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SUMMARY

The t -distribution allows the incorporation of outlier robustness into statistical mod-
els while retaining the elegance of likelihood-based inference. In this paper we de-
velop and implement a linear mixed model for the general design of the linear mixed
model using the univariate t -distribution. This general design allows a considerably
richer class of models to be fit than is possible with existing methods. Included in
this class are semi-parametric regression and smoothing, and spatial models.
Keywords: Additive Model; Nonparametric Regression; Random Effects, Semi-parametric
Models; Spatial Statistics.

1 Introduction

Mixed models are a flexible extension of ordinary regression models that have proven
useful for dealing with repeated measures (e.g. Laird and Ware 1982), spatial corre-
lation (e.g. O’Connell and Wolfinger 1997), and non-linearity through spline-based
models (e.g. Wahba 1978; Speed 1991; Lin and Zhang 1999; Kammann and Wand
2002; Ruppert, Wand, and Carroll 2003). These developments and their various com-
binations allow mixed models to handle a wide variety of problems in a modular
framework. It is important to note that in order for the mixed model to be useful for
spline-based models, the random effects design matrix cannot be restricted to be of
a specific form such as the block diagonal design matrices that are used in repeated

1email: jstauden@math.umass.edu
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measures designs. We use the label general design for models that do not make such
restrictions.

In more detail, the usual form of the general design linear mixed model is

y = Xβββ + Zu + εεε , E

[
u
εεε

]
= 0, Cov

[
u
εεε

]
=
[
G 0
0 R

]
. (1)

(e.g. Robinson 1991; McCulloch and Searle 2001, Chapter 6) for an n × 1 vector of
response values y , design matrices X (n × p ) and Z (n × q ), a vector βββ (p × 1 )
of unknown fixed effects, a vector u ( q × 1 ) of unobserved random effects, and an
n× 1 vector of unobserved errors εεε .

Another common version of the linear mixed model is the hierarchical or Laird-
Ware model:

yi = Xi βββ + Ziui + εεε i, E

[
ui
εεεi

]
= 0, Cov

[
ui
εεεi

]
=
[
G 0
0 R

]
, i = 1, . . . , n, (2)

with yi (m × 1) and yi and yj marginally uncorrelated when i 6= j. Typically,
n > 1. This model can be gotten from the general design model by using a block
diagonal structure for X, Z, G, and R in (1). In contrast, spline based models and
spatial models require non-block diagonal versions of at least some of those matrices.
The general design model also is the hierarchical model when n = 1. The length of
ui is typically a small integer in the hierarchical model, but the length of u usually
is at least thirty in a spline or spatial model.

When u and / or εεε are not normally distributed, the specification of the model
though the means and covariances of those terms can be ambiguous. As a result,
in this paper we use the following modification of (1) to allow direct incorporation
of non-normal distributions for the u and/or εεε random vectors. First let G =
(G1/2)TG1/2 be the Cholesky decomposition of G and u0(q × 1) be a vector con-
taining an independent and identically distributed sample of a zero mean and unit
variance distribution. Let R1/2 and εεε 0(n×1) be defined similarly. Note that the dis-
tribution used to construct u0 can differ from that used to construct εεε 0 . The general
design linear mixed model that we consider in this paper is then

y = Xβββ + Zu + εεε , u = (G1/2)Tu0, εεε = (R1/2)T εεε 0. (3)

The linear mixed model is widely used, and standard estimators of its parame-
ters are based on the multivariate normal likelihood. There also has been a great deal
of recent work to relax the assumption of normal u in favor of a non-parametric or
semiparametric specification of the random effect density (eg. Kleinman and Ibrahim
1998; Aitkin 1999; Tao et al. 1999; Zhang and Davidian 2001; Ghidey, Lesaffre, and
Eilers 2004). A separate series of papers (Lange, Little, and Taylor 1989; Welsh and
Richardson 1997; Gianola and Stranden 1998; van Dyk 2000; and Pinhiero, Liu, and
Wu 2001) have replaced the normal assumption with specification of a density that
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is outlier robust, such as the t or multivariate- t distribution. Additional work work
by Rosa, Gianola, and Padovani (2003) and Rosa, Padovani, and Gianola (2004) con-
sider two additional outlier robust distributions, the slash distribution and the con-
taminated normal. Work by Jara and Quintana (2006) has used the broader class of
skew elliptical distributions of which t -distributions are special cases. Perhaps it is
surprising, but all these references address hierarchical, ”repeated measures” type
mixed models with n > 1, i.e. not general design models. While the work above
could probably be modified to accomodate the general design model, it is outside
the scope of this paper to do so. Instead, our goal is to develop a model that uses
a vector univariate t random variables to implement a general design linear mixed
model and achieve outlier robustness. We find the simplicity of this model to be
appealing.

A seemingly natural and simple approach to making the general design linear
mixed model outlier robust would be to specify a multivariate- t distribution of di-
mension n for εεε 0 in (3). The multivariate- t distribution is not unique (e.g. Kotz
and Nadarajah 2004, Chapters 4 and 5), but a standard definition is

f(x;µ1n, ψ2In, ν) =
Γ
(
ν+n

2

)
(νπ)n/2Γ

(
ν
2

)
(nψ2)1/2

(
1 + (x−µ1n)T(x−µ1n)

ψ2ν

)(ν+n)/2
, x ∈ Rn,

where 1n is a vector of length n with all ones, and In is an n × n identity matrix.
A perhaps under-appreciated fact is that if a single random n -vector, x, is sampled
from that density, then it can be shown easily that the maximum likelihood estimator
(MLE) for µ is the non-robust least squares estimator 1T

nx/n (e.g. Breusch, Robert-
son, and Welsh 1997). That result is in contrast to the situation when xi, i = 1, ..., n
are iid from the univariate density

f(t;µ, ψ2, ν) = ψ−1 Γ
(
ν+1
2

)
√
πνΓ

(
ν
2

) {1 +
(t− µ)2

νψ2

}−( ν+1
2 )

,

and the maximum likelihood estimate of µ does not have a closed form but is out-
lier robust. That fact suggests that an outlier robust general design linear mixed
model should be based on multiple univariate- t random variables rather than the
multivariate- t random vector, and that is our approach.

The contents of this paper are as follows. Section 2 contains the formulation of our
robust t -linear mixed model. In Section 3 we describe the estimation algorithm we
propose. The computation of standard errors is given in Section 4, and in Section 5
we illustrate our approach with two examples that motivated this work. Conclusions
are in Section 6.
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2 Model formulation

Common usage of model (3) assumes that the response y (and hence the errors εεε )
and the random effects u follow Gaussian distributions,

y|u ∼ N(Xβββ + Zu,R)
u ∼ N(0,G).

(4)

For clarity, this paper’s methods are presented for the commonly encountered case
when R = σ2

εIn , G = blockdiag(σ2
u,jIqj ) with 1 ≤ j ≤ c , and u = (uT

1 , . . . ,u
T
c )T

where ujk is the k th entry of uj . An Appendix contains the straightforward exten-
sions required by the general variance structures in (2). Using the simpler structure
for the variance components, we can rewrite (4) as

yi|u
ind.∼ N

(
(Xβββ + Zu)i, σ2

ε

)
, 1 ≤ i ≤ n

ujk
ind.∼ N

(
0, σ2

u,j

)
, 1 ≤ j ≤ c, 1 ≤ k ≤ qj .

In many applications, however, the data may contain outliers which negate the plau-
sibility of (4). To reduce the influence of such outliers we propose t -distributed as-
sumptions. Specifically we assume

yi|u
ind.∼ t

(
(Xβββ + Zu)i, σ2

ε , νy
)
, 1 ≤ i ≤ n

ujk
ind.∼ t

(
0, σ2

u,j , νu

)
, 1 ≤ j ≤ c, 1 ≤ k ≤ qj

(5)

where t(µ, ψ2, ν) denotes the t-distribution with density function f(t;µ, ψ2, ν) de-
fined in the previous section. We refer to (5), a robust version of (3), as the t -linear
mixed model.

The fitting alrorithm relies on an equivalent “precision-mixture” formulation which
we now describe. First, let vy = (vy1 , . . . , vyn) where vyi

i.i.d.∼ χ2
νy
/νy . Next, let

vu = (vT
u1
, . . . ,vT

uc
)T where the k th entry of vuj is vujk

i.i.d.∼ χ2
νu
/νu , 1 6 k 6 qj ,

1 6 j 6 c . Adopt the convention that 1/v = (1/v1, . . . , 1/vn) for a general n × 1
vector v . Then (5) can be expressed as:

y|u,vy ∼ N
(
Xβββ + Zu, σ2

εdiag (1/vy))
)

u|vu ∼ N
(
0, blockdiag

(
σ2
u,j/vuj

))
.

(6)

In subsequent sections we also use the notation θθθ = (βββ , σσσ 2
u, σ

2
ε) where σσσ 2

u =
(σ2
u,1, . . . , σ

2
u,c) .

We present model (5) where both y conditional on u and u follow t -distributions.
In the next section we describe a method to estimate the parameters in this model.
The applications we consider (Section 5) are well modeled with y conditional on u
as a t -distribution and u normally distributed.
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3 Estimation

Model (5) provides more resistance to outlying observations than does the Gaussian
formulation (4), however, the log-likelihood for (5) has no closed form and maximiza-
tion in the parameters proves a cumbersome task. A tractable and relatively simple
approach to maximum likelihood estimation in the t -distribution formulation is the
Monte Carlo Expectation Conditional Maximization (MCECM) algorithm. Other ap-
proaches to computing maximum likelihood estimators for the non-Gaussian mixed
model are reviewed in McCulloch and Searle (2001), Section 10.3 for instance.

Section 3.1 provides an overview of the EM algorithm and the ECM extension.
Section 3.2 provides a summary of the Monte Carlo EM (MCEM) method which uses
sampling methods in the expectation step of the EM algorithm. As with the EM
algorithm, MCEM can be extended to the ECM case which is also presented in Section
3.2. We present a detailed outline of our proposed algorithm for fitting t -linear mixed
models in Section 3.3. Finally, we describe how we select the degrees of freedom
corresponding to the t -distributions in Section 3.4.

3.1 EM algorithm and ECM extension

In formulation (6) the responses y are observed, but the random effects u and the
auxiliary variables vy and vu are not observed. Such unobserved parameters are
referred to as latent data. The Expectation Maximization (EM) algorithm (Dempster,
Laird, and Rubin, 1977) provides a simple iterative approach to finding maximum
likelihood estimates in problems involving latent data.

In general, define the complete data Ycomp = (Yobs,Ylat) to be the observed
data Yobs augmented with the latent data Ylat . Denote the complete and observed
data log likelihoods by lcomp(θθθ ) and lobs(θθθ ) , respectively, where θθθ represents the
parameter vector to be estimated. The EM algorithm maximizes lobs(θθθ ) in θθθ by
repeatedly applying two steps, an E-step followed by an M-step until convergence.
Let θθθ (m) denote the current value of θθθ after m cycles of the algorithm. The E-step
computes the conditional expectation of lcomp(θθθ ) given the observed data with a
density that uses the parameter estimates from the most recent iteration,

Q(θθθ |θθθ (m)) = E[lcomp(θθθ )|Yobs; θθθ (m)].

The M-step maximizes Q(θθθ |θθθ (m)) as a function of θθθ , achieving

θθθ (m+1) = argmaxθθθQ(θθθ |θθθ (m)).

A modification of the M-step results in the ECM generalization of the EM algorithm
(Meng and Rubin 1993). This approach maximizes over a subset of the parameters in
θθθ , holding the remainder of θθθ fixed (thus the term conditional maximization). For in-
stance, if θθθ = (θ1, θ2) , the M-step would consist of maximizing Q(θ1, θ

(m)
2 |θ(m)

1 , θ
(m)
2 )
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over θ1 to obtain θ
(m+1)
1 , then maximizing Q(θ(m+1)

1 , θ2|θ(m)
1 , θ

(m)
2 ) over θ2 to ob-

tain θ
(m+1)
2 . The algorithm then returns to the E-step described above. The ECM

approach may provide a computationally simpler alternative to jointly maximizing
over θθθ . That is, each step is simpler, but the algorithm as a whole may require more
iterations than the EM routine. Note that lcomp(θθθ ) increases with each iteration and a
stationary point (local or global) of the EM (or ECM) algorithm is determined, given
regularity conditions (Wu 1983).

The t -linear mixed model (6) we propose in Section 2 has a complete data log
likelihood denoted by lcomp(θθθ ) = l(βββ , σ2

ε , σσσ
2
u, νy, νu;y,u,vy,vu) which equals

l1(βββ , σ2
ε ;y|u,vy) + l2(σσσ 2

u;u|vu) + l3(νy;vy) + l4(νu;vu) (7)

where

l1(βββ , σ2
ε ;y|u,vy) = −1

2
log

n∏
i=1

σ2
ε

vyi

− 1
2

n∑
i=1

{yi − (Xβββ + Zu)i}2 vyi

σ2
ε

,

l2(σσσ 2
u;u|vu) = −1

2
log

c∏
j=1

(σ2
u,j)

qj∏qj
k=1 vujk

− 1
2
uTblockdiag

(
1
σ2
u,j

Iqjvuj

)
u,

l3(νy|vy) =
n∑
i=1

[νy
2

{
log
(νy

2

)
+ log(vyi)− vyi

}
− log(vyi)− log Γ

(νy
2

)]
,

l4(νu;vu) =
K∑
k=1

[νu
2

{
log
(νu

2

)
+ log(vuk

)− vuk

}
− log(vuk

)− log Γ
(νu

2

)]
.

The precision-mixture formulation (6) permits straightforward maximum likelihood
estimation via an ECM approach. The E-step in such an algorithm requires calcu-
lation of conditional expectations (conditional on y ) of the four terms in (7). Since
none of these expectations have closed forms we use a Monte Carlo version of the
E-step.

3.2 MCEM algorithm and MCECM extension

The E-step in an EM algorithm may require computation of intractable integrals. The
Monte Carlo EM method (Wei and Tanner 1990) offers an alternative that replaces
analytic determination of the required conditional expectations with Monte Carlo
estimates.

To implement model (5), the E-step may be carried out by sampling from the
joint distribution of u,vy,vu|y; θθθ (m) and then computing the MC estimate of the
required expectations. To generate the required variates, we use a Gibbs sampler that
alternates between samples from the distributions of u|y,v(p−1)

y ,v(p−1)
u (multivariate

normal), vy|y,u(p) , and vu|u(p) (scaled chi squared), where p = 1, . . . , Pm indexes
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the generated Gibbs samples and the number of samples (Pm ) increases with the
EM step (m .) The increase rule that we use is Pm = Pm−1 + Pm−1/5 every fifth EM
step with P0 = 10 and rounding up. A computationally more efficient rule would
be to test whether the Monte Carlo error is large enough relative to the algorithm’s
progress at each iteration to merit an increased Monte Carlo sample size (e.g. Booth
and Hobert 1999; Levine and Casella 2001).

By sequentially sampling from these simpler conditional distributions we obtain
samples from the desired joint conditional distribution. The required sampling dis-
tributions are

u|y,vy,vu ∼ N(µµµ , ΣΣΣ) (8)

where, for q = q1 + . . .+ qc ,

µµµ = A (y −Xβββ ) , ΣΣΣ = blockdiag
(
σ2
u,jIqj

1
vuj

)
−AZ blockdiag

(
σ2
u,jIqj

1
vuj

)
,

with A = blockdiag
(
σ2
u,jIqj

1
vuj

)
ZT
{
σ2
εdiag

(
1
vy

)
+ Z blockdiag

(
σ2
u,jIqj

1
vuj

)
ZT
}−1

,

and

vyi |y,u
ind.∼

χ2
νy+1

(νy + δ2yi
)
, with δ2yi

=
{yi − (Xβββ + Zu)i}2

σ2
ε

; (9)

vujk
|u ind.∼

χ2
νu+1

(νu + δ2ujk
)
, with δ2ujk

=
u2
jk

σ2
u,j

. (10)

The full algorithm is described in the next section.

3.3 Complete algorithm for fitting t -linear mixed models

1. Either fix or decide to estimate the degrees of freedom corresponding to the t -
distributions to be used in fitting the model. If the degrees of freedom are to be
estimated, see Section 3.4 for how to modify the following algorithm.

2. Start with initial parameter estimates θθθ (0) . As is the case for many iterative al-
gorithms, it is safest run the algorithm from several starting points ( θθθ (0) ) in an
attempt to identify and try to avoid convergence to local optima.

3. The m th , (m = 1, . . . ,M ) parameter update begins by using the Gibbs sampling
scheme discussed in Section 3.2 to generate samples from distributions (8), (9),
and (10). This computes the Monte Carlo E-step of the MCECM algorithm, for
the m th iteration.

4. Given the Gibbs samples
{
u(p)

}Pm

p=1
,
{
v(p)
y

}Pm

p=1
, and

{
v(p)
u

}Pm

p=1
, the parameter

updates are calculated as:

βββ(m) = argmax
βββ

E
[
l1(βββ, σ2(m−1)

ε ;y|u,vy)|y
]

7



=

 1
Pm


Pm∑
p=1

1

σ
(m−1)
ε

XTdiag
(
v(p)
y

)
X


−1

× 1
Pm


Pm∑
p=1

1

σ
(m−1)
ε

XTdiag
(
v(p)
y

)(
y − Zu(p)

) ,

σ2(m)
ε = argmax

σ2
ε

E
[
l1(βββ(m), σ2

ε ;y|u,vy)|y
]

=
1
Pm

Pm∑
p=1

1
n

[
n∑
i=1

{
yi − (Xβββ(m) + Zu(p))i

}2
v(p)
yi

]
, and

σ
2(m)
u,j = argmax

σσσ2
u

E[l2(σσσ2
u;u|vu)|y]

=
1
Pm

Pm∑
p=1

1
qj

( qj∑
k=1

u
(p)2

jk v(p)
ujk

)
.

This step might be termed penalized reweighted least squares, but unlike the t -
regression with independent errors, there are no closed forms for the E-step and
the resulting weights.

5. We monitor the progress of the estimates over the EM iteration by computing

maxj
|θ(m)

j −θ(m−1)
j |

s.e.(θ
(m)
j )

. As discussed in Booth and Hobert (1999) and Caffo et al. (2005)

though, we caution not to use this quantity as a stopping rule since small rela-
tive changes in parameter estimates can lead to unstable estimates and estimated
standard errors. That work also proposes more sophisticated and valid stopping
rules and automated Monte Carlo EM type algorithms.

6. Predictions of u are gotten from the mean of the set of Gibbs samples generated
for u at the final iteration of the MCECM algorithm.

3.4 Degree of freedom selection

A useful feature of the t -linear mixed model is the flexibility afforded by the choice
of degrees of freedom. The parameters νy and νu serve the role of robustness pa-
rameters and may be estimated from the data as described below.

We estimate the degrees of freedom νy and νu corresponding to the t -distri-
bution(s) used to fit model (5) via a profile likelihood approach. After computing
Monte Carlo estimates of the observed data log likelihood over a grid of νy and νu
values, we select the ν̂ s corresponding to a maximal estimated log likelihood. In
order to make this procedure computationally feasible, parameter estimates from the
first fit should be used as starting values for fits at neighboring grid elements and so
on over the grid. Since the parameter estimates appear to vary relatively slowly with

8



small changes in degrees of freedom, each fit after the first requires relatively few EM
iterations. The approach is outlined below.

(a) Establish a grid of ν values: νy,1, . . . , νy,G, νu,1, . . . , νu,H .

(b) For each (g, h) ∈ {1, . . . , G} × {1, . . . ,H} do the following:

i. Fix the degrees of freedom at νy,g and νu,h and run the complete algorithm
for fitting t -linear mixed models outlined in Section 3.3 to get estimates of
the other parameters θ̂θθ g,h = [ β̂ββ g,h, σ̂σσ

2
u,g,h, σ̂

2
ε,g,h] , as well as the final Gibbs

samples {u}PM
p=1 , {vy}PM

p=1 , and {vu}PM
p=1 (from the iteration at which conver-

gence of the complete MCECM algorithm was achieved).

ii. Compute a Monte Carlo estimate of the conditional expectation of the com-

plete data log likelihood. Lettting ΣΣΣ (p) = σ2
εdiag

(
1

v
(p)
y

)
+Zblockdiag

(
σ2
u,jIqj

1

v
(p)
uj

)
ZT

and

l1,2(βββ , σ2
ε , σσσ

2
u;y|v

(p)
y ,v(p)

u ) = −1
2 log

∣∣∣ΣΣΣ (p)
∣∣∣ − 1

2(y − Xβββ )T
(

ΣΣΣ (p)
)−1

(y −
Xβββ ),

l̂(θ̂θθg,h, νy,g, νu,h;y) = E
{
l1,2(β̂ββ, σ̂2

ε , σ̂σσ
2
u;y|vy,vu)

}
≈ 1
Pm

Pm∑
p=1

l1,2(β̂ββ, σ̂2
ε , σ̂σσ

2
u;y|v(p)

y ,v(p)
u )

(c) Choose ν̂y, ν̂u = argmaxνy,g ,νu,h

{
l( θ̂θθ g,h, νy,g, νu,h;y)

}G,H
g=1,h=1

.

4 Standard error estimation

Estimates of interest for mixed models often consist of linear combinations of β̂ββ

and û . Henderson (1975) argued that for the Gaussian linear mixed model with
Cov(εεε ) = σ2

εIn and Cov(u) = σ2
uIq , the covariance of these estimates can be esti-

mated with:

Cov
[

β̂ββ

û− u

]
= σ̂2

ε

(
XTX XTZ
ZTX ZTZ + bσ2

εbσ2
u
Iq

)−1

.

This expression is the negative inverse Hessian with respect to βββ and u of the joint

Gaussian distribution of y and u . We use the same method to develop Cov
[

β̂ββ

û− u

]
under model (3).

Let H(βββ ,u;y,vu,vu) be the Hessian and s(βββ ,u;y,vu,vu) be the gradient with
respect to βββ and u of the complete data log likelihood:

−H(βββ ,u;y,vy,vu) =

9



1
σ2
ε

XTdiag (vy)X XTdiag (vy)Z,

ZTdiag (vy)X ZTdiag (vy)Z + σ2
εblockdiag

(
diagvuj

σ2
u,j

) ,

and
s(βββ ,u;y,vy,vu) = (y −Xβββ − Zu)T

1
σ2
ε

diag (vy) (X Z) .

Using these expressions and the method described in Louis (1982), a Monte Carlo
estimate of the Hessian with respect to βββ and u of the joint distribution of y and u
is:

Cov
[

β̂ββ

û− u

]
≈

 1
Pm

Pm∑
p=1

{
−H( β̂ββ , û;y,vyp ,vup)−

s( β̂ββ , û;y,vyp ,vup)
Ts( β̂ββ , û;y,vyp ,vup)

}]−1
(11)

where {vyp} and {vup} are samples from the Gibbs iterations in the final ECM step.
It has been pointed out (e.g. Booth and Hobert 1998) that these sampling vari-

ances are approximate since they do not account for the fact that the variance compo-
nents are estimated. Similar methods (weighted averages of Gaussian based covari-
ances) also could be used to obtain a covariance matrix for estimates of the variance
components.

5 Applications

The robust mixed model (5) can be employed in the analysis of data arising in many
contexts. We provide two examples that initially motivated this paper. A set of R
functions tailored to fitting robust general design mixed models using the t -distribution
has been developed by the authors.

5.1 Nonparametric regression

Our first illustration of model (5) involves nonparametric regression (also known as
scatterplot smoothing). Nonparametric regression is commonly used to highlight
an underlying trend without assuming a function form for the trend. Many scatter-
plot smoothers exist. Smith and Kohn (1996) present an effective means for robust
nonparametric regression modeling within the Bayesian paradigm (along with a soft-
ware module for implementation). However, their focus is not on parametric mixed
models. We instead focus on penalized regression splines (e.g. Ruppert, Wand and
Carroll 2003) in a mixed model framework.

Suppose that (xi, yi) , i = 1, . . . , n , represents measurements on a predictor x

and a response variable y . The nonparametric regression model for these data is

yi = f(xi) + εi (12)
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where f is a smooth, but otherwise unspecified, function of x . A truncated polyno-
mial spline version of f(xi) is then

f(xi) = β0 + βxxi +
K∑
k=1

uk(xi − κk)+ (13)

where κ1, . . . , κK are knots in the x direction and (x)+ returns x if x > 0 and 0
otherwise. If we define

βββ = [β0, β1]T, u = [u1, . . . , uK ]T,

X =

 1 x1
...

...
1 xn

 , Z =

 (x1 − κ1)+ . . . (x1 − κK)+
...

. . .
...

(xn − κ1)+ . . . (xn − κK)+

 ,
then we achieve best linear unbiased prediction in the mixed model (3) framework.

We use nonparametric regression to analyze data from a laboratory experiment
which gathered data on participants’ expiratory flow characteristics when exposed to
filtered air. Due to instrumentation error, and an occasional cough or sporadic breath
of a subject undergoing evaluation, outlying observations were recorded. Robust
fits are therefore preferred as they more accurately convey the average stimulus-
response signal under outlier contamination. We present the results of a t -linear
mixed model fit.

Nonparametric regression fits for one subject during two separate filtered air ex-
periments appear in Figure 1. Each panel displays log adjusted response, y , (the
log of the subject’s response for the experiment minus her mean response at baseline
prior to the experiment) versus time in seconds, x . Robust t -model fits appear as
solid lines and Gaussian model fits appear as dotted lines. In both experiments the
t -model fits appear robust to outliers. The degrees of freedom (νy ) estimated for the
t -distributions used to model the response are 3.4, and 5.2 for the panels from left to
right. We used a Gaussian assumption for the random effects, u.

The chain was run for 100 EM iterations with the Gaussian model estimates are
starting values. The initial Pm was 10, and it was increased by Pm−1/5 (rounded
up) every fifth iteration (P100 = 1107 ). The maximum change in the spline fit over
a grid of 100 points (evenly distributed over the range of the xi s) was less than 5%
of the corresponding standard error for the last five EM iterations. One hundred EM
iterations required about 3 minutes on a 2.16 GHz Intel Core Duo Mac Book Pro. In
order to assess the progress of the EM algorithm, we also ran the chain for 175 EM it-
erations which required about 18 hours (P175 = 29519 ). Figure 2 shows the progress
of the estimate of f(1250) and its estimated standard error for the exhalation mea-
surement at 1250 seconds. (We chose x = 1250 because that is where the starting
value for the estimate was furthest from the final estimate.) The first column in the
figure shows the estimates using a y -axis range that is determined by the range of
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estimates over all EM iterations, and the second column uses a y -axis range that is
determined by the approximate range of the estimated f(). In other words, the sec-
ond column shows the progress on the scale at which the estimate will be used. As a
result, the figure suggests that 100 iterations is sufficient for the purpose of plotting
the estimated spline.

5.2 Semi-parametric repeated measures model

Our second example provides a semi-parametric treatment of a repeated measures
experiment. Let i index subject (1 6 i 6 n ) and j index observation within subject
(1 6 j 6 m ). Suppose the response yij is measured at time tij . We model yij as
the sum of three components, an additive subject specific random offset, a smooth
function of time, and a within person random error:

yij = ui + f(tij) + εij .

The coefficients are

βββ = [β0, βt]T, u = [u1, . . . , un, u
t
1, . . . , u

t
Kt

]T,

and the design matrices are

X =


1 t11
...

...
1 tij
...

...
1 tnm

 , Z = [1m ⊗ In Zspl ⊗ 1n]

where Zspl = [(tij − κk)+], as used in the previous example.
A motivating application comes from the application of oral glucose tolerance

tests to ten individuals. These data were collected in the Energy Metabolism Labo-
ratory at the University of Massachusetts, Amherst as preliminary data to Hagobian
and Braun (2006). After an overnight fast, the ten subjects were each fed 75 grams
of glucose, and blood samples were then taken via catheter 0, 30, 60, 90, and 120
minutes later. After data collection, the amount of glucose in each blood sample was
measured.

We use a robust t -linear mixed model to model the mean of glucose over time.
The degrees of freedom (νy ) for the t -distribution used in the robust fit were esti-
mated to be 3.1, and we used Gaussian random effects u. Scatterplots of the data
from all ten subjects and the estimated spline are displayed in Figure 2. A standard
Gaussian mixed model fit is also shown for comparison. This example illustrates that
the t -linear mixed model appears to be robust to the two apparent outliers. In the

12



actual data analysis, it may be important to investigate why outliers occur as well. In
this case, it was due to a data transcription error.

Again, the starting values came from the Gaussian model, and the other compu-
tational parameters were the same for this example as for the last. In this case, the
maximum change in the spline fit over a grid of 100 points was less than 7% of the
corresponding standard error for the last five EM iterations, and the computations
required about 4 minutes on a 2.16 GHz Intel Core Duo Mac Book Pro. Again, the
estimated spline and pointwise confidence interval in Figure 3 appeared identical up
to the plotting resolution over the last five iterations of the EM algorithm. Similarly
to Figure 2, Figure 4 shows the progress of the estimated f(30) and its standard error
when the algorithm is run for 175 EM iterations over 24 hours.
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Figure 1: Non-parametric model fits applied to respiratory data from one subject in
the experiment described in the text. Each panel displays adjusted response over
time in seconds. Solid lines correspond to the robust t -model fits and ± 1.96 (point-
wise) standard errors; dotted lines are Gaussian model fits.
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Figure 2: Estimates of f() and its standard error plotted as a function of EM iteration
for the exhalation data. The left column of panels uses a y -axis scale determined
by the range of the estimates over the EM iterations. The right column shows the
estimates on the scale at which they will be used; the y -axis range is determined
by the range of the estimated f(). The top axis of the upper left panel shows the
approximate cumulative computing time.
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Figure 3: Semi-parametric mixed model fits applied to the glucose tolerance test data
from ten subjects described in the text. Solid lines show the estimated spline part of
the model using robust t -model, and dotted lines show the fit using a fully Gaussian
model.
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Figure 4: Estimates of f() and its standard error plotted as a function of EM itera-
tion for the glucose tolerance test data. The left column of panels uses a y -axis scale
determined by the range of the estimates over the EM iterations. The right column
shows the estimates on the scale at which they will be used; the y -axis range is deter-
mined by the range of the estimated f(). The top axis of the upper left panel shows
the approximate cumulative computing time.
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6 Closing remarks

The general design robust mixed model (5) emerges as an effective approach to mod-
eling data in the presence of outlying observations. The t -model formulation builds
in resistance to outliers while retaining the elegance and simplicity of parametric,
likelihood based inference and best prediction. Monte Carlo computation is required,
but is straightforward to implement (e.g. simple Gibbs sampling from standard dis-
tributions).

Model (5) treats the most general matrix structure in (3) and thus accommodates
many more situations than do existing robust mixed model methods. Such situa-
tions include classical longitudinal settings with multiple hierarchies, spatial statis-
tics, smoothing splines, and crossed random effect designs.

This paper also presents a means for estimating robustness parameters (e.g. de-
grees of freedom νy , νu ) . Such estimates determine the t -distributions used, which
ultimately correspond to the robustness of the fit. In addition, large sample esti-
mates of variability are a by-product of the Monte Carlo Expectation Conditional
Maximization approach we take.

Of course, there are other methods for robust fitting, but we choose the t -model
for its conceptual simplicity, and relatively straightforward implementation. Several
simple modifications to the EM aspect of the algorithm may increase its speed, al-
though we found no need for these in our examples. van Dyk (2000) suggests a nest-
ing algorithm and other alternatives such as parameter expansion (Liu, Rubin, and
Wu 1998). As a referee pointed out, a Bayesian implementation of our model could
be straightforward using the Winbugs software. Winbugs approaches to Gaussian
linear mixed models and generalized linear mixed models are described (with code)
in Crainiceanu, Ruppert, and Wand (2005) and Zhao et al. (2006) for instance.
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Appendix

For completeness, this appendix extends the algorithm to the linear mixed model
with the variance component matrices G = blockdiagGj and R , rather than diago-
nal matrices.

Model

The general formulation of the t -linear mixed model is:

ε̃i
i.i.d.∼ t(0, 1, νy), 1 6 i 6 n

ũjk
i.i.d.∼ t(0, 1, νu), 1 6 j 6 c, 1 6 k 6 qj

uj = G1/2
j ũj , 1 6 j 6 c

y|u = Xβββ + Zu + σεR̃1/2ε̃εε

:= Xβββ + Zu + R1/2ε̃εε.

Results and research regarding linear combinations of iid t random variables are
discussed and reviewed in Kotz and Nadarajah (2004).

Estimation

The complete data likelihood is: lcomp(θθθ ) = l(βββ ,R,G, νy, νu;y,u,vy,vu) which
equals

l1(βββ ,R;y|u,vy) + l2(G;u|vu) + l3(νy;vy) + l4(νu;vu).

Let Vy = diag(vy) and Vu = diag(vu). The last two components, l3(νy;vy) and
l4(νu;vu) are as in Section 3.1. The first two components are:

l1(βββ ,R;y|u,vy) = −1
2

log
∣∣∣R1/2V−1

y RT/2
∣∣∣

−1
2
{y − (Xβββ + Zu)}T R−T/2VyR−1/2 {y − (Xβββ + Zu)}

and l2(G;u|vu) = −1
2

log
∣∣∣G1/2V−1

u GT/2
∣∣∣− 1

2
uTG−T/2VuG−1/2.

The required sampling distributions are

u|y,vy,vu ∼ N(µµµ , ΣΣΣ)
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where,
µµµ = A (y −Xβββ ) , ΣΣΣ = G1/2VuGT/2 −AZG1/2VuGT/2

with
A = G1/2VuGT/2

{
R1/2VyRT/2 + ZG1/2VuGT/2ZT

}−1
.

Further, let
[r1, . . . , rn] = {y − (Xβββ + Zu)}T R−T/2,

and
[s1,1, . . . , scqc ] = uTG−T/2.

With these definitions,

vyi |y,u
ind.∼

χ2
νy+1

(νy + r2i )
, and vujk

|u ind.∼
χ2
νu+1

(νu + s2jk)
.

Finally, the ensuing parameter updates will depend on the specific form of the vari-
ance components, but in general, they are:

βββ(m) = argmax
βββ

E
[
l1(βββ,R(m−1);y|u,vy)|y

]
,

R(m) = argmax
R

E
[
l1(βββ(m),R;y|u,vy)|y

]
, and

G(m) = argmax
G

E[l2(G;u|vu)|y].

Again, note that in the last two expressions the maximizations are over the variance
components in the two matrices. Completely unstructured matrices would not be
identifiable for every sample size.

Standard Errors

For the general case,

−H(βββ ,u;y,vy,vu) =

σ2
ε

{
XTR̃−T/2VyR̃−1/2X XTR̃−T/2VyR̃−1/2Z,
ZTR̃−T/2VyR̃−1/2X ZTR̃−T/2VyR̃−1/2Z + σ2

εG
−T/2VuG−1/2

}
,

and
s(βββ ,u;y,vy,vu) = (y −Xβββ − Zu)T R−T/2VyR−1/2[X Z].
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