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Abstract
Likelihood-based inference for the parameters of generalized linear mixed models

is hindered by the presence of intractable integrals. Gaussian variational approximation
provides a fast and effective means of approximate inference. We provide some theory for
this type of approximation for a simple Poisson mixed model. In particular, we establish
consistency at rate m−1/2 + n−1, where m is the number of groups and n is the number
of repeated measurements.

Keywords: Asymptotic theory; Generalized linear mixed models; Kullback-Liebler diver-
gence; Longitudinal data analysis; Maximum likelihood estimation.

1 Introduction

Variational approximation has become a central component in inference in Machine Learn-
ing and other areas of Computer Science. Recent summaries of variational approximation
methodology and theory are provided by Jordan (2004), Titterington (2004) and Bishop
(2006). The Infer.NET software project (Minka et al., 2008) is a manifestation of the nu-
merous areas in which variational approximations are being applied. Almost all of this
work involves Bayesian inference.

Statistical areas such as longitudinal data analysis have issues that are similar to those
arising in Machine Learning. Recently, we have explored the transferral of variational
approximation technology to statistical settings. One of these is likelihood-based, rather
than Bayesian, inference for generalized linear mixed models. A particularly appealing
approach in this context is Gaussian variational approximation, which involves minimum
Kullback-Liebler divergence from a family of Gaussian densities. Details on Gaussian
variational approximation for generalized linear mixed models are given in Ormerod &
Wand (2009, 2010).

The present article is concerned with theoretical aspects of Gaussian variational ap-
proximations to maximum likelihood estimation. Almost all of the variational approxi-
mation theory of which we are aware treats Bayesian inferential settings (e.g. Humphreys
& Titterington, 2000; Wang & Titterington, 2006). An exception is Hall, Humphreys & Tit-
terington (2002), who treat likelihood-based inference for Markovian models with miss-
ingness. As we shall see, in the case of generalized linear mixed models, rigorous asymp-
totics for variational approximation maximum likelihood estimation is delicate and in-
volved. For this reason attention is restricted to a simple generalized linear mixed model
setting which we call the simple Poisson mixed model and formally define in Section 2. In
Poisson mixed models, the Gaussian variational approximation admits explicit forms,
which allow us to study its properties quite deeply. We show that the exact maximum
likelihood estimators are well-defined. We then prove that their variational approxima-
tions are ‘root-m’ consistent, in the sense that, their discrepancy from the true parame-
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ter values decreases at a rate proportional to the inverse square-root of the number of
groups – denoted by m. However, this property requires the number of repeated mea-
surements, n, to be at least as large as the square root of m. Without that condition the
convergence rate is Op(n−1) rather than Op(m−1/2). Hence, consistency of Gaussian vari-
ational approximation requires that both the number of groups m and the number of
repeated measures n be allowed to increase. While this excludes some longitudinal data
analysis settings, such as matched paired designs, there are others where it is reasonable
for n to grow. Ormerod & Wand (2009, 2010) shows Gaussian variational approxima-
tion to be quite accurate for n ' 5. Our results also have something important to say
in non-asymptotic cases, where n is small – Section 3.5 shows that Gaussian variational
approximation can be inconsistent unless n, as well as m, is large.

The maximum likelihood problem and its Gaussian variational approximate solution
are described in Section 2. Section 3 contains our theoretical results, and accompanying
commentary. All proofs are given in Section 4. We conclude with some discussion in
Section 5.

2 Simple Poisson Mixed Model

We now describe the simple Poisson mixed model and Gaussian variational approximate
maximum likelihood estimation of its parameters. The simple Poisson mixed model is
a special case of the generalized linear mixed model where the fixed effects are a sim-
ple linear relationship and the random effects correspond to a random intercept. The
responses, conditional on the random effects, are assumed to be Poisson.

The observed data are (Xij , Yij), 1 ≤ i ≤ m, 1 ≤ j ≤ n, where the Yijs are non-
negative integers and the Xijs are unrestricted real numbers. The simple Poisson mixed
model is

Yij |Xij , Ui independent Poisson with mean exp(β0 + β1Xij + Ui),

Ui independent N(0, σ2).

In biomedical applications the 1 ≤ i ≤ m corresponds to m patients, and 1 ≤ j ≤ n
corresponds to n repeated measures on those patients and typically m � n. The random
intercepts Ui invoke a within-patient correlation. See, for example, McCulloch, Searle &
Neuhaus (2008) for details of this model and its longitudinal data analysis connections.

Let β ≡ (β0, β1) be the vector of fixed effects parameters. The conditional log-likelihood
of (β, σ2) is the logarithm of the joint probability mass function of the Yijs, given the Xijs,
as a function of the parameters. It admits the expression

`(β, σ2) =
m∑

i=1

n∑
j=1

{Yij(β0 + β1 Xij)− log(Yij !)} − m
2 log(2πσ2) (1)

+
m∑

i=1

log
∫ ∞

−∞
exp

 n∑
j=1

Yiju− eβ0+β1 Xij+u − u2

2σ2

 du.

The maximum likelihood estimates of β and σ2 are then

(β̂, σ̂2) = argmax
β,σ2

`(β, σ2).

In practice, computation of (β̂, σ̂2) and corresponding inference is hindered by the
fact that the m integrals in (1) cannot be reduced. In this simple setting the integrals are
univariate and quadrature can be entertained. However, in more elaborate grouped data
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generalized linear mixed models, such as those described in Ormerod & Wand (2010),
the integrals are multidimensional and quadrature is more challenging.

Gaussian variational approximation offers a remedy since it results in a closed form
approximation to `(β, σ2). So-called variational parameters can be chosen to optimize the
quality of the approximation. Let u, x and y respectively denote the random vectors
containing the Uis, the Xijs and the Yijs. Also, let p be the generic symbol for density or
probability mass function. Then

`(β, σ2) = log p(y|x;β, σ2).

Hence, for arbitrary density functions q on Rm,

`(β, σ2) = log p(y|x)
∫

Rm

q(u) du =
∫

Rm

log p(y|x)q(u) du

=
∫

Rm

log
{

p(y,u|x)/q(u)
p(u|y,x)/q(u)

}
q(u) du

=
∫

Rm

q(u) log
{

p(y,u|x)
q(u)

}
du +

∫
Rm

q(u) log
{

q(u)
p(u|y,x)

}
du.

The second term is the Kullback-Leibler distance between q(u) and p(u|y,x). Since this
is always non-negative (Kullback & Liebler, 1951) we get

`(β, σ2) ≥
∫

Rm

q(u) log
{

p(y,u|x)
q(u)

}
du.

Now take q to be the m-variate Gaussian density function with mean µ and covariance
matrix Λ. This leads to

`(β, σ2) ≥ `(β, σ2,µ,Λ) (2)

where

`(β, σ2,µ,Λ) ≡
m∑

i=1

n∑
j=1

{Yij(β0 + β1Xij + µi)− eβ0+β1Xij+µi+
1
2λi − log(Yij !)} (3)

−m

2
log(σ2)− 1

2σ2

m∑
i=1

(µ2
i + λi) + 1

2 log |Λ|

is the Gaussian variational approximation to `(β, σ2). Here µ = (µ1, . . . , µm) and λ =
(λ1, . . . , λm) are the diagonal entries of Λ. Since (2) holds for all choices of µ and Λ we
obtain the tightest lower bound by maximizing over these variational parameters. Theo-
rem 1 in Section 3.1 implies that the off-diagonal entries of Λ do not improve the lower
bound so there is no loss from working with

`(β, σ2,µ,λ) ≡
m∑

i=1

n∑
j=1

{Yij(β0 + β1Xij + µi)− eβ0+β1Xij+µi+
1
2λi − log(Yij !)} (4)

−m

2
log(σ2)− 1

2σ2

m∑
i=1

(µ2
i + λi) + 1

2

m∑
i=1

log(λi).

The Gaussian variational approximate maximum likelihood estimators are:

(β̂, σ̂2) = (β, σ2) component of argmax
β,σ2,µ,λ

`(β, σ2,µ,λ).

Note that maximization over µ and λ makes the lower bound as tight as possible, and
hence improves the accuracy of the variational approximation.
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3 Theoretical Results

In this section we provide several theoretical results concerned with the maximum like-
lihood problem presented in Section 2 and its approximate solution via Gaussian varia-
tional approximation. All proofs are deferred to Section 4.

3.1 Sufficiency of a Diagonal Covariance Matrix

THEOREM 1. If Σ is a symmetric, positive definite matrix then, given the components
down the main diagonal of Σ, |Σ| is uniquely maximized by taking the off-diagonal
components to vanish.

Theorem 1 provides a justification for dropping the off-diagonal terms of Λ between
(3) and (4). This means that the optimal q density factorizes into a product of m univariate
normal densities. This result is in accordance with the fact that the integral over u in the
exact log-likelihood (1) reduces to m univariate integrals.

3.2 Similarities Between the Log-likelihood and its Lower Bound

In this section we give formulae for the log-likelihood and its approximation. Assume
that the Xijs and Uis are totally independent; the Xijs are identically distributed as X ;
and the Uis are all normal N(0, σ2). Also, for 1 ≤ i ≤ m, let

Yi • ≡
n∑

j=1

Yij and Bi = Bi(β0, β1) ≡
n∑

j=1

exp(β0 + β1 Xij).

Then the log-likelihood and its approximation are:

`(β, σ2) = `0(β, σ2) + `1(β, σ2) ,

and `(β, σ2,µ,λ) = `0(β, σ2) + `2(β, σ2,µ,λ)

where

`0(β, σ2) ≡
m∑

i=1

n∑
j=1

{Yij (β0 + β1 Xij)− log(Yij !)} − m
2 log σ2 , (5)

`1(β, σ2) ≡
m∑

i=1

log
{ ∫ ∞

−∞
exp

(
Yi • u−Bi e

u − 1
2 σ−2 u2

)
du

}

and `2(β, σ2,µ,λ) ≡
m∑

i=1

{
µi Yi • −Bi exp

(
µi + 1

2 λi

)}
(6)

− 1
2σ2

∑m
i=1

(
µ2

i + λi

)
+ 1

2

∑m
i=1 log λi.

A first step is to find λ and µ to maximize `2(β, σ2,µ,λ). It is clear from the definition
of `2, as a series in functions of (λi, µi), that if we keep β0, β1 and σ2 fixed then the
resulting µi will be a function of λi, and vice versa.

3.3 Properties of the Variational Parameters

Here we discuss relationships among the parameters that produce an extremum of
`2(β, σ2,λ,µ).

THEOREM 2. If σ2 > 0 then: (i) `2(β, σ2,µ,λ) has a unique maximum in (λ,µ); (ii) the
maximum occurs when

µi = σ2 Yi • + 1− σ2 λ−1
i , for 1 ≤ i ≤ m ; (7)
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(iii) at the maximum, the parameter values satisfy

0 < λi < σ2 and µi < σ2 Yi • ; (8)

and (iv) µi is defined uniquely, in terms of Bi and Yi •, by

σ2 Bi exp
{
µi + 1

2 σ2 (σ2 Yi • + 1− µi)−1
}

= σ2 Yi • − µi . (9)

It is worth noting that the values of the components (λi, µi) at which the maximum in
(λ,µ) of `2(β, σ2,µ,λ) occurs, are determined index-by-index and do not require a more
complex maximization. Of course, this is an immediate consequence of the diagonaliza-
tion noted in Theorem 1.

3.4 “True Values” of Parameters

In this section we derive the almost-sure limits of the values of β and σ2 that maximize
`(β, σ2) and `(β, σ2). First, however, we derive the limits of m−1 `j for j = 0, 1, 2. For this
purpose we impose the following conditions:

(A1) for 1 ≤ j ≤ n, the pairs (Xij , Yij , Ui) are independent and identically distributed as
(Xi, Yi, Ui), say, which in turn is distributed as (X, Y, U);

(A2) the random variables X and U are independent;

(A3) the sets of variables Si = {(Xij , Yij , Ui) : 1 ≤ j ≤ n}, for 1 ≤ i ≤ m, are independent
and identically distributed;

(A4) each Yij , conditional on both Xij and Ui, is Poisson-distributed with mean exp(β0
0 +

β0
1 Xij + Ui), where β0

0 and β0
1 denote the true values of β0 and β1;

(A5) each Ui is normal N(0, (σ2)0), where (σ2)0 denotes the true value of σ2; and that
(σ2)0 > 0;

(A6) the moment generating function of X , φ(t) = E{exp(tX)}, is finite for |t| < 2c, for
some c > 0; and that |β0

1 | < c.

Let (B, Y•) = (B1, Y1 •). Note that B is a function of β0 and β1, although Y• is not.
Define Q = Q(β0, β1) < 0 to be the unique solution of the equation

σ2 B exp
{
Q + 1

2 σ2 (σ2 Y• + 1−Q)−1
}

+ Q− σ2 Y• = 0 . (10)

Define too:

`0
0(β, σ2) ≡ n exp

(
β0

0 + 1
2 (σ2)0

) {
β0 φ

(
β0

1

)
+ β1 φ′

(
β0

1

)}
− 1

2 log(σ2) , (11)

`0
1(β, σ2) ≡ E

[
log

{ ∫ ∞

−∞
exp

(
Y• u−B eu − 1

2 σ−2 u2
)
du

}]
(12)

and `0
2(β, σ2) ≡ E(QY•)− σ−2 E(σ2 Y• −Q) (13)

− 1
2σ2 E

{
Q2 + σ2 (σ2 Y• + 1−Q)−1

}
+1

2 log(σ2)− 1
2 E{log(σ2 Y• + 1−Q)} .

Note that the terms in 1
2 log(σ2), in both `0

0 and `0
2, cancel from `0

0 + `0
2.

Since φ(t) < ∞ for |t| < 2c then E{exp(t |X|)} < ∞ for 0 < t < 2c, and therefore
|φ′(t)| ≤ E{|X| exp(t |X|)} < ∞ for |t| < 2c. Therefore `0

0(β, σ2) is well-defined and
finite provided that |β0

1 | < 2c and σ2 > 0. The theorem below implies that `0
2(β, σ2) is

finite if |β0
1 | < c and σ2 > 0. Clearly, `0

1(β, σ2) is well-defined and finite whenever σ2 > 0.
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THEOREM 3. Assume conditions (A1)–(A6). Then `0
2(β, σ2) is well-defined and finite

if |β0
1 | < c and σ2 > 0. Moreover, with probability 1, as m → ∞ and for fixed n, we

have m−1 `j(β, σ2) → `0
j (β, σ2) for j = 0, 1, and m−1 supλ,µ `2(β, σ2,µ,λ) → `0

2(β, σ2),
uniformly in

β0 ∈
[
β

(1)
0 , β

(2)
0

]
, β1 ∈

[
β

(1)
1 , β

(2)
1

]
, σ2 ∈

[
(σ2)(1), (σ2)(2)

]
, (14)

provided that

−∞ < β
(1)
0 < β

(2)
0 < ∞ , −c < β

(1)
1 < β

(2)
1 < c , 0 < (σ2)(1) < (σ2)(2) < ∞ . (15)

Recall from Section 3.2 that the log-likelihood `, and its approximate form `, satisfy
` = `0+`1 and ` = `0+`2. Therefore, provided the maximizations are taken over values in
a range permitted by (14) and (15), the almost sure limits of the estimators of β0, β1 and σ2

that maximize ` and `, are the values of the quantities that maximize `0
0(β, σ2) + `0

1(β, σ2)
and `0

0(β, σ2) + `0
2(β, σ2), respectively.

By exploiting formulae (11)–(13) it is possible to choose the distribution of X such
that (A1)–(A6) hold but the value of (β, σ2) that maximizes `0

0 + `0
1 is different from that

which maximizes `0
0 + `0

2. The maximum likelihood estimators, based on maximizing `,
are consistent and converge at rate m−1/2, even if n is held fixed. Therefore, in the context
described in the first sentence of this paragraph, and for fixed n, the Gaussian variational
approximate estimators, based on maximizing `, are inconsistent. However, as we shall
show in Section 3.5, permitting m and n to diverge together leads to consistency, in fact
at rate m−1/2 + n−1.

3.5 Consistency at Rate m−1/2 + n−1

We are now in a position to state our main results, i.e. the consistency and convergence
rates of estimators of the model parameters based on Gaussian variational approxima-
tion. Recall from Section 2 that the Gaussian variational approximate maximum likeli-
hood estimators are

(β̂
0
, β̂

1
, σ̂2) = (β0, β1, σ

2) component of argmax
β0,β1,σ2,µ,λ

`(β, σ2,µ,λ).

We impose the following conditions:

(A7) the moment generating function of X , φ(t) = E{exp(tX)}, is well-defined on the
whole real line;

(A8) the mapping that takes β to φ′(β)/φ(β) is invertible;

(A9) in some neighbourhood of β0
1 (the true value of β1), (d2/dβ2) log φ(β) does not van-

ish;

(A10) for a constant C > 0, m = O(nC) as m and n diverge.

(A11) the true values β0
0 , β0

1 and (σ2)0 of β0, β1 and σ2, respectively, lie in (−∞,∞),
(−∞,∞) and (0,∞), respectively, and when choosing (β̂

0
, β̂

1
, σ̂2) we search in the

rectangular region [−C1, C1]× [−C1, C1]× [C−1
1 , C1], where C1 is a constant satisfy-

ing C1 > max(|β0
0 |, |β0

1 |, (σ2)0, 1/(σ2)0).

THEOREM 4. If (A1)–(A5) and (A7)–(A11) hold then, as m and n diverge,

β̂
0

= β0
0+Op(m−1/2+n−1), β̂

1
= β0

1+Op(m−1/2+n−1) and σ̂2 = (σ2)0+Op(m−1/2+n−1).
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4 Proofs

Theorem 1, which is proved in Section 4.1, reduces the parametric complexity of the vari-
ational problem from O(m2) to O(m) in respect of the number of groups. The proof of
Theorem 2 is then relatively conventional. That theorem is then applied to prove Theo-
rem 3, by eliminating λ and µ from the variational likelihood. The proof of Theorem 4 is
conducted in a sequence of three steps, each of which is essentially a lemma for the next.
In particular, the first step (given in Section 4.4.1) establishes consistency of estimators
of β0, β1 and σ2; the second step (Section 4.4.2) uses the conclusion of Step 1 to control
remainder terms, so that the consistency property can be extended to a rate of conver-
gence that is almost, but not quite, as good as the rate stated in Theorem 4. Finally, in
Section 4.4.3, the conclusion of Step 2 is used to give still better control of remainders, so
that the full theorem can be derived.

4.1 Proof of Theorem 1

Let Σ be p× p, and let Σ1 be the (p− 1)× (p− 1) matrix, let a be the p-vector, and let b be
the scalar such that

Σ =
[

Σ1 a
aT b

]
.

Then,
|Σ| = |Σ1|

(
b− aTΣ−1

1 a
)
.

We shall prove the theorem by induction over p, and so we may assume that |Σ1| is
uniquely maximized by taking the off-diagonal components of Σ1 to vanish. (The the-
orem clearly holds when p = 1.) Since Σ1 is positive definite then, for Σ1 and b fixed,
b − aTΣ−1

1 a is uniquely maximized by taking a = 0, and then |Σ| = |Σ1| b. The induc-
tion hypothesis now implies that |Σ| is uniquely maximized by taking the off-diagonal
components of Σ to equal zero.

4.2 Proof of Theorem 2

Note that

∂`2(β, σ2,µ,λ)
∂µi

= Yi • −Bi exp
(
µi + 1

2 λi)− σ−2 µi , (16)

∂`2(β, σ2,µ,λ)
∂λi

= −1
2 Bi exp

(
µi + 1

2 λi

)
− 1

2 σ−2 + 1
2 λ−1

i . (17)

Equating both equations to zero to obtain a turning point in (λi, µi), and subtracting twice
the second equation from the first, we see that (7) holds.

Using (7) to express λi in terms of µi, the right-hand sides (16) and (17), when set
equal to zero, are both equivalent to (9). The left-hand side there increases from zero
to σ2 Bi exp{1

2 σ2 (σ2 Yi • + 1)−1}, and the right-hand side decreases from ∞ to 0, as µi

increases from −∞ to 0. Moreover, σ2 Bi exp{1
2 σ2 (σ2 Yi • + 1)−1} > 0, provided that

σ2 > 0. Therefore, if σ2 > 0 then (9) has a unique solution in µi, and so (i) holds.
The fact that equation formed by setting the left-hand side of (16) equal to zero has a

solution means that σ2 Yi • − µi > 0, which is the second part of (8). It therefore follows
from (7), and the fact that λi > 0 since Λ must be positive definite, that λi ∈ (0, σ2), which
is the first part of (8).

4.3 Proof of Theorem 3

First we establish the finiteness of `0
2(β, σ2). Assume that σ2 > 0. Since Q ≤ 0 and Y• ≥ 0

then σ2 Y• + 1−Q ≥ 1, and so it suffices to ensure that E(Y•) + E(|Q|Y•) + E(Q2) < ∞.
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Now, (10) implies that σ2 B exp(−|Q|) ≤ σ2 Y• −Q ≤ σ2 B exp(−|Q|+ 1
2). Therefore,

(σ2 Y•)2 + 2 σ2 Y• |Q|+ Q2 = (σ2 Y• −Q)2 ≤ (σ2 B)2 e−2|Q|+1 ≤ (σ2 B)2 e ,

and so,

E
{
(σ2 Y•)2 + 2 σ2 Y• |Q|+ Q2

}
≤ σ4eE

(
B2

)
= σ4 exp(2β0 + 1) φ(2β1) < ∞

provided |β0
1 | < c. Hence, the latter condition implies that, E(Y•) + E(|Q|Y•) + E(Q2) <

∞, and therefore that `0
2(β, σ2) < ∞.

Since

E(Yij |Xij) = E{exp(β0
0 + β0

1 Xij + Ui) |Xij} = exp
(
β0

0 + β0
1 Xij + 1

2 (σ2)0
)

and E{X exp(β1 X)} = φ′(β1), then

E{Yij (β0 + β1 Xij)} = E
{

exp
(
β0

0 + β0
1 Xij + 1

2 (σ2)0
)
(β0 + β1 Xij)

}
= exp

(
β0

0 + 1
2 (σ2)0

) {
β0 φ

(
β0

1

)
+ β1 φ′

(
β0

1

)}
.

Therefore, if we take m to diverge to infinity and keep n fixed, then by the law of large
numbers, and with probability 1, m−1 `j(β, σ2) → `0

j (β, σ2) for j = 0, and analogously
the result when j = 1 also holds. This establishes pointwise convergence. Uniform
convergence follows from equicontinuity of the functions `0 and `1 if they are interpreted
as indexed by different values of their random arguments. For example, in the case of `0

we have, for different versions (β′0, β
′
1, (σ

2)′) and (β′′0 , β′′1 , (σ2)′′) of (β0, β1, σ
2):

m−1 |`0(β′, (σ2)′)− `0(β′′, (σ2)′′)| ≤ (|β′0 − β′′0 |+ |β′1 − β′′1 |) S + 1
2 | log{(σ2)′/(σ2)′′}| , (18)

where S = m−1
∑

i

∑
j Yij (1 + |Xij |) and converges almost surely to a finite limit as

m →∞. (Here we have used the fact that |β0
1 | < c, where c is as in (A6).) It follows from

(18) that the almost sure limit as m →∞, of the supremum of |`0(β′, (σ2)′)−`0(β′′, (σ2)′′)|
over |β′0−β′′0 |+ |β′1−β′′1 |+ |(σ2)′− (σ2)′′| ≤ ε, where the parameter values are constrained
to satisfy (14) and (15), converges to zero as ε ↓ 0. The case of `1 is similar.

To treat the convergence of `2(β, σ2,µ,λ) we note that, in view of Theorem 2 and
particularly (9), with probability 1,

m−1 sup
λ,µ

`2(β, σ2,µ,λ) → E(QY•)− E
{
B exp

(
Q + 1

2 R
)}

−1
2 σ−2 E

(
Q2 + R

)
+ 1

2 E(log R) ,

where the random variables B, Q and R are jointly distributed such that R = σ2 (σ2 Y• +
1−Q)−1 and Q solves (10). In this notation, and with probability 1,

m−1 sup
λ,µ

`2(β, σ2,µ,λ) → E(QY•)− E
[
B exp

{
Q + 1

2 σ2 (σ2 Y• + 1−Q)−1
}]

−1
2 σ−2 E

{
Q2 + σ2 (σ2 Y• + 1−Q)−1

}
+1

2 log(σ2)− 1
2 E{log(σ2 Y• + 1−Q)} .

That is equivalent to asserting that, with probability 1, m−1 supλ,µ `2(β, σ2,µ,λ) →
`0
2(β, σ2). Again, uniform convergence follows via an equicontinuity argument.
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4.4 Proof of Theorem 4

4.4.1 Consistency

For 1 ≤ i ≤ m, let λ̂ i and µ̂
i

denote the entries of µ and λ that maximize `(β, σ2,µ,λ).
Equating the right-hand sides of (16) and (17) to zero, and dividing by n, we see that β̂

0
,

β̂
1
, σ̂2, λ̂ i and µ̂

i
satisfy:

µ̂
i

/
(n σ̂2) + exp

(
µ̂

i
+ 1

2 λ̂ i + β̂
0

) 1
n

n∑
j=1

exp(β̂
1
Xij)−

1
n

Yi • = 0 (19)

and
1

n σ̂2 + exp
(
µ̂

i
+ 1

2 λ̂ i + β̂
0

) 1
n

n∑
j=1

exp(β̂
1
Xij)−

1

n λ̂ i

= 0. (20)

Since X has finite moment generating function, φ, on the real line then Markov’s inequal-
ity can be used to prove that for all C1, C2 > 0 and ρ ∈ (0, 1

2),

sup
β1: |β1|≤C1

P

{∣∣∣∣ 1n
n∑

j=1

exp(β1 Xij)− φ(β1)
∣∣∣∣ > n−ρ

}
= O

(
n−C2

)
.

Therefore, if G(n) is a grid of points in the interval [−C1, C1] containing no more than
O(nC) points, for some C > 0, then

P

{
sup

β1∈G(n)

∣∣∣∣ 1n
n∑

j=1

exp(β1 Xij)− φ(β1)
∣∣∣∣ > n−ρ

}
= O

(
n−C2

)
for all C2 > 0. Choosing C sufficiently large, and using Hölder continuity of the ex-
ponential function and of φ, we can extend this bound from G(n) to the whole of the
interval:

P

{
sup

β1: |β1|≤C1

∣∣∣∣ 1n
n∑

j=1

exp(β1 Xij)− φ(β1)
∣∣∣∣ > n−ρ

}
= O

(
n−C2

)
.

Therefore, provided m = O(nC) for some C > 0,

P

{
max

1≤i≤m
sup

β1: |β1|≤C1

∣∣∣∣ 1n
n∑

j=1

exp(β1 Xij)− φ(β1)
∣∣∣∣ > n−ρ

}
= O

(
n−C2

)
(21)

for all C1, C2 > 0. The probability statement in each of the three displays immediately
above (21) could have been preceded by max1≤i≤m, although we chose not to do so be-
cause the distribution of Xij does not depend on i. Nevertheless, the passage to (21) can
be interpreted as moving the operator max1≤i≤m from outside to inside the probability
statement.

Recall that, conditional on Xij and Ui, Yij is Poisson-distributed with mean exp(β0
0 +

β0
1 Xij + Ui). It therefore can be proved using Markov’s inequality that for all C1, C2 > 0

and ρ ∈ (0, 1
2),

max
1≤i≤m

P

[∣∣∣∣ 1n
n∑

j=1

{
Yij − exp

(
β0

0 + β0
1 Xij + Ui

)}∣∣∣∣ > n−ρ

]
= O

(
n−C2

)
.

Hence, since m = O(nC) for some C > 0,

P

[
max

1≤i≤m

∣∣∣∣ 1n
n∑

j=1

{
Yij − exp

(
β0

0 + β0
1 Xij + Ui

)}∣∣∣∣ > n−ρ

]
= O

(
n−C2

)
. (22)
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The properties m = O(nC) and

P
{

max
1≤i≤m

Ui ≥ σ (2D log m)1/2
}
≤ m1−D (23)

imply that there exists C ′ > 0 such that

P
[

max
1≤i≤m

exp(Ui) > exp
{
C ′ (log n)1/2

}]
→ 0 . (24)

Combining (21), (22) and (24) we see that for all C1, C2 > 0 and ρ ∈ (0, 1
2),

P

{
max

1≤i≤m

∣∣∣∣ 1n Yi • − exp
(
β0

0 + Ui

)
φ(β0

1)
∣∣∣∣ > n−ρ

}
= O

(
n−C2

)
. (25)

From (21) and (25) we deduce that, for each ρ ∈ (0, 1
2), λ̂ i and µ̂

i
satisfy

µ̂
i

σ2n
+ exp

(
µ̂

i
+ 1

2 λ̂ i + β0

) {
φ(β1) + Op

(
n−ρ

)}
= exp(β0

0 + Ui)
{
φ(β0

1) + Op

(
n−ρ

)}
, (26)

1
σ2n

+ exp
(
µ̂

i
+ 1

2 λ̂ i + β0

) {
φ(β1) + Op

(
n−ρ

)}
=

1

nλ̂ i

, (27)

where the Op(n−ρ) remainders are of the stated orders uniformly in 1 ≤ i ≤ m and in
σ2, |β0|, |β1| ≤ C1, and σ2 ≥ C−1

1 with C1 > 0 arbitrary but fixed.
By (8), 0 < λi < σ2. Therefore, the left-hand side of (26) equals {µi/(σ2n)}+ exp(µi +

ωi) {φ(β1) + Op(n−ρ)}, where β0 − 1
2 σ2 ≤ ωi ≤ β0 + 1

2 σ2; call this result (R1). We confine
σ2 and β0 to compact sets, in particular to values satisfying σ2, |β0| ≤ C1 and σ2 ≥ C−1

1 ,
and so |ωi| is bounded uniformly in i. This property, (R1) and (26) imply that

exp
(
µ̂

i
+ 1

2 λ̂ i + β0

)
{φ(β1) + op(1)} = exp(β0

0 + Ui) {φ(β0
1) + op(1)} , (28)

uniformly in 1 ≤ i ≤ m and in σ2, β0 and β1 satisfying σ2, |β0|, |β1| ≤ C1 and σ2 ≥ C−1
1 ,

for any fixed C1 > 1. To establish (28) in detail, note first that for each C1 > 0,

φ(β1) is bounded away from zero and infinity uniformly in |β1| ≤ C1 . (29)

If (28) fails for some η > 0 then it can be shown from (26) that “for some i in the range
1 ≤ i ≤ m, both µi < 0 and |µi|/(σ2n) > η exp(µi + ωi), for all σ2, β0 and β1 satisfying
σ2, |β0|, |β1| ≤ C1 and σ2 ≥ C−1

1 ,” where the property within quotation marks holds with
probability bounded away from zero along an infinite subsequence of values of n. In this
case, since |ωi| is bounded then µi < − log n + O(log log n), and so, in view of (29), the
left-hand side of (26), which can be nonnegative, is, for this i = i(n), of order n−c for
some c > 0. Hence for this i, exp(β0

0 + Ui) = Op(n−c), and so the probability that the
latter bound holds for some 1 ≤ i ≤ m must itself be bounded away from zero along an
infinite subsequence of values of n diverging to infinity; call this result (R2). Since the
distribution of Ui is symmetric then (24) holds if, on the left-hand side, we replace Ui by
−Ui, and so

P
[

min
1≤i≤m

exp(Ui) ≥ exp
{
− C ′ (log n)1/2

}]
→ 1 .

Since exp{−C ′ (log n)1/2} is of strictly larger order than n−c for any c > 0 then property
(R2) is violated, and so the original assumption that (28) fails must have been false.

Results (28) and (29) imply that λ̂ i and µ̂
i

satisfy

µ̂
i
+ 1

2 λ̂ i + β0 + log φ(β1) = β0
0 + Ui + log φ(β0

1) + op(1) , (30)

exp
(
µ̂

i
+ 1

2 λ̂ i + β0

)
φ(β1) = exp

(
β0

0 + Ui

)
φ(β0

1) {1 + op(1)} , (31)

10



uniformly in 1 ≤ i ≤ m and in σ2, β0 and β1 satisfying σ2, |β0|, |β1| ≤ C1 and σ2 ≥ C−1
1 ,

for each fixed C1 > 0. Substituting (31) into (27), and noting (29), we deduce that the λ̂ i

satisfy
1

σ2n
+ exp

(
β0

0 + Ui

)
φ(β0

1) {1 + op(1)} =
1

nλ̂ i

,

uniformly in 1 ≤ i ≤ m and in σ2, β0 and β1 satisfying σ2, |β0|, |β1| ≤ C1 and σ2 ≥ C−1
1 .

This result, (23) and the version of (23) with Ui replaced by −Ui imply that

− log(nλ̂ i) = β0
0 + Ui + op(1) , (32)

uniformly in the same sense. In particular, sup1≤i≤m λ̂ i → 0 in probability. Hence, by
(30),

µ̂
i
= Ui + β0

0 − β0 + log{φ(β0
1)/φ(β1)}+ op(1) , (33)

uniformly in 1 ≤ i ≤ m and in σ2, β0 and β1 satisfying σ2, |β0|, |β1| ≤ C1 and σ2 ≥ C−1
1 .

The following property follows using the argument leading to (21):

P

{
max

1≤i≤m
sup

β1: |β1|≤C1

∣∣∣∣ 1n
n∑

j=1

Xij exp(β1 Xij)− φ′(β1)
∣∣∣∣ > n−ρ

}
= O

(
n−C2

)
; (34)

the property below is a consequence of (25):

P

{∣∣∣∣ 1
mn

m∑
i=1

Yi • − exp
(
β0

0 + 1
2 (σ2)0

)
φ(β0

1)
∣∣∣∣ > n−ρ

}
= O

(
n−C2

)
; (35)

and the following property can be derived analogously:

P

{∣∣∣∣ 1
mn

m∑
i=1

n∑
j=1

Xij Yij − exp
(
β0

0 + 1
2 (σ2)0

)
φ′(β0

1)
∣∣∣∣ > n−ρ

}
= O

(
n−C2

)
. (36)

Each of (34)–(36) holds for all C1, C2 > 0 and all ρ ∈ (0, 1
2). Formula (6) for `2(β, σ2,µ,λ)

implies that

− 1
mn

∂`2(β, σ2,µ,λ)
∂β0

=
1

mn

m∑
i=1

exp
(
β0 + µi + 1

2 λi

) n∑
j=1

exp(β1 Xij) , (37)

− 1
mn

∂`2(β, σ2,µ,λ)
∂β1

=
1

mn

m∑
i=1

exp
(
β0 + µi + 1

2 λi

) n∑
j=1

Xij exp(β1 Xij)

= exp
(
β0 + 1

2 (σ2)0
)
φ′(β1) + op(1) , (38)

where the second identity in (38) follows from (33) and (34). The second identity in (38)
holds uniformly in values of λi and µi that solve (19) and (20), and for σ2, β0 and β1

satisfying σ2, |β0|, |β1| ≤ C1 and σ2 ≥ C−1
1 . Also, by (5), (35) and (36),

1
mn

∂`0(β, σ2)
∂β0

=
1

mn

m∑
i=1

Yi • = exp
(
β0

0 + 1
2 (σ2)0

)
φ(β0

1) + op(1) , (39)

1
mn

∂`0(β, σ2)
∂β1

=
1

mn

m∑
i=1

n∑
j=1

Xij Yij = exp
(
β0

0 + 1
2 (σ2)0

)
φ′(β0

1) + op(1) , (40)

uniformly in the same sense. Combining (38) and (40) we deduce that:

1
mn

∂`(β, σ2,µ,λ)
∂β1

= exp((σ2)0/2)
{

exp(β0
0) φ′(β0

1)− exp(β0) φ′(β1)
}

+ op(1) , (41)
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uniformly in the following sense:

uniformly in σ2, β0, β1, λ and µ that solve ∂`/∂β0 = ∂`/∂β1 = 0, ∂`/∂λ =
∂`/∂µ = 0, and which satisfy σ2, |β0|, |β1| ≤ C1 and σ2 ≥ C−1

1 , provided that
C1 is so large that |β0

0 |, |β0
1 | < C1 and C−1

1 < (σ2)0 < C1.

(42)

Recall from (16), (37) and (39) that

∂`2(β, σ2,µ,λ)
∂µi

= Yi • −Bi exp
(
µi + 1

2 λi

)
− σ−2 µi , (43)

∂`(β, σ2,µ,λ)
∂β0

=
m∑

i=1

n∑
j=1

Yij −
m∑

i=1

exp
(
β0 + µi + 1

2 λi

) n∑
j=1

exp(β1 Xij)

=
m∑

i=1

{
Yi • −Bi exp

(
µi + 1

2 λi

)}
. (44)

Adding (43) over i, and subtracting from (44), we deduce that

m∑
i=1

µ̂
i
= 0 . (45)

Hence, by (33),
β0

0 − β̂
0
+ log{φ(β0

1)/φ(β̂
1
)} = op(1) , (46)

uniformly in the sense of (42).
Formula (41) [respectively, (46)] equates the value of exp(β0) φ′(β1) [respectively, exp(β0) φ(β1)]

to its true value, plus a negligible remainder. Since, by assumption, there is a one-to-one
relation between values of β and values of φ′(β)/φ(β), then the value of φ′(β1)/φ(β1)
(which equals exp(β0) φ′(β1)/{exp(β0)φ(β1)}), together with exp(β0) (which equals exp(β0) φ(β1)/φ(β1)),
uniquely determine the values of β0 and β1. Therefore consistency of estimation of β0 and
β1 follows from (41) and (46).

Note too that

2
m

∂`(β, σ2,µ,λ)
∂σ2

= σ−4 1
m

m∑
i=1

(
λi + µ2

i

)
− σ−2 (47)

= σ−4 1
m

m∑
i=1

[
Ui + β0

0 − β0 + log{φ(β0
1)/φ(β1)}

]2 − σ−2 + op(1) ,

where the first identity follows from (5) and (6), and the second comes from (33). There-
fore if β0 and β1 solve the variational approximate likelihood equations then

σ̂2 =
1
m

m∑
i=1

U2
i + op(1) = (σ2)0 + op(1) .

and (σ2)0 is estimated consistently.

4.4.2 Convergence rate for variational approximate estimators equals Op(m−1/2+n−ρ)

By (32),
λ̂ i = n−1 exp

{
−

(
β0

0 + Ui

)
+ op(1)

}
, (48)

where the remainder is of the stated order uniformly in 1 ≤ i ≤ m. Also, by (23), the
version of (23) for −Ui rather than Ui, and (33),

max
1≤i≤m

|µ̂
i
| = Op

(
nη

)
, (49)
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for each η > 0. Hence, by (26), (48) and the consistency of the estimator of (σ2)0, proved
in Section 4.4.1,

exp(µ̂
i
+ β̂

0
)
{
φ(β̂

1
) + Op

(
n−ρ

)}
= exp(β0

0 + Ui)
{
φ(β0

1) + Op

(
n−ρ

)}
, (50)

uniformly in 1 ≤ i ≤ m and for each ρ ∈ (0, 1
2).

Equation (50), together with (29), imply the following stronger form of (33):

µ̂
i
= Ui + β0

0 − β̂
0
+ log{φ(β0

1)/φ(β̂
1
)}+ Op

(
n−ρ

)
, (51)

uniformly in 1 ≤ i ≤ m and for each ρ ∈ (0, 1
2).

The argument from (34) down, but with (34) replaced by (51), can now be used to
prove that for each ρ ∈ (0, 1

2),

σ̂2 = (σ2)0 +Op(m−1/2 +n−ρ) , β̂
0

= β0
0 +Op(m−1/2 +n−ρ) , β̂

1
= β0

1 +Op(m−1/2 +n−ρ) .
(52)

The term in m−1/2 derives from the standard deviations of means of functions of the Uis.

4.4.3 Concise convergence rate for variational approximate estimators

Without loss of generality, φ′(t) 6= 0 in some compact neighbourhood of β0
1 . (If not, add

a constant to the random variable X to ensure that φ′(β0
1) 6= 0.) We shall take β0

1 to lie
in that neighbourhood, and assume too that β̂

1
is there. In view of the already-proved

consistency of β̂
1

for β0
1 , this assumption too can be made without loss of generality.

Using (21), (22), (29), (48), (49) and the consistency of σ̂2 for (σ2)0, it can be proved
that

1
n

n∑
j=1

exp(β1 Xij) = φ(β1) exp{∆i1(β1)} , (53)

1
n

n∑
j=1

Xij exp(β1 Xij) = φ′(β1) exp{∆i2(β1)} , (54)

1
n

Yi • −
µi

σ2n
= exp{Ui + β0

0 + ∆i3(β0, β1)}φ(β0
1) , (55)

uniformly in i, and where ∆i1, ∆i2 and ∆i3 satisfy, for all C1 > 0 and each ρ ∈ (0, 1
2)

max
1≤i≤m

sup
|β0|,|β1|≤C1

|∆ik(β0, β1)| = Op

(
n−ρ

)
. (56)

(When k = 1 or 2 the dependence of ∆ik(β0, β1) on β0 is degenerate. Note that, by (8), the
left-hand side of (55) is strictly positive. ) It can also be proved that

max
k=1,2,3

max
r=1,2

sup
|β0|,|β1|≤C1

1
m

∣∣∣∣ m∑
i=1

exp(Ui) ∆ik(β0, β1)r

∣∣∣∣ = Op

(
m−1/2 + n−1

)
(57)

max
k=1,2,3

max
r1=0,1

max
r2=1,2

sup
|β0|,|β1|≤C1

1
m

∣∣∣∣ m∑
i=1

U r1
i ∆ik(β0, β1)r2

∣∣∣∣ = Op

(
m−1/2 + n−1

)
. (58)

In the notation of (53)–(55), (19) is equivalent to:

exp
{
β0 + µi + 1

2 λi + ∆i1(β1)
}

φ(β1) = exp{β0
0 + Ui + ∆i3(β0, β1)}φ(β0

1) . (59)

Taking logarithms of both sides of (59), and adding over i, we deduce that if β0 and
β1 satisfy that equation,

β0 − β0
0 + log{φ(β1)/φ(β0

1)} =
1
m

m∑
i=1

{
Ui − µi − 1

2 λi + ∆i3(β0, β1)−∆i1(β1)
}

. (60)
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Additionally, m−1
∑

i Ui = Op(m−1/2); by (45),
∑

i µ̂
i

= 0; using (48), m−1
∑

i λ̂ i =
Op(n−1); and by (58),

sup
|β0|,|β1|≤C1

1
m

∣∣∣∣ m∑
i=1

{∆i3(β0, β1)−∆i1(β1)}
∣∣∣∣ = Op

(
m−1/2 + n−1

)
.

Combining the results from (60) down we deduce that

β̂
0
− β0

0 + log{φ(β̂
1
)/φ(β0

1)} = Op

(
m−1/2 + n−1

)
. (61)

Observe that

∆ ≡ 1
mn

m∑
i=1

n∑
j=1

Xij {Yij − exp(β0
0 + β0

1 Xij + Ui)} = Op

(
m−1/2

)
. (62)

Using (38) and (40) we deduce that the equation ∂`/∂β1 = 0 is equivalent to:

1
mn

m∑
i=1

n∑
j=1

Xij

{
Yij − exp

(
β0 + µi + 1

2 λi + β1 Xij

)}
= 0 ,

which in turn is equivalent to:

∆ + exp(β0
0) φ′(β0

1)
1
m

m∑
i=1

exp{Ui + ∆i2(β0
1)}

= exp(β0) φ′(β1)
1
m

m∑
i=1

exp{µi + 1
2 λi + ∆i2(β1)} . (63)

But by (59),

µ̂
i
+ 1

2 λ̂ i = β0
0 − β̂

0
+ log{φ(β0

1)/φ(β̂
1
)}+ Ui + ∆i3(β̂ 0

, β̂
1
)−∆i1(β̂ 1

) , (64)

and therefore,

exp
{
µi + 1

2 λi + ∆i2(β̂ 0
)
}

= exp{β0
0 − β̂

0
+ Ui + ∆i3(β̂ 0

, β̂
1
)−∆i1(β̂ 1

)

+∆i2(β̂ 1
)}φ(β0

1)/φ(β̂
1
) . (65)

Combining (63) and (65) we deduce that

∆ exp(−β0
0) φ(β0

1)−1 + φ′(β0
1) φ(β0

1)−1 1
m

m∑
i=1

exp{Ui + ∆i2(β0
1)}

= φ′(β̂
1
) φ(β̂

1
)−1 1

m

m∑
i=1

exp
{

Ui + ∆i3(β̂ 0
, β̂

1
)−∆i1(β̂ 1

) + ∆i2(β̂ 1
)
}

. (66)

Together, (52), (57), (58), (62) and (66) imply that,

φ′(β0
1) φ(β0

1)−1 1
m

m∑
i=1

exp(Ui)

= φ′(β̂
1
) φ(β̂

1
)−1 1

m

m∑
i=1

exp(Ui) + Op

(
m−1/2 + n−1

)
. (67)

(To derive (67) we Taylor-expanded quantities exp(Ui+∆i) as exp(Ui) (1+∆i+ 1
2 ∆2

i ), plus
a remainder dominated by 1

6 |∆i|3 exp(Ui + |∆i|) = Op(nη−(3/2)), uniformly in 1 ≤ i ≤ m
for all η > 0; here we used (56).) Result (67) implies that

φ′(β0
1) φ(β0

1)−1 = φ′(β̂
1
) φ(β̂

1
)−1 + Op

(
m−1/2 + n−1

)
. (68)
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Together, (61) and (68) imply that

β̂
0

= β0
0 + Op

(
m−1/2 + n−1

)
, β̂

1
= β0

1 + Op

(
m−1/2 + n−1

)
. (69)

Results (48), (64) and (69) imply that

µ̂
i
= Ui + ∆i3(β̂ 0

, β̂
1
)−∆i1(β̂ 1

) + Op

(
m−1/2 + n−1

)
, (70)

uniformly in 1 ≤ i ≤ m. Combining (58) and (70) we obtain:

1
m

m∑
i=1

µ2
i =

1
m

m∑
i=1

U2
i + Op

(
m−1/2 + n−1

)
= (σ2)0 + Op

(
m−1/2 + n−1

)
. (71)

From (47), (48) and (71) we deduce that σ̂2 = (σ2)0 + Op(m−1/2 + n−1). The theorem
follows from this property and (69).

5 Discussion

The preceding two sections represent an important first step in understanding the theo-
retical properties of variational approximations in likelihood-based inference. The simple
Poisson mixed model lends itself to a deep understanding of such properties since it is the
one of the simplest generalized linear mixed model that is complicated enough to benefit
from approximation methods. Of course, there are several extensions that could be enter-
tained: non-equal sample sizes within groups, multiple fixed effects, multiple variance
components, more general covariance structures and other generalized response fami-
lies. The case of unequal sample sizes is straightforward to address provided we take
the sizes to lie between two constant multiples of n; more disparate sample sizes lead
to more complex results. General covariance structures and response families are more
challenging to address, but a problem of arguably greater interest is that of finding prac-
tical approximations to the distributions of estimators. Methods for solving that problem
are currently being developed. Asymptotic distribution theory is another extension of
interest. The current article is likely to provide a basis for such future work.
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