum likelihood solution.  

When several conditional quantiles or M-quantiles are estimated, two or more estimated conditional 

quantile or M-quantile functions can potentially ‘cross over’ at some point in the space defined by the 

covariates. This phenomenon is called quantile crossing and may be due to model misspecification, 

collinearity or the presence of outlying values. A consequence then is that the estimated conditional M-

quantiles defined by these functions will be incorrectly ordered with respect to q for some values of the 

covariates. The problem occurs because each conditional M-quantile function is independently 

estimated i.e. without enforcing the property that at each value of  x , the M-quantiles of  y  are ordered 

by q. He (1997) proposes a simple way of building this restriction into fitted quantile regression lines by 

a-posteriori restricting these lines relative to the median regression line. This approach can be easily 
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adapted to fitting M-quantile and M-quantile GWR models as follows. Note that we restrict our 

definition ourselves to a single covariate   x1  below. However, the extension to multiple covariates is 

straightforward. We assume without loss of generality that  has median 0 and  has median 1. The 

restricted M-quantile GWR fit for the covariate value  xu  at location  u  is then obtained by: 

1.  Computing the residuals   il = yil Q̂0.5(x1il ; ,u)  relative to the M-quantile GWR fit of order     q 

= 0.5 at location  u ; 

2.  Regressing the absolute values  ril = il  of these residuals on the covariate values   x1il  using an 

M-quantile GWR model with q = 0.5 to obtain fitted values   r̂il ; 

3.  Finding the value   q (u) ,+( )  for which 
  

w(ul ,u) q il qr̂il( )
i=1

nl

l=1

L

= 0 . Note that if the 

influence function  underlying  q  above is the Huber Proposal 2 function, then   q (u) is 

monotone in q. This can be shown by a straightforward adaptation of the argument used to 

prove Proposition 1 of He (1997). 

4.  The order-restricted M-quantile fit of order q at location  u  is then 

  Q̂q (x1; ,u) = Q̂0.5(x1; ,u)+ q (u)r̂(xu )  where   r̂(xu )  is the value of   r̂il  at  xil = xu . 

In the empirical results reported later in this paper, the above algorithm was used when there was 

evidence of quantile crossing in the unrestricted M-quantile GWR fit to the sample data. 

4. USING M-QUANTILE GWR MODELS IN SMALL AREA 

ESTIMATION 

As mentioned in Section 1, SAR models allow for spatial correlation in the error structure. 

Alternatively, this spatial information can be incorporated directly into the regression structure via an 

M-quantile GWR model. In this section we describe how this can be achieved. In addition to the 

assumptions made at the start of section 2, we now assume that we have only one population value per 

location, allowing us to drop the index  l . We also assume that the geographical coordinates of every 

unit in the population are known, which is the case for example with geo-referenced data. The aim is to 

use these data to predict the area  j  mean  mj  of  y  using the M-quantile GWR models (10) and (13). 

Following Chambers and Tzavidis (2006), we first estimate the M-quantile GWR coefficients 

  qi ; i s{ }  of the sampled population units without reference to the small areas of interest. A grid-based 

interpolation procedure for doing this under (5) is described in Chambers and Tzavidis (2006) and can 
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be used directly with (13). We adapt this approach to the GWR M-quantile model (10) by first defining 

a fine grid of q values in the interval (0,1). Chambers and Tzavidis (2006) use a grid that ranges between 

(0.01 to 0.99) with step 0.01. We employ the same grid definition and then use the sample data to fit 

(10) for each distinct value of q on this grid and at each sample location. The M-quantile GWR 

coefficient for unit i with values  yi  and   x i  at location  ui  is finally calculated by using linear 

interpolation over this grid to find the unique value  qi  such that 
   
Q̂qi

(x i ; ,ui ) = yi . 

Provided there are sample observations in area  j , an area  j  specific M-quantile GWR coefficient, 

  
ˆ

j  can be defined as the average value of the sample M-quantile GWR coefficients in area  j , otherwise 

we set   
ˆ

j = 0.5 . Following Tzavidis et al. (2008), the bias-adjusted M-quantile GWR predictor of the 

mean  mj  in small area  j  is then 

 
   
m̂j

MQGWR/CD
= N j

1 Q̂ ˆ
j
(x i ; ,ui )

i U j

+
N j

nj

yi Q̂ ˆ
j
(x i ; ,ui ){ }

i s j

 (15) 

where 
   
Q̂ ˆ

j
(x i ; ,ui )  is defined either via the MQGWR model (10) or via the MQGWR-LI model (13). 

Variants of the M-quantile GWR model (10) can be defined by changing the value of the tuning 

constant  c  in the Huber Proposal 2 influence function.  For example, an expectile version of the M-

quantile GWR model can be fitted by substituting a large positive value for the tuning constant  c  in 

this influence function. Empirical comparisons of the ‘large  c ’ (i.e. expectile) and the more robust 

‘small  c ’ Huber-type M-quantile small area models are reported in Chambers and Tzavidis (2006). 

There are situations where we are interested in estimating small area characteristics for domains 

(areas) with no sample observations. The conventional approach to estimating a small area 

characteristic, say the mean, in this case is synthetic estimation. Under the mixed model (1) the 

synthetic mean predictor for out of sample area  j  is 

   
m̂j

MX /SYNTH = N j
1

x i
T ˆ

U j

. Under the M-quantile 

model (5) the synthetic mean predictor for out of sample area  j  is 

   
m̂j

MQ/SYNTH
= N j

1 Q̂0.5 x i ;( )
i U j

. We 

note that with synthetic estimation all variation in the area-specific predictions comes from the area-

specific auxiliary information. One way of potentially improving the conventional synthetic estimation 

for out of sample areas is by using a model that borrows strength over space such as SAR random 

effects model and M-quantile GWR model. In this last case a synthetic-type mean predictor for out of 

sample area  j  is defined by 

   
m̂j

MQGWR/SYNTH
= N j

1 Q̂0.5 x i ; ,ui( )
i U j

. 
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We expect that when a truly spatially non-stationary process underlies the data, use of   m̂j
MQGWR/SYNTH will 

lead to improved efficiency relative to more conventional synthetic mean predictors. Empirical results 

that address the issue of out of sample area estimation are set out in section 6. 

5. MEAN SQUARED ERROR ESTIMATION 

A bias-robust estimator of the mean squared error of (7) was proposed in Tzavidis et al. (2008), and 

below we extend their argument to define an estimator of a first order approximation to the mean 

squared error of (15). A more detailed discussion of this approach to mean squared error estimation is 

set out in Chambers et al. (2007). Here we just note that it is based on (i) a model where the regression 

of  y  on  x  for a particular population unit depends on its location, with this regression specified by the 

locally linear GWR model (8), and (ii) the fact that estimators derived under the MQGWR model (10) 

or the MQGWR-LI model (13) can be written as linear combinations of the sample values of y. For 

example, from (12) we see that (15) can be expressed as a weighted sum of the sample  y -values 

    m̂j
MQGWR/CD

= N j
1
wsj

T
y , (16) 

where 

 
  
wsj =

N j

nj

1sj + Hij
T
x i

i rj

N j nj

nj

Hij
T
x i

i s j

. (17) 

Here   1sj  is the  n -vector with ith component equal to one whenever the corresponding sample unit is in 

area  j  and is zero otherwise and 

 
   
Hij = X

T
W (ui ; ˆ

j )X{ }
1
X

T
W (ui ; ˆ

j ) . 

If we treat the weights defining the linear representation (16) as fixed, and assume that the values of 

y follow a location specific linear model, e.g. (8), then an estimator of the prediction variance of (16) 

can be computed following standard methods of heteroskedasticity-robust variance estimation for 

linear predictors of population quantities (Royall and Cumberland, 1978). Put   wsj = (wij ) . This estimator 

is of the form 

 
   
v(m̂j

MQGWR /CD ) =
1

N j
2 ijk yi Q̂ ˆ

k
(x i , ,ui ){ }

2

i skk: nk>0

 (18) 

where 
  ijk = (wij 1)2

+ (nj 1) 1(N j nj ){ } I (k = j)+ wik
2 I (k j)  and 

   
Q̂ ˆ

k
(x i , ,ui )  is assumed to define 

an unbiased estimator of the expected value of  yi  given   x i  at location  ui . Since the weights defining 
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(17) reproduce the small area mean of  x , it also follows that (16) is unbiased for this mean in the 

special case where this expectation does not vary with location within the small area of interest, and so 

(18) then estimates the mean squared error of (16) in this special case. More generally, when the 

expectation of  yi  given   x i  varies from location to location within the small area, this unbiasedness 

holds on average provided sampling within the small area is independent of location, in which case (18) 

is an estimator of a first order approximation to the mean squared error of (16). 

Note that (18) treats the weights (17) as fixed, i.e. it ignores the contribution to the mean squared 

error from the estimated area level M-quantile coefficients   
ˆ

j . Chambers et al. (2007) refer to this as a 

pseudo-linearization assumption since for large overall sample sizes the contribution to the overall 

mean squared error of (16) arising from the variability of   
ˆ

j  will be of smaller order of magnitude then 

the fixed weights prediction variance of (16). As a consequence (18) will tend to be biased low. 

However, this potential underestimation needs to be balanced against the bias robustness of (18) under 

misspecification of the second order moments of y, and may well lead to this MSE estimator being 

preferable to other MSE estimators based on higher order approximations that depend on the model 

assumptions being true. Empirical results reported in Chambers et al. (2007) indicate that the MSE 

estimator (18) for M-quantile predictor performs well both in model-based and design-based studies 

with small area sample sizes. 

6. SIMULATION STUDIES 

In this section we present results from simulation studies that were used to examine the performance 

of the small area estimators discussed in the preceding sections. Two types of simulations were carried 

out. In section 6.1 we used model-based simulations. That is, at each simulation population data were 

first generated using a linear mixed model with different parametric assumptions about the distribution 

of errors and the spatial structure of the data and a single sample was then taken from this simulated 

population according to a pre-specified design. In section 6.2 on the other hand we used design-based 

simulation. Here real survey data were first used to simulate a population with spatial characteristics and 

this fixed population was then repeatedly sampled according to a pre-specified design. In our case the 

survey data came from the Environmental Monitoring and Assessment Program (EMAP) that forms 

part of the Space Time Aquatic Resources Modelling and Analysis Program (STARMAP) at Colorado 

State University. 
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6.1 MODEL-BASED SIMULATIONS 

Synthetic population values were generated under two spatial versions of a linear mixed model and two 

scenarios for the distribution of the random area effects and the individual residuals. Each population 

was of size   N = 10,500  and contained   d = 30  equal-sized small areas. More specifically, the first 

method of simulation generated population values of  y  and  x  according to the two-level model 

  yij = 1+ 2xij + j + ij  where  xij ~ U[0,1] ,   i = 1...350  and   j = 1...30 , with random effects generated under 

two scenarios: (a)   j ~ N (0,0.04)  and   ij ~ N (0,0.16)  and (b)   j ~ 2 (1) 1 and   ij ~ 2 (3) 3 , i.e. 

mean corrected chi-square variates with 1 and 3 degrees of freedom, respectively. The second method 

of simulation generated population values with random effects simulated under the same scenarios (a) 

and (b) but in addition allowed the intercept and slope of the linear model for  y  to vary according to 

longitude and latitude. In particular, these location coordinates were independently generated as 

  U[0,50]  with 

   ij = 0.2 longitudeij + 0.2 latitudeij  

and 

   ij = 5+ 0.1 longitudeij + 0.1 latitudeij . 

Note that the reason for using different parametric assumptions for the error terms of the linear mixed 

model is because we are interested in how the small area predictors perform both when the Gaussian 

assumptions of the linear mixed model are satisfied and when these assumptions are violated. 

This simulation design defines four model-based scenarios (Gaussian stationary, Gaussian non-

stationary, Chi-square stationary, Chi-square non-stationary). For each of these scenarios 200 Monte-

Carlo populations were generated using the corresponding model specifications. For each generated 

population and for each area  j  we selected a simple random sample (without replacement) of size 

  nj = 20 , leading to an overall sample size of   n = 600 . The sample values of  y  and the population 

values of  x  obtained in each simulation were then used to estimate the small area means. 

Four different types of small area linear models were fitted to these simulated data. These were (i) a 

random intercepts version of (1) with uncorrelated and correlated random area effects (3), (ii) the linear 

M-quantile regression specification (5), (iii) the MQGWR model (10), and (iv) the MQGWR-LI model 

(13). Two types of random intercepts model were used in (i). The first had uncorrelated random area 

effects and was fitted using the default REML option of the lme function (Venables and Ripley, 2002, 

section 10.3) in R. The second random intercepts model used in (i) had correlated random area effects 

and was fitted using the SEBLUP function of the SAE package in R (Gomez Rubio, 2006). The M-

quantile linear regression model (ii) was fitted using a modified version of the rlm function (Venables 
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and Ripley, 2002, section 8.3) in R and so uses iteratively re-weighted least squares to fit this model 

(Chambers and Tzavidis, 2006). The MQGWR models in (iii) and (iv) were fitted using a modification 

of the functions used to fit (ii). The M-quantile regression and the M-quntile GWR models have been 

fitted using the Huber Proposal 2 influence function with c=1.345. Estimated model coefficients 

obtained from these fits were then used to compute the EBLUP (2), the Spatial EBLUP (4), the bias-

adjusted M-quantile predictor (7), denoted MQ below, and the MQGWR and the MQGWR-LI 

versions of corresponding bias-adjusted M-quantile predictor (15). 

Although a larger number of simulations would have been preferable, this was not feasible due to the 

computer intensive nature of the model-fitting process. Note that there was no specific motivation 

behind the choice of equal area specific sample sizes. Repetition of our simulation studies with unequal 

area-specific sample sizes does not lead to any differences in the conclusions that we draw below. 

These results of the simulations have not been reported here, but they are available from the authors. 

Key percentiles of the across areas distributions of the prediction biases and root mean squared 

errors of these estimators over these simulations are set out in Table 1. For Gaussian random effects 

and a spatially stationary regression surface, we see that the EBLUP is the best predictor, as one would 

expect. The SEBLUP, MQ, MQGWR and MQGWR-LI predictors all have similar bias and RMSE in 

this case. In contrast, when the underlying regression function is non-stationary we see that the 

MQGWR and MQGWR-LI predictors are considerably more efficient than the MQ, EBLUP and 

SEBLUP predictors. Under Chi-squared random effects this performance is unchanged, although here 

the absolute differences in performance between the various predictors is much smaller. Finally, in 

Table 2 we show key percentiles of the across area distributions of the area level true and estimated 

mean squared errors (the latter based on (18) and averaged over the simulations) of the MQGWR and 

MQGWR-LI predictors, as well as the corresponding area level coverage rates for nominal 95 per cent 

prediction intervals. In general the proposed mean squared error estimator (18) provides a good 

approximation to the true mean squared error. These results also show that when M-quantile GWR fits 

are used in (18), then this estimator underestimates the true mean squared error of the corresponding 

predictor, leading to some undercoverage of prediction intervals. This is consistent with both the 

MQGWR and the MQGWR-LI models overfitting the actual population regression function. However, 

this bias is not excessive, being more pronounced in the case of the MQGWR model.  

Note that the construction of confidence intervals for small area parameters requires careful 

consideration. In our simulations we used the MSE estimation method described in section 5 to 

generate ‘normal theory’ confidence intervals based on M-quantile model-based estimators. Similarly, 

we used the approach of Prasad and Rao (1990) to estimate the MSE of the EBLUP and to then 

construct similar confidence intervals based on this estimator, while the SEBLUP version of the PR 
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MSE estimator (see Petrucci and Salvati, 2004; Pratesi and Salvati, 2008) was used to estimate the MSE 

of the SEBLUP as well as to define corresponding confidence intervals based on it. 

This use of estimated MSE to construct normal theory confidence intervals, though widespread, has 

been criticised, however. Hall and Maiti (2006) and more recently Chatterjee et al. (2008) discuss the use 

of bootstrap methods for constructing confidence intervals for small area parameters since there is no 

guarantee that the asymptotic behaviour underpinning normal theory confidence intervals applies in the 

context of the small samples that characterise small area estimation. Our aim here, however, is more 

limited in that we present results on point and mean squared error estimation under different versions 

of the M-quantile GWR model. Further research on the construction of more accurate confidence 

intervals under the M-quantile GWR model (perhaps using bootstrap techniques) is left for the future. 

6.2 A DESIGN-BASED SIMULATION 

The data used in this design-based simulation comes from the U.S. Environmental Protection Agency's 

Environmental Monitoring and Assessment Program (EMAP) Northeast lakes survey (Larsen et al., 

2001). Between 1991 and 1995, researchers from the U.S. Environmental Protection Agency (EPA) 

conducted an environmental health study of the lakes in the north-eastern states of the U.S.A. For this 

study, a sample of 334 lakes (or more accurately, lake locations) was selected from the population of 

21,026 lakes in these states using a random systematic design. The lakes making up this population are 

grouped into 113 8-digit Hydrologic Unit Codes (HUCs), of which 64 contained less than 5 

observations and 27 did not have any. In our simulation, we defined HUCs as the small areas of 

interest, with lakes grouped within HUCs. The variable of interest was Acid Neutralizing Capacity 

(ANC), an indicator of the acidification risk of water bodies. Since some lakes were visited several times 

during the study period and some of these were measured at more than one site, the total number of 

observed sites was 349 with a total of 551 measurements. In addition to ANC values and associated 

survey weights for the sampled locations, the EMAP data set also contained the elevation and 

geographical coordinates of the centroid of each lake in the target area. In our simulations we used 

elevation to define the fixed part of the mixed models and the M-quantile models for the ANC 

variable. 

The aim of the design-based simulation was to compare the performance of different predictors of 

mean ANC in each HUC under repeated sampling from a fixed population with the same spatial 

characteristics as the EMAP sample. In order to do this, given the 21,026 lake locations, a synthetic 

population of ANC individual values were non parametrically simulated using a nearest-neighbour 

imputation algorithm that retained the spatial structure of the observed ANC values in the EMAP 

sample data. 



 18 

The algorithm was defined as follows: (1) we first randomly ordered the non-sampled locations in 

order to avoid list order bias and gave each sampled location a ‘donor weight’ equal to the integer 

component of its survey weight minus 1; (2) taking each non-sample location in turn, we chose a 

sample location as a donor for the  ith  non-sample location by selecting one of the ANC values of the 

EMAP sample locations with probability proportional to 
  
w(ui ,u) = exp dui ,u

2 / 2b2  . Here 
  
dui ,u

 is the 

Euclidean distance from the  ith  non-sample location  ui  to the location  u  of a sampled location and b is 

the GWR bandwidth estimated from the EMAP data; and (3) we reduced the donor weight of the 

selected donor location by 1. The synthetic population of ANC values created by this procedure was 

then kept fixed over the Monte-Carlo simulations. 

A total of 200 independent random samples of lake locations were then taken from the population 

of 21,026 lake locations by randomly selecting locations in the 86 HUCs that containing EMAP 

sampled lakes, with sample sizes in these HUCs set to the greater of five and the original EMAP 

sample size. Lakes in HUCs not sampled by EMAP were also not sampled in the simulation study. This 

resulted in a total sample size of 652 locations selected within the 86 ‘EMAP’ HUCs. The synthetic 

ANC values at these 652 sampled locations were then noted. 

Figure 1 shows normal probability plots of level 1 and level 2 residuals obtained by fitting a two-

level (level 1 is the lake and level 2 is the HUC) mixed model to the synthetic population data. The 

normal probability plots indicate that the Gaussian assumptions of the mixed model are not met. 

Hence, the use of a model that relaxes these assumptions, such as an M-quantile model with a bounded 

influence function, seems reasonable for these data. 

The relative bias (RB) and the relative root mean squared error (RRMSE) of estimates of the mean 

value of ANC in each HUC were computed for the same four predictors that were also the focus of the 

model-based simulations. These results are set out in Table 3 and show that the M-quantile GWR 

predictors have significantly lower bias than the EBLUP and SEBLUP predictors with the MQGWR 

predictor performing best. Examining the performance in terms of relative root mean squared error we 

note that the small area predictors that account for the spatial structure of the data have on average 

smaller root mean squared errors with the SEBLUP and MQGWR predictors performing best. These 

results indicate that incorporating spatial information in small area estimation via the M-quantile GWR 

model has promise. The slightly higher relative root mean squared error of the MQGWR predictor 

(compared to the SEBLUP predictor) can be explained by the bias-variance trade off associated with 

the use of robust methods. Approaches to tackling this were outlined at the end of section 2. For the 

non-sampled HUCs the use of the synthetic-type predictors that borrow strength over space, defined in 

section 4, substantially improve prediction. Figure 2 shows how different mean squared estimators 

tracked the true mean squared error of the different predictors in this simulation. Here we see that 
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mean squared estimator described in Tzavidis et al. (2008), and its GWR form (18), perform well in 

terms of tracking the true mean squared error of the M-quantile predictors. Some downward bias of 

(18) when used with the MQGWR model (10) can be seen, however. This is much less of a problem 

when (18) is combined with the MQGWR-LI model (13). We also see that the PR estimator of the 

mean squared error of the EBLUP performs poorly as far as tracking area-specific mean squared error 

is concerned. This is also the case for the analogous estimator of the mean squared error of SEBLUP, 

and may be attributed in this case to the violation of the linear mixed model assumptions. 

 An alternative model specification that could be used with spatial data corresponds to adding 

location (i.e. longitude and latitude) in the fixed part of the mixed model. To investigate the 

performance of this extended model specification, we repeated the model-based simulations (stationary 

and non stationary) and the design-based simulation experiments with latitude and longitude included 

in the fixed part of the model. The results that were obtained are not reported here but are available 

from the authors. For the model-based simulations, compared to the results reported in Table 1, the 

inclusion of the longitude and latitude in the fixed part of the mixed model resulted in: (a) for a 

stationary process under Gaussian or Chi-squared errors the results remain unchanged, (b) for a non-

stationary Gaussian process the RRMSE of the EBLUP is reduced. However, the RRMSE of the 

MQGWR is still lower that that of the EBLUP and (c) for a non-stationary Chi-squared process the 

RRMSE of the EBLUP and the MQGWR estimators are similar. For the design-based simulation, the 

results under the new model specification show that for the 86 sampled HUCs the inclusion of 

longitude and latitude as covariates in the fixed part of the mixed model has no impact on the 

performance of the EBLUP. However, for the 27 out of sample HUCs the synthetic estimator using 

the new mixed model specification performs rather badly. This can be attributed to the differences in 

the locations of lakes in the sampled and not sampled HUCs, with the non-sampled HUCs mainly 

located in the southwest of the study region. Consequently, the linear mixed model that includes 

location and is fitted using the data from sampled HUCs is not a good predictor for locations in non-

sampled HUCs. This in turn impacts upon the performance of the synthetic small area estimator 

defined by the linear mixed model. 

7. APPLICATION: ASSESSING THE ECOLOGICAL CONDITION 

OF LAKES IN THE NORTHEASTERN U.S.A. 

In this section we show how the methodology described in this paper can be practically employed for 

estimating the average acid neutralizing capacity (ANC) for each of the 113 8-digit HUCs that make up 

the EMAP dataset described in section 6.2. ANC is a measure of the ability of a solution to resist 

changes in pH and is on a scale measured in meq/L (micro equivalents per litre). A small ANC value for 
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a lake indicates that it is at risk of acidification. Application of the Brunsdon et al. (1999) ANOVA test 

for spatial stationarity indicates that the EMAP data are consistent with a process characterised by 

spatially varying relationships. 

Predicted values of average ANC for each HUC were calculated using the M-quantile GWR 

predictor (15) under the MQGWR model (10) and the MQGWR-LI model (13), with  x  equal to the 

elevation of each lake and with location defined by the geographical coordinates of the centroid of each 

lake (in the UTM coordinate system). The spatial weight matrix used in fitting these M-quantile GWR 

models was constructed using (9), with bandwidth selected using cross-validation. 

Figure 3 shows contour maps of the estimated HUC-specific intercepts and slopes from the fitted 

MQGWR model (10), i.e. when this model is fitted using the HUC-specific M-quantile coefficients   
ˆ

j . 

These maps support the assumption of non-stationarity in the data. Finally, in Figure 4 we show maps 

of estimated values of average ANC for each HUC using the (a) MQGWR model; (b) the MQGWR-LI 

model; (c) the spatially stationary M-quantile model (5); (d) the linear mixed model (1) with 

uncorrelated area effects; and (e) the linear mixed model (3) with correlated random area effects. The 

maps (a) and (b) corresponding to the two M-quantile GWR models provide similar estimates of 

average ANC for each HUC and are consistent with the patterns produced by other analyses of the 

EMAP data using non-parametric models (Opsomer et al., 2008). They are also substantially different 

from the maps (d) and (e) that show the estimates produced by the EBLUP under the spatially 

uncorrelated linear mixed model (1) and the SEBLUP under the spatially correlated linear mixed model 

(3). These are very similar and show lower levels of average ANC (and hence greater risk of water 

acidification) for the target population of HUCs. Finally, we see that the map (c) produced by the M-

quantile model (5) that assumes no spatial correlation shows even lower levels of average ANC, most 

likely due to the failure of the spatial stationarity assumption in this model when it is applied to the 

EMAP data. 

8. SUMMARY 

In this paper we propose a geographically weighted regression extension to linear M-quantile 

regression that allows for spatially varying coefficients in the model for the M-quantiles. These M-

quantile GWR models have the potential to lead to significantly better small area estimates in important 

application areas where geo-referenced data are available, such as financial and economic statistics, 

environmental and public health modelling. Like the linear M-quantile regression model of Chambers 

and Tzavidis (2006), the M-quantile GWR model described in this paper allows modelling of between 

area variability without the need to explicitly specify the area-specific random components of the 

model. In particular, this model does not explicitly depend on any particular small area geography, and 
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so can be easily adapted to different geographies as the need arises. R code for fitting the M-quantile 

GWR small area model is straightforward to develop and is available from the authors. It should be 

noted, however, that a prospective user of the M-quantile GWR model needs to have access to an 

appropriate level of spatial information for fitting it. In this paper we present an application to 

modelling environmental data where detailed spatial information is available for sampled and non-

sampled locations. More generally it is not difficult to see that the model can be adapted to situations 

where more limited spatial information is available, e.g. when only spatial information about the 

centroids of the small areas or other aggregated spatial information is available. Obviously, in such 

cases the gains from including this information in analysis will be less. 

One problem that arises with specifying an M-quantile GWR model is deciding which parameters of 

the model vary spatially (i.e. are local parameters) and which do not (i.e. are global parameters). In this 

paper we have explored two M-quantile GWR models that exemplify this issue – the MQGWR model 

where both intercept and slope parameters in the model vary spatially and the MQGWR-LI model 

where only the intercept parameter varies spatially. Further research is necessary in order to develop 

appropriate diagnostics for deciding between them. 

Extending the arguments of Chambers et al. (2007) we defined an estimator of a first order 

approximation to the mean squared error of (15). The results obtained in model-based and in design-

based simulation studies are promising but we are aware of its potential underestimation, which must be 

further researched. However, the bias robustness of (18) under misspecification or failure of the model 

assumptions is an appealing property. In addition, current research on this topic has already produced 

empirical results that indicate that the MSE estimator (18) has good design based and model based 

properties in small area estimation (Chambers et al. 2007).  

An alternative approach for incorporating the spatial structure of the data in small area models is via 

nonparametric models. Opsomer et al. (2008) and Ugarte et al. (2009) have extended model (1) to the 

case in which the small area random effects can be combined with a smooth, non-parametrically 

specified trend. These authors express the non-parametric small area estimation problem as a mixed 

effect model regression. Pratesi et al. (2008) have extended this approach to the M-quantile small area 

estimation approach using a nonparametric specification of the conditional M-quantiles of the response 

variable given the covariates. The use of bivariate p-spline approximations for fitting nonparametric unit 

level nested error and M-quantile regression models allows for reflecting the spatial variation in the data 

and then uses these nonparametric models for small area estimation. Further research is necessary to 

contrast SAR, M-quantile GWR and unit level nested error p-spline regression models in terms of their 

performance when borrowing strength over space in small area estimation.  
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Table 1. Across areas distribution of Bias and RMSE over simulations. 

Summary of across areas distribution 
Predictor Indicator 

Min Q1 Median Mean Q3 Max 
  Stationary process, Gaussian errors 

Bias -0.051 -0.034 0.001 -0.001 0.023 0.068 
EBLUP 

RMSE 0.068 0.075 0.079 0.081 0.087 0.101 
Bias -0.065 -0.033 -0.005 -0.001 0.024 0.076 

SEBLUP 
RMSE 0.064 0.074 0.082 0.082 0.088 0.106 
Bias -0.015 -0.003 0.001 -0.001 0.003 0.012 

MQ 
RMSE 0.074 0.083 0.088 0.087 0.091 0.100 
Bias -0.016 -0.007 -0.003 -0.002 0.005 0.008 

MQGWR 
RMSE 0.067 0.084 0.088 0.087 0.091 0.100 
Bias 0.010 -0.005 0.001 -0.001 0.003 0.012 

MQGWR-LI 
RMSE 0.073 0.085 0.087 0.086 0.090 0.097 

  Non-stationary process, Gaussian errors 
Bias -0.034 -0.013 -0.003 -0.002 0.011 0.031 

EBLUP 
RMSE 0.169 0.193 0.205 0.220 0.238 0.323 
Bias -0.104 -0.018 -0.008 -0.004 0.016 0.096 

SEBLUP 
RMSE 0.155 0.193 0.208 0.221 0.248 0.321 
Bias -0.036 -0.011 0.000 -0.002 0.009 0.015 

MQ 
RMSE 0.164 0.181 0.188 0.188 0.193 0.219 
Bias -0.047 -0.013 -0.005 -0.004 0.005 0.027 

MQGWR 
RMSE 0.083 0.092 0.098 0.098 0.103 0.119 
Bias -0.065 -0.010 -0.005 -0.004 0.007 0.047 

MQGWR-LI 
RMSE 0.088 0.097 0.107 0.112 0.114 0.186 

  Stationary process, Chi-squared errors 
Bias -0.441 -0.097 0.075 -0.011 0.112 0.237 

EBLUP 
RMSE 0.399 0.457 0.482 0.489 0.511 0.651 
Bias -0.455 -0.176 0.043 -0.019 0.132 0.275 

SEBLUP 
RMSE 0.383 0.448 0.475 0.490 0.523 0.613 
Bias -0.063 -0.043 -0.021 -0.011 0.014 0.062 

MQ 
RMSE 0.437 0.496 0.526 0.522 0.542 0.598 
Bias -0.075 0.002 0.035 0.028 0.060 0.113 

MQGWR 
RMSE 0.482 0.507 0.539 0.539 0.564 0.633 
Bias -0.067 -0.009 0.009 0.010 0.032 0.062 

MQGWR-LI 
RMSE 0.471 0.500 0.525 0.528 0.552 0.618 

   Non-stationary process, Chi-squared errors 
Bias -0.069 -0.046 -0.021 -0.014 0.008 0.069 

EBLUP 
RMSE 0.465 0.541 0.560 0.566 0.592 0.675 
Bias -0.266 -0.129 0.002 -0.022 0.073 0.215 

SEBLUP 
RMSE 0.488 0.524 0.551 0.554 0.575 0.656 
Bias -0.086 -0.048 -0.015 -0.014 0.021 0.051 

MQ 
RMSE 0.460 0.540 0.554 0.555 0.586 0.641 
Bias -0.083 -0.009 0.022 0.017 0.050 0.124 

MQGWR 
RMSE 0.482 0.507 0.534 0.535 0.562 0.619 
Bias -0.085 -0.018 0.004 0.007 0.041 0.080 

MQGWR-LI 
RMSE 0.466 0.518 0.541 0.542 0.557 0.641 
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Table 2. Across areas distribution of true (i.e. Monte Carlo) root mean squared errors (True RMSE), area averages of 

estimated root mean squared errors (Est. RMSE) and area coverage rates (CR%) for nominal 95% prediction intervals. 

 

Percentile of across areas distribution 
Predictor Indicator 

10 25 median Mean 75 90 
  Stationary process, Gaussian errors 

True RMSE 0.080 0.084 0.088 0.087 0.091 0.093 
Est. RMSE 0.076 0.078 0.081 0.081 0.083 0.085 MQGWR 

CR(%) 89.51 90.34 91.72 91.88 93.71 94.48 
true RMSE 0.079 0.085 0.087 0.086 0.090 0.090 
Est. RMSE 0.077 0.079 0.082 0.082 0.083 0.086 MQGWR-LI 

CR(%) 90.45 91.13 93.00 92.88 94.50 95.00 
  Non-stationary process, Gaussian errors 

true RMSE 0.090 0.092 0.098 0.098 0.103 0.106 
Est. RMSE 0.074 0.076 0.078 0.079 0.081 0.084 MQGWR 

CR(%) 84.30 85.00 87.00 87.08 89.38 90.50 
true RMSE 0.096 0.097 0.107 0.112 0.114 0.138 
Est. RMSE 0.085 0.088 0.098 0.100 0.103 0.122 MQGWR-LI 

CR(%) 88.50 90.50 91.50 91.25 92.88 93.05 
  Stationary process, Chi-squared errors 

true RMSE 0.489 0.507 0.539 0.539 0.564 0.577 
Est. RMSE 0.463 0.489 0.507 0.506 0.529 0.542 MQGWR 

CR(%) 85.71 89.10 90.38 90.24 92.15 92.44 
true RMSE 0.488 0.500 0.525 0.528 0.552 0.574 
Est. RMSE 0.467 0.486 0.505 0.508 0.528 0.543 MQGWR-LI 

CR(%) 87.00 90.50 91.00 90.88 92.50 93.10 
   Non-stationary process, Chi-squared errors 

true RMSE 0.494 0.507 0.534 0.535 0.562 0.574 
Est. RMSE 0.448 0.470 0.488 0.488 0.512 0.524 MQGWR 

CR(%) 85.50 88.13 90.00 89.40 91.00 92.05 
true RMSE 0.505 0.518 0.541 0.542 0.557 0.588 
Est. RMSE 0.485 0.501 0.515 0.514 0.529 0.537 MQGWR-LI 

CR(%) 88.95 90.63 91.50 91.07 92.38 93.05 
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Table 3. Design-based simulation results using the EMAP data. Results show across areas distribution of Relative Bias 

(RB) and Relative Root Mean Squared Error (RRMSE) over simulations. 

 

Summary of across areas distribution 
Predictor Indicator 

Min Q1 median Mean Q3 Max 
  86 sampled HUCs 

RB (%) -23.31 0.39 10.79 12.55 21.43 83.22 
EBLUP 

RRMSE (%) 14.20 23.95 35.18 38.05 49.49 99.00 
RB (%) -16.87 -5.12 2.50 5.27 12.33 62.04 

SEBLUP 
RRMSE (%) 8.08 20.46 29.01 31.50 38.61 75.44 

RB (%) -11.09 -2.34 -0.42 -0.83 1.32 4.79 
MQ 

RRMSE (%) 6.64 25.81 35.49 39.45 49.71 119.07 
RB (%) -8.87 -1.69 0.06 0.22 1.79 14.40 

MQGWR 
RRMSE (%) 4.97 21.49 29.84 33.61 43.22 83.71 

RB (%) -8.87 -2.24 -0.71 -0.78 0.85 7.20 
MQGWR-LI 

RRMSE (%) 5.17 23.86 34.03 35.64 46.22 81.46 
  27 non-sampled HUCs 

RB (%) -72.50 -57.29 -36.59 -2.47 38.14 288.11 
EBLUP 

RRMSE (%) 5.75 40.14 53.76 60.44 62.21 288.61 
RB (%) -68.46 -51.05 -27.35 11.80 58.49 345.09 

SEBLUP 
RRMSE (%) 16.03 37.71 53.81 66.21 68.13 346.34 

RB (%) -85.57 -73.27 -66.29 -47.46 -31.32 106.96 
MQ 

RRMSE (%) 6.56 37.63 68.65 57.26 74.83 107.69 
RB (%) -48.98 -11.89 -3.69 -3.37 4.88 40.61 

MQGWR 
RRMSE (%) 10.21 14.88 17.50 22.93 23.29 78.24 

RB (%) -58.30 -38.59 -23.21 -23.13 -11.58 17.87 
MQGWR-LI 

RRMSE (%) 13.09 22.43 26.82 30.85 40.13 58.78 
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Figure 1. Normal probability plots of level 2 (left) and level 1 residuals (right) derived by fitting a two level linear 

mixed model to the synthetic population data. 
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Figure 2. HUC-specific values of actual design-based RMSE (solid line) and average estimated RMSE (dashed line). 

Top left is the EBLUP predictor (2) with RMSE estimator suggested by Prasad and Rao (1990). Top right is the 

SEBLUP predictor (4) with RMSE estimator proposed by Petrucci and Salvati (2004). Centre is the M-quantile 

predictor (7) with RMSE estimator suggested by Tzavidis et al. (2008). Bottom left is MQGWR version of (15) with 

RMSE estimated using (18) and bottom right is the MQGWR-LI version of (15) with RMSE also estimated using (18). 
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Figure 3. Maps showing the spatial variation in the HUC specific intercept and slope estimates that are generated when 

the MQGWR model is fitted to the EMAP data. 
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Figure 4. Maps of estimated average ANC for all 113 HUCs. The map (a) shows estimates computed using (15) and the 

MQGWR model (10), map (b) shows estimates computed using (15) and the MQGWR-LI model (13), map (c) shows 

estimates computed using (7) and the stationary M-quantile model (5) and finally maps (d) and (e) show estimates 

computed using (2), (4) and the linear mixed model (1) and (3) with uncorrelated and correlated random area effects. 
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