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ABSTRACT

We study the marginal longitudinal nonparametric regression problem and some of its
semiparametric extensions. We point out that, while several elaborate proposals for efficient
estimation have been proposed, a relative simple and straightforward one, based on penalized
splines, has not. After describing our approach we then explain how Gibbs sampling and the
BUGS software can be used to achieve quick and effective implementation. Illustrations are
provided for nonparametric regression and additive models.

Keywords: Additive models; Best prediction; Maximum likelihood; Gibbs sampling; Nonpara-
metric regression; Restricted maximum likelihood; Varying coefficient models.

1 Introduction

The past decade has seen a great deal of interest and activity in nonparametric regression for
longitudinal data. A prominent component of this research is the marginal longitudinal nonpara-
metric regression problem in which the covariance matrix of the responses for each subject is not
modelled conditionally, and instead is an unspecified parameter to be estimated.

Ruppert, Wand & Carroll (2009; Section 3.9) provide a summary of research on this problem
up until about 2008. Whilst Zeger & Diggle (1994) is an early reference for marginal longitu-
dinal nonparametric regression, the area started to heat up in response to Lin & Carroll (2001),
where it was shown that ordinary kernel smoothers are more efficient if so-called working in-
dependence is assumed. This spawned a flurry of activity on the problem. Relevant references
include: Welsh, Lin & Carroll (2002), Wang (2003), Linton, Mammen, Lin & Carroll (2003), Lin,
Wang, Welsh & Carroll (2004), Carroll, Hall, Apanasovich & Lin (2004), Hu, Wang & Carroll
(2004), Chen & Jin (2005), Wang, Carroll & Lin (2005), Lin & Carroll (2006) and Fan, Huang &
Li (2007), Sun, Zhang & Tong (2007) and Fan & Wu (2008).

In this article we describe a relatively simple approach to the marginal longitudinal re-
gression problem and its semiparametric extensions. Our approach is the natural one arising
from the mixed model representation of penalized splines (e.g. Brumback, Ruppert & Wand,
1999; Ruppert, Wand & Carroll, 2003) with estimation and inference done using maximum
likelihood and best prediction. There is also the option of adopting a Bayesian standpoint and
calling upon Markov chain Monte Carlo to achieve approximate inference. An interesting as-
pect of our marginal longitudinal semiparametric regression models is that Gibbs sampling
applies with draws from standard distributions. The Bayesian version of our models means
that the BUGS inference engine (Lunn et al. 2000) can be used for fitting, and we provide some
illustrative code.

The penalized spline/mixed model approach means that semiparametric extensions of the
marginal longitudinal regression problem can be handled straightforwardly. We describe ex-
tensions to additive and varying coefficient models, although other extensions can be handled
similarly.

Section 2 describes the penalized spline approach and identifies the mixed model structures
required to handle marginal longitudinal semiparametric regression problems. In Section 3

1



we discuss fitting via maximum likelihood and best prediction. Section 4 describe Bayesian
inference via Gibbs sampling and BUGS. Illustrations are provided in Section 5 and closing
discussion is given in Section 6.

2 Marginal Longitudinal Nonparametric Regression and Extensions

For 1 ≤ i ≤ m subjects we observe 1 ≤ j ≤ n (n � m) scalar responses yij and predictors xij .
Let yi be the vector of responses for the ith subject and xi be defined similarly. The covariance
matrix of a random vector v is denoted by Cov(v). The marginal longitudinal nonparametric
regression model is then

E(yij) = f(xij), Cov{yi|f(xi)} = Σ, 1 ≤ i ≤ m, 1 ≤ j ≤ n (1)

for some real-valued smooth function f and n × n covariance matrix Σ. The notation f(xi)
means that the function f is applied element-wise to each of the entries of xi. We use Cov{yi|f(xi)}
rather than Cov(yi) to allow for the possibility that f(xi) is random according to the model,
although this is not a requirement.

Figure 1 shows a simulated data set for model (1), with m = 100, n = 10,

f(x) = 1 + 1
2Φ((2x− 36)/5) and Σ =


0.122 0.098 0.078 0.063 0.050
0.098 0.122 0.098 0.078 0.063
0.078 0.098 0.122 0.098 0.078
0.063 0.078 0.098 0.122 0.098
0.050 0.063 0.078 0.098 0.122

 , (2)

where Φ is the standard normal distribution function. The main problem is efficient estimation
of f from data such as that shown in Figure 1. Estimation of Σ may also be of interest.

Our approach to function estimation involves spline models for f of the form

f(x) = β0 + β1x +
K∑

k=1

ukzk(x) (3)

where z1, . . . , zK is a rich set of spline basis functions. A simple basis arises from setting zk(x) =
(x − κk)+ where κ1, . . . , κK is a dense set of knots placed over the range of the xis. However,
we recommend a smoother and more numerically stable choice for zk, such as those described
in Welham, Cullis, Kenward & Thompson (2007) and Wand & Ormerod (2008). The number
of basis functions K has a minor effect on the efficacy of (3) and, for most signals arising in
practice, K = 25 is sufficient. Li & Ruppert (2008) give some interesting asymptotics that
provide support for this maxim.

To avoid over-fitting the spline coefficients uk, 1 ≤ k ≤ K, need to be penalized in some
way. A convenient penalisation mechanism is to treat the uk as a random sample from a dis-
tribution with mean zero and variance σ2. This permits the following linear mixed model
representation of (1) and (3):

y = Xβ + Zu + ε (4)

where

y =

 y1
...

ym

 , X =

 1 x1
...

...
1 xm

 , Z =

 z1(x1) · · · zK(x1)
...

. . .
...

z1(xm) · · · zK(x1)

 , ε =

 ε1
...

εm

 ,

β =
[

β0

β1

]
and u =

 u1
...

uK

 .
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Figure 1: A data set simulated from a version of the marginal longitudinal nonparametric regression
model (1) with m = 100, n = 5 and f and Σ as described in the text.

The random vectors on the right-hand side of (4) have mean zero and covariance matrix:

Cov


u
ε1

ε2
...

εm

 =


σ2I 0 0 · · · 0
0 Σ 0 · · · 0
0 0 Σ · · · 0
...

...
...

. . .
...

0 0 0 · · · Σ

 =
[

σ2I 0
0 Im ⊗Σ

]
.

For fixed values of σ2 and Σ we can call upon best linear unbiased prediction (e.g. Robinson,
1991) to estimate β and u and, hence, the regression function f . In practice, though, both σ2

and Σ need to be estimated and a convenient assumption for achieving this aim is[
u
ε

]
∼ N

([
0
0

]
,

[
σ2I 0
0 Im ⊗Σ

])
. (5)

From now on we will assume that the Gaussian linear mixed model (4) and (5) is reasonably
assumed. Sections 3 and 4 describe two approaches to fitting and inference. Before getting to
that we describe some semiparametric extensions of (1).

2.1 Additive Models Extension

Suppose now that, corresponding to each yij , several predictor variables are available. There
are a number of semiparametric regression extensions of (1) that could be considered. In this
section we focus on the additive model extension. To keep the notation simple we restrict
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discussion to the situation where there are two continuous predictors with the jth measurement
on subject i denoted by x1ij and x2ij . The marginal longitudinal additive model for such data is

E(yij) = β0+f1(x1ij)+f2(x2ij), Cov{yi|f1(x1i), f2(x2i)} = Σ, 1 ≤ i ≤ m, 1 ≤ j ≤ n (6)

where f1 and f2 are smooth functions. If each of these is modelled as a penalized spline:

f1(x1) = β11x1 +
K1∑
k=1

u1kz1k(x1) and f2(x2) = β21x2 +
K2∑
k=1

u2kz2k(x2) (7)

with coefficients independently subject to

u1k i.i.d. N(0, σ2
1) and u2k i.i.d. N(0, σ2

2)

then a Gaussian linear mixed model

y = Xβ + Zu + ε

arises. The differences between this model and that of Section 2 are that the design matrices are
now

X =

 1 x11 x21
...

...
...

1 x1m x2m

 , Z =

 z11(x11) · · · z1K1(x11) z21(x21) · · · z2K2(x21)
...

. . .
...

...
. . .

...
z11(x1m) · · · z1K1(x1m) z21(x2m) · · · z2K2(x2m)


where x1i is the n× 1 vector containing the the x1ij measurements and x2i is defined similarly.
The coefficient vectors are

β =

 β0

β11

β12

 and u =
[

u1

u2

]

where u1 is the K1 × 1 vector containing the u1k and u2 is defined similarly. The covariance
matrix of the spline coefficients and errors is now u1

u2

ε

 ∼ N

 0
0
0

 ,

 σ2
1I 0 0
0 σ2

2I 0
0 0 Im ⊗Σ

 . (8)

Fitting via maximum likelihood and best prediction is analogous to that described in Sec-
tion 3. The main difference is that there are two variance parameters σ2

1 and σ2
2 (and in exten-

sions to additive models with d smooth functions there will be d such variance components)
as well as the error covariance matrix Σ. Maximum likelihood fitting, described in Section 3,
requires an expression for V ≡ Cov(y). For the current model, this matrix takes the form

V = V (σ2
1, σ

2
2,Σ) = σ2

1Z [1]Z
T
[1] + σ2

2Z [2]Z
T
[2] + Im ⊗Σ

where Z [1] and Z [2] correspond to the column-wise partitioning of Z according to the basis
functions for f1 and f2 (i.e. Z = [Z [1] Z [2]]).

Before closing this section we briefly mention that the model

E(yij) = β0 + β1x1ij + f2(x2ij), Cov(yi) = Σ, 1 ≤ i ≤ m, 1 ≤ j ≤ n (9)

is a simpler type of additive model than (6) since it only has one smooth function component.
This is a bona fide semiparametric regression model since the right-hand side has the effect of the
x1ijs modelled parametrically and the effect of the x2ijs modelled nonparametrically. However,
the linear mixed model attached with this model is on par with that treated in Section 2. In
particular, the random component structure (5) applies to (9).

4



2.2 Varying Coefficient Models Extension

Another type of multiple-predictor semiparametric regression model is that involving varying
coefficients. The simplest marginal longitudinal varying coefficient model is

E(yij) = f0(sij) + f1(sij) xij , Cov{yi|f0(si), f1(si)} = Σ, 1 ≤ i ≤ m, 1 ≤ j ≤ n (10)

where the sij are longitudinal measurements on a continuous predictor variable s and the xij

are measurements on a second predictor x. The modifying effect of s on the linear relationship
between E(y) and x is modelled flexibly through the varying coefficients f0(s) and f1(s). Sun,
Zhang & Tong (2007) paid particular attention to models of this type.

Interestingly, the Gaussian linear mixed model for fitting the varying coefficient model (10)
takes the same form as that for fitting the additive model (6). In particular, the covariance
matrix of the random effects and error vectors is exactly the same as that given at (8). The only
difference is that the fixed effect matrices are now

X =

 1 s1 x1 s1 � x1
...

...
...

...
1 sm xm sm � xm

 and


β0

β01

β10

β11


whilst the design matrix for the random effects component is

Z =

 z1(s1) · · · zK(s1) x1 � z1(s1) · · · x1 � zK(s1)
...

. . .
...

...
. . .

...
z1(sm) · · · zK(sm) xm � z1(sm) · · · xm � zK(sm)

 ,

with a� b denoting the element-wise product of vectors a and b.

3 Maximum Likelihood Estimation and Best Prediction

Each of the marginal longitudinal semiparametric regression models in the previous section,
and their extensions to d smooth functions, can be handled using the Gaussian linear mixed
model

y|u ∼ N(Xβ + Zu, Im ⊗Σ), u ∼ N(0, blockdiag
1≤`≤d

(σ2
` IK`

)). (11)

Here K` corresponds to the number of spline basis functions used in the `th smooth function
estimate. Let σ2 = (σ2

1, . . . , σ
2
d) be the vector of variance parameters. Then the log-likelihood

of y under (11) is

`(β,σ2,Σ) = −1
2

{
n log(2π) + log |V |+ (y −Xβ)T V −1(y −Xβ)

}
(12)

where

V = V (σ2,Σ) ≡ Cov(y) =
d∑

`=1

σ2
` Z [`]Z

T
[`] + Im ⊗Σ

and [Z [1] · · ·Z [d]] is the partition of Z corresponding to the basis functions for each smooth
function estimate.

For any fixed values of σ2 and Σ the fixed effects solution is

β̃(σ2,Σ) = (XT V −1X)−1XT V −1y (13)

On substitution into (12) we obtain the profile log-likelihood for (σ2,Σ) as:

`P (σ2,Σ) = −1
2

[
log |V |+ yT V −1{I −X(XT V −1X)−1XT V −1}y

]
− n

2 log(2π). (14)

5



However, the restricted log-likelihood (Patterson & Thompson, 1971)

`R(σ2,Σ) = `P (σ2,Σ)− 1
2 log |XT V −1X| (15)

is usually preferred since it accounts for estimation of the fixed effects vector β. The maximizers
of `R(σ2,Σ) are often labelled the restricted maximum likelihood or REML estimates of σ2 and Σ.

Likelihood-based estimation of the model parameters β, σ2 and Σ thus involves:

1. Obtain the REML estimates σ̂2 and Σ̂ by maximising `R(σ2,Σ).

2. Obtain the maximum likelihood estimate of β̂ = β̃(σ̂2, Σ̂) according to (13).

Step 1. is by far the more challenging since it involves multivariate numerical optimisation.
Lastly, there is the problem of estimating spline coefficients u. Since u is random we cannot

appeal to maximum likelihood and instead have to rely on best prediction:

ũ(σ2,Σ) ≡ E(y|u) = Gσσσ2ZT V (σ2,Σ)−1{y −Xβ̃(σ2,Σ)}

where Gσσσ2 = blockdiag1≤`≤d(σ
2
` IK`

). An appropriate estimator for u in this context is the
empirical best predictor

û = Gbσσσ2ZT V (σ̂2, Σ̂)−1{y −Xβ̃(σ̂2, Σ̂)}.

It is straightforward to construct estimates of the regression function f at arbitrary locations
x ∈ R using β̂ and û.

Despite (11) being a relatively simple linear mixed model, we have not yet been success-
ful in fitting it with standard mixed model software such as lme() (Pinheiro et al. 2008) in
the R computing language (R Core Development Team, 2009). This led us to also consider
the Bayesian inference version and implementation via Gibbs sampling, as the next section
describes.

4 Bayesian Inference

An alternative inference strategy, which permits more direct implementation in standard soft-
ware, involves working with a hierarchical Bayesian version of the Gaussian linear mixed
model (11). This entails treating β, σ2 and Σ as random and setting prior distributions for
each of them. The most convenient choice, because of conjugacy properties, are priors of the
form:

β ∼ N(0,F ), σ2
` ∼ Inverse-Gamma(A`, B`) and Σ ∼ Inverse-Wishart(a,B) (16)

where A`, B`, 1 ≤ ` ≤ d, are positive constants and F and B both positive definite ma-
trices. Throughout this section let [x] denote the density function of x. Then the notation
σ2 ∼ Inverse-Gamma(A,B) means that

[σ2] =
BA

Γ(A)
(σ2)−A−1e−B/σ2

, σ2, A, B > 0.

The notation Σ ∼ Inverse-Wishart(a,B), where Σ is n× n, means that

[Σ] = C−1
n,a|B|a/2|Σ|−(a+n+1)/2 exp{−1

2 tr(BΣ−1)}, a > 0, Σ,B both positive definite

where Cn,a ≡ 2an/2πn(n−1)/4
∏n

i=1 Γ(a+1−i
2 ).

Bayesian inference is based on the posterior density functions:

[β|y], [u|y] and [Σ|y]. (17)

6



The probability calculus required to obtain each of these is unwieldy and, in practice, either
analytic or Monte Carlo approximations need to be called upon. As shown in Section 4.1, the
Markov Chain Monte Carlo method Gibbs sampling is straightforward to implement for the
Bayesian version of (11) and and the priors (16) and, upon convergence, yields samples of
arbitrary size from the posterior densities (17). The software package BUGS (Lunn et al. 2000)
facilitates this approach to approximate Bayesian inference and illustrative code is given in
Section 4.2.

A final, albeit important, aspect of this approach to fitting and inference is choice of the
hyperparameters F , A`, B`, a and B. If the analyst has specific prior beliefs about the model
parameters then there is the opportunity to choose the hyperparameters so that the prior den-
sities reflect those beliefs. More often than not such prior beliefs are absent and vague priors
should be used. Reasonable choices for the fixed effects and variance hyperparameters, assum-
ing that the data have been suitably standardized, are:

F = 108I and A` = B` = 0.01. (18)

Reasonable choices for the hyperparameters associated with Σ are

a = n and B = 0.01In. (19)

4.1 Gibbs Sampling Scheme

The hierarchical Bayesian model specified by (11) and (16) can be fitted using a Gibbs sampling
scheme with draws from standard distributions. We give the details here.

First, we note (e.g. Robert & Casella, 2004, p. 371) that Gibbs sampling requires successive
draws from the full conditional distributions for each member of a particular partition of the
parameters in the model. For the present model we use the partition:[

β
u

]
, σ2

1, . . . , σ
2
d,Σ.

As an example, the full conditional distribution for σ2
1 is

σ2
1

∣∣∣y,

[
β
u

]
, σ2

2, . . . , σ
2
d,Σ.

We denote this by ‘σ2
1| rest’ for short. Let C ≡ [X Z] and, as before, let Gσσσ2 ≡ blockdiag1≤`≤d(σ

2
` IK`

).
Then the required full conditionals for Gibbs sampling are:[

β
u

] ∣∣∣ rest ∼ N((CT (Im ⊗Σ−1)C + Gσσσ2)−1CTΣ−1y, (CT (I ⊗Σ−1)C + Gσσσ2)−1),

σ2
` | rest ∼ Inverse-Gamma(A` + 1

2K`, B` + 1
2‖u`‖2), 1 ≤ ` ≤ d

and Σ| rest ∼ Inverse-Wishart(a + m,B + (y −Xβ −Zu)(y −Xβ −Zu)T ).

Provided that a is an integer then the Inverse-Wishart draws for Σ can be achieved by setting

Σ =

(
a+m∑
i=1

viv
T
i

)−1

where the vi are independent N(0, {B +(y−Xβ−Zu)(y−Xβ−Zu)T }−1) random vectors.
Interestingly, the fact that Σ is unstructured means that Gibbs sampling is exact. This is

not the case if Σ is structured (e.g. autoregressive) and more complicated Markov chain Monte
Carlo schemes are then required.
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4.2 Implementation in BUGS

The BUGS language supports implementation of our Bayesian marginal longitudinal semipara-
metric regression models. It is recommended that the spline basis functions be set up outside
of BUGS. We do this in R and then call BUGS using the BRugs package (Ligges et al. 2007). We
pass the regression data to BUGS using matrices. For example, the variable yMat is an m × n
matrix with (i, j) entry containing yij . Our BUGS code for fitting the marginal longitudinal
nonparametric regression model is:

model
{

for (i in 1:m)
{

for (j in 1:n)
{

mu[i,j] <- beta0 + beta1*xMat[i,j] + inprod(u[],Z[(i-1)*n+j,])
}
yMat[i,1:n] ˜ dmnorm(mu[i,],Omega[1:n,1:n])

}
for (k in 1:K)
{

u[k] ˜ dnorm(0,tau)
}
beta0 ˜ dnorm(0,1.0E-8) ; beta1 ˜ dnorm(0,1.0E-8)
tau ˜ dgamma(0.01,0.01)
Omega[1:n,1:n] ˜ dwish(R[,],n)
for (i in 1:n)
{

for (j in 1:n)
{

R[i,j] <- 0.01*equals(i,j)
}

}
sigma <- 1/sqrt(tau)
Sigma[1:n,1:n] <- inverse(Omega[,])

}

Note that BUGS uses precision matrices rather than covariance matrices in its multivariate
normal distribution specification. Hence, the above code uses the variable Omega, correspond-
ing to Ω = Σ−1. Similarly, the precision parameter tau corresponds to τ = 1/σ2 where σ2 is the
spline penalisation variance component.

5 Illustrations

We tested out BUGS fitting of the three types of models presented in Section 2 on several sets
of simulated data. The simulation aspect also allows for comparisons were done with the true
functions and marginal covariance matrix that generated the data. We now present some of
these results as illustration of the methodology and its good performance.

5.1 Illustration for Nonparametric Regression

We fitted the penalized spline model (11) to the data of Figure 1. The yij were generated ac-
cording to (2). The xij are equally spaced but with the starting positions xi1 were generated
uniformly from the interval (8, 12). We used the diffuse priors given by (18) and (19). A burn-
in period of 5000 was used, followed by 5000 iterations with a thinning factor of 5 – resulting
in samples of size 1000 being retained for inference.
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Series  x[[plot.ind]][, j]

0.05 0.1 0.15 0.2

posterior mean: 0.109

95% credible interval: 

(0.0821,0.141)

Figure 2: Summary of MCMC-based inference for the diagonal entries of Σ in the fitted marginal
longitudinal nonparametric regression model . The columns are: parameter, trace plot of MCMC sample,
plot of sample against 1-lagged sample, sample autocorrelation function, kernel estimates of posterior
density and basic numerical summaries. True values of the parameters are shown as vertical dashed
lines in the posterior density estimate.

Figure 2 summarizes the BUGS output for the diagonal entries of Σ. The chains mix quite
well with no significant autocorrelation. In addition, the true values of Σii are captured by the
95% credible intervals in four out of the five cases.

The results for the off-diagonal entries of Σ are summarized in Figure 3. All ten of the true
values of Σij are captured by the 95% credible intervals in four out of the five cases.

The Bayesian penalized spline estimate of f is shown in Figure 4, with and without the
data. The thick solid curves correspond to the posterior means of 3 over a grid of xs. The
dashed curves are corresponding 95% credible sets. The regression function from which the
data were generated is shown for comparison. The gridwise posteriors are seen to cover the
true f quite well.

The good results presented in this section are typical of the performances we observed over
several runs, as well as different choices for f and Σ. An interesting future project would be a
large scale simulation study that compares this approach with existing methods.

5.2 Illustration for Additive Models

We simulated data according to the model

E(yij) = sin(2π(x2
1ij − 0.1)) + sin(3π(0.05− x2ij)),

Cov(yi) = 0.36151T
5 + 0.25 I5
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Series  x[[plot.ind]][, j]

0.05 0.1 0.15 0.2 0.25

posterior mean: 0.122

95% credible interval: 

(0.0931,0.159)

ΣΣ13 ●
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Series  x[[plot.ind]][, j]

0.05 0.1 0.15 0.2

posterior mean: 0.0972

95% credible interval: 

(0.0694,0.132)

ΣΣ14 ●
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Series  x[[plot.ind]][, j]

0 0.05 0.1 0.15

posterior mean: 0.0665

95% credible interval: 

(0.043,0.0945)
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Series  x[[plot.ind]][, j]

0 0.02 0.04 0.06 0.08 0.1

posterior mean: 0.0508

95% credible interval: 

(0.0314,0.0744)
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Series  x[[plot.ind]][, j]

0.05 0.1 0.15 0.2

posterior mean: 0.0922

95% credible interval: 

(0.0655,0.127)
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Series  x[[plot.ind]][, j]

0 0.05 0.1 0.15

posterior mean: 0.0665

95% credible interval: 

(0.0451,0.0929)
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Series  x[[plot.ind]][, j]

0 0.05 0.1 0.15

posterior mean: 0.0615

95% credible interval: 

(0.0383,0.0889)
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Series  x[[plot.ind]][, j]

0 0.05 0.1 0.15

posterior mean: 0.0777

95% credible interval: 

(0.0572,0.105)
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Figure 3: Summary of MCMC-based inference for the off-diagonal entries of Σ in the fitted marginal
longitudinal nonparametric regression model. The columns are: parameter, trace plot of MCMC sample,
plot of sample against 1-lagged sample, sample autocorrelation function, kernel estimates of posterior
density and basic numerical summaries. True values of the parameters are shown as vertical dashed
lines in the posterior density estimate.

for 1 ≤ i ≤ 200 and 1 ≤ j ≤ 5. Here 1d denotes the d×1 vector of ones. For each i we generated
the x1ij to be

x1ij = ri + 1/n, j = 1, . . . , n
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Figure 4: Left panel: Estimated regression function f , together with the longitudinal data on which it
is based. Dashed curves correspond to pointwise 95% credible sets. The true f is shown as a thin grey
curve. Right panel: Estimated regression function f , with data omitted to allow better visualisation.

where ri is uniformly distributed on (0, 1/n). An identical strategy was used for the x2ij Even
though the x1ij and x2ij were generated from a random process, they are considered fixed in
the present analysis.

Figure 5 shows the posterior means of f1 and f2 and accompanying pointwise 95% credible
sets. These answers were obtained via BUGS. Agreement with the true f1 and f2 is seen to be
very good. The numerical summaries for the posterior of Σ are consistent with the truth from
which the data were generated, although these are not shown because of space considerations.

6 Discussion

It is somewhat of a quirk that the mixed model-based penalized spline approach to marginal
longitudinal nonparametric regression has not been explored in depth until now. Nevertheless,
as we have illustrated in the previous section, it is a viable approach that is readily implemented
in standard software. Another advantage of this approach is that complications such as miss-
ingness can be handled within the same likelihood-based or Bayesian framworks. It would
be interesting to see if the asymptotic efficiency results established for other approaches (e.g.
Wang, Carroll & Lin, 2005) also apply here.
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