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ABSTRACT

We present a sequential Monte Carlo algorithm for the Bayesian analysis of gener-
alised linear mixed models (GLMMSs). These models support an extraordinary variety
of interesting regression-type analyses, but performing inference is often extremely diffi-
cult, even when using the Bayesian approach combined with Markov chain Monte Carlo
(MCMCQ). Sequential Monte Carlo (SMC) is a new and general method for producing
samples from posterior distributions. In this article we demonstrate use of the SMC
method for performing inference for GLMMs. We demonstrate the effectiveness of the
method on both simulated and real data, and find that sequential Monte Carlo is a com-
petitive alternative to the available MCMC techniques.

Keywords: generalised additive models; longitudinal data analysis; nonparametric regres-
sion; sequential Monte Carlo.

1 Introduction

Effective strategies for generalised linear mixed model (GLMM) analysis continues to be
a vibrant research area. Reasons include:

e GLMMs have become an indispensable vehicle for analysing a significant portion
of contemporary complex data sets.

o GLMMs are inherently difficult to fit compared with ordinary linear mixed models
and generalised linear models.



e Existing strategies involve a number of trade-offs concerning, for example, approx-
imation accuracy, computational times and Markov chain convergence.

Overviews of the usefulness and difficulties of GLMM-based analysis may be found in,
for example, McCulloch & Searle (2000), Ruppert, Wand & Carroll (2003) and Skrondal
& Rabe-Hesketh (2004).

Most practical GLMM methodology falls into two categories: analytic approxima-
tions (e.g. Breslow & Clayton, 1993) and Monte Carlo methods (e.g. Clayton, 1996).
Monte Carlo methods have the advantage of providing direct approximations to quanti-
ties of interest (Besag, Green, Higdon & Mengersen, 1995). On the other hand, analytic
approximations, such as Laplace approximation, are indirect and prone to substantial
bias (e.g. Breslow & Lin, 1995). The most common Monte Carlo approach is Markov
Chain Monte Carlo (MCMC), where approximation accuracy is associated with Markov
chain convergence.

Zhao, Staudenmayer, Coull & Wand (2006) is a recent example of research concerned
with practical GLMM analysis via Markov chain Monte Carlo. Those authors explored
use of the MCMC computing package WinBUGSand showed it to exhibit good perfor-
mance for a number of examples.

One of the major difficulties associated with using MCMC is the need to assess con-
vergence. While theoretical results bounding the difference between the simulation result
and the true distribution have been developed (e.g. Rosenthal, 1995, Cowles & Rosen-
thal, 1998), their applications remain limited to special cases. Hence popular methods for
convergence assessment rely on the comparison of multiple sample output (see Cowles &
Carlin, 1996 for a comparative review). These methods can invariably fail to detect a lack
of convergence and one needs to be cautious when taking such an approach. Another
major drawback of MCMC is the difficulty in designing efficient samplers. The need for
such algorithms is more apparent for complex problems. Various methods have been
proposed in the literature, (see Frigessi, 2003), however most have limited applicability.

Both problems associated with MCMC discussed above are inherently due to the re-
liance on a Markov chain. The need for convergence assessment is a by-product of the
reliance on the single Markov chain, while the consequent discarding of burn-in can be
unreliable and wasteful. The necessity for more efficient samplers often stem from the
slow mixing suffered by MCMC samplers due to the Markovian nature of the sampler,
and the attempts in overcoming this problem is again restricted by the need to preserve
the stationary distributions of the Markov chain. Sequential Monte Carlo methods are
a class of very flexible Monte Carlo samplers that extend the well known importance
sampling method. In this article we show that sequential Monte Carlo methods pro-
vide a simple and effective means of Bayesian GLMM analysis. These methods produce
weighted samples from the target distribution without the need to assess convergence of
a Markov chain. We provide a general yet simple framework for efficient design of the
sampler, and demonstrate that this approach is a viable alternative to MCMC.

Section 2 contains a brief summary of Bayesian approaches to generalised linear mixed
models. In Section 3 we provide details on analysis for such models via sequential Monte
Carlo sampling. In Section 4 we present two examples. In a simulated Poisson regression
example, we compare the efficiencies of SMC with alternative Monte Carlo methods, and
then demonstrate the effectiveness of SMC in a binary logistic regression example involv-



ing real data. Some concluding remarks are given in Section 5.

2 Bayesian Generalised Linear Mixed Models

GLMMs for canonical one-parameter exponential families (e.g. Poisson, logistic) and
Gaussian random effects take the general form

ly|8,u, G] = exp{yT(XB + Zu) — 176(XB + Zu) + 1 c(y)}, (1)

[u|G] ~ N(0,G) (2)

where here, and throughout, the distribution of a random vector x is denoted by [x] and
the conditional distribution of y given x is denoted by [y|x]. In the Poisson case b(x) = e,
while in the logistic case b(z) = log(1 + €*). An important special case of (1)-(2) is the
variance components model

lylB,u,02,,...,0%;] = exp{y!(XB+ Zu) — 176(XB + Zu) + 17c(y)},
uy
u = C [ulo?,,...,0%,] ~ N(O,blockdiaglgéL(ogquZ)).
ur,

3)
where ¢, is the number of elements in u,. While (3) is not as general as (1)-(2) it still
handles many important situations such as random intercepts and generalised additive
models (Zhao et al., 2006). With simplicity in mind, we will focus on this GLMM for the
remainder of the paper.

The prior on B will be taken to be a diffuse Gaussian:

B~ N(0,031) (4)
for some large aé > 0. The prior for (o
components; i.e.

2

2 . .
“1,---,0,) is assumed to have independent

[Uila s 7012LL] - [031] T [UZL]'
A number of possibilities for [02,] could be considered (Gelman 2006). These include an
inverse gamma distribution, a uniform distribution, and a folded Cauchy distribution.
However in this paper we use a conditionally conjugate inverse gamma distribution:

2 ASEE o ALl Ay,)o? 2
[UUZ} = F(Eiie)(auf)_ ul— e uZ/O'uZ, qu > 0 N (5)

This prior distribution was advocated by Zhao et al (2006) for A,, = 0.01. The prior is
therefore fairly non-informative, yet results in a slightly simpler sampling procedure; the
method generalises easily to the other prior distributions.

It will be convenient to introduce some additional notation to enable the model to be
described more succinctly. We start by writing

C—[XZ and y:{ﬁ].



We also write gz for the number of elements in 3, and

V= blockdiag(a%qu, 02 Xy, 02 0,,)
for the prior covariance of v. Writing o2 for (¢2,,...,02;), we can then combine (3), (4)
and (5) to give the joint density of all parameters and data:

L
ly,v,0% = exp |:ch11 —17p(Cv) + 1T e(y) — LTV Iy - Z L og(ozy)
(=1

L
+ 3 {Aurlog(Au) — 10gT(Au) — (Aus + 1) log(0) — Aue/0%}|.
/=1

From this, and noting that »7V~'v = [|B]12/0% + S/_; [ue|?/0?,, it is clear that the
posterior distribution of the parameters is simply proportional to the function

7(v,0%) = exp[y Oy —17b(Cr) — 1B
20'ﬁ
L
> {(Au+ %+ D)log(ong) + (Aue + [[ue]?) /ore} ] (6)
(=1

In Section 3, we will develop a sequential Monte Carlo sampler to produce samples from
the distribution proportional to 7.

3 Sequential Monte Carlo Sampling

The Monte Carlo approach to GLMM analysis performs inference by drawing samples
from the joint posterior distribution of the parameters 8 = (3, u, o2, ai 1)- We write
7(0) for the (unnormalised) density of this posterior distribution. Instead of using a
Markov chain with 7 as its stationary distribution to produce these samples, the sequen-
tial Monte Carlo (SMC) method is a generalisation of importance sampling that produces
a weighted sample from 7 while retaining some of the benefits of MCMC analysis (Del
Moral, Doucet & Jasra, 2006).

The use of SMC for static problems (as opposed to particle filters for dynamic prob-
lems; Doucet, Godsill & Andrieu, 2000) requires the introduction of auxiliary distribu-
tions mo, 71,..., ms—1. At stage s of the sampler we use a (weighted) sample from the
previous distribution 7,_; to produce a (weighted) sample from 7. We set mg = 7 so that
after S stages we have a sample from the posterior distribution of interest. The auxiliary
distributions can be constructed in several ways: Chopin (2002) introduces the observa-
tions incrementally to evolve the distribution from the prior to the posterior; Fearnhead
(2004) uses a similar technique, but increases the size of the state space as more observa-
tions are added; Del Moral et al. (2006) use

1—
s o< m, °m’, where (7)

0 = v<m<--<y=1



and g is chosen to be the prior distribution for the parameters. In this article, due to the
diffuse nature of the prior distribution, the initial distribution 7 is instead chosen to be
a multivariate Normal distribution with mean and covariance matrix chosen based on
estimates obtained using classical methods for fitting GLMMs.

The SMC algorithm starts by sampling N samples, termed “particles”, from the initial
distribution mp. Denote by 69 the ith particle at initial stage s = 0, and allocate weight
wY = 1 to each of the N particles, so that {6, w{} is a weighted sample from 7.

The SMC technique uses the weighted particles from distribution 7;_; to produce
particles from distribution 7 through moving, reweighting and (possibly) resampling;
see Del Moral et al. (2006). For simplicity, the formulation we use is that described in
detail in Section 3.3.2.3 of that paper, which essentially results in the resample-move
algorithm used by Chopin (2002) and Gilks & Berzuini (2001). This is also similar to the
annealed importance sampling method of Neal (2001), but the use of resampling within
the algorithm greatly improves the efficiency of the method. Writing 6; for the ith particle
at stage s, at each stage 0 < s < S of the algorithm we perform the following steps:

Reweight Given N weighted particles {85!, w{ ™'} from 741, set

wi = w§_177r3(05_1) .
7 7 77571(0;71)

{6571, w?} is now a weighted sample from 7.

Resample If the effective sample size (ESS), defined as (3-N, w$)2/ S°N | (wf)?, is less
than kN, where k is some constant typically taken to be 1/2, then we perform strat-
ified resampling (Kitagawa, 1996). ESS estimates the equivalent number of ran-
dom samples required to obtain an estimate, such that its Monte Carlo variation is
equal to that of the IV weighted particles. Resampling then discards particles with
low weights and multiplies particles with high weights. Finally, resampled particle
weights are reset to {w/} = 1.

Move Let {0s,w;},i =1,..., N denote samples from at the current distribution 7, after
reweighting and (possibly) resampling. To increase particle diversity we replace
each sample according to

0? ~ K (015 ) )

where K is an MCMC transition kernel that admits 7 as stationary distribution.
Gamerman (1997) provides detail on MCMC transition kernels.

It is known that this particular formulation of the SMC algorithm is suboptimal, espe-
cially if the distributions on consecutive stages are too far apart. However it is one of
the easiest SMC algorithms to implement, and for the static problem we have here it is
easy to ensure that the difference between 7;_; and 75 is small. (Contrast this situation
with that of an SMC algorithm for a dynamic problem, or the technique of Chopin (2002)
where data arrive over time and there is no control over the distance between m,_1 and
Ts.)

The ”"parameters” of the algorithm that must be chosen when implementing this sam-
pler are therefore:



e the initial distribution 7,

e the sequence of values v, that govern the rate of transition from the initial distribu-
tion 7y to the posterior distribution ,

e the transition kernels K, used to move the particles within the distribution propor-
tional to 74, and

e the number of particles N.

Specific choices of these parameters used in this paper are discussed in the following
subsections. We give a more algorithmic description of our method in the Appendix.

3.1 Initial distribution 7,

As previously observed, using the prior distribution as an initial distribution is flawed in
this case, since the prior is highly diffuse. Instead we use the penalised quasi-likelihood
(PQL) method (Breslow & Clayton 1993) to obtain an approximate fit of the model. Let
Vpqr and GI%QL be the estimate of v and o obtained using PQL. We will calculate a normal
approximation of the posterior distribution of v centred at this approximate maximum
likelihood estimate, which can then be used to construct an initial distribution 7 for the
SMC procedure. Note from (6) that

m(v,0%) = exp {y’ Cv — 17b(Cv) — LT Vv + f(0?)},

where f is some function that does not depend on v. It is a simple calculation to see that
the matrix of second derivatives with respect to components of v is —CTdiag{t"(Cv)}C—
V~1 we therefore initialise our algorithm by taking a normal distribution for v with
mean Vg and covariance matrix

T 3: 11 s o117t
- [C diag {b (CVPQL)}CJFVPQL} , 8)

where the entries in \A/'PQL are taken from EI%QL.

It remains to specify a distribution for the variance vector o2. We have found it con-
venient to specify this conditional on v, and of a form that is consistent with the posterior
distribution 7. We take

L
mo(0? | v) H(03£>—Auz—QZ/2—le—(Aue+%||U£||2)/‘712Le’ )
/=1

i.e. the o2, are conditionally independent given v, and each has an inverse gamma distri-
bution depending on the corresponding components of u. Hence, an initial sample from
7o can easily be generated by first sampling from the normal distribution for v then sam-
pling the 02, from their conditional distributions. Furthermore, we will see in Sections
3.2 and 3.3 that this results in simple conditional distributions for o2, at all stages of the
sampler.



Putting together the initial distributions of » and 02, we see that

mo(v, 02) X exp [(V — ﬁPQL)TE_l(V — Upor)
L

ST {(Aue + %+ 1) log o2y + (Aue + Slluell?) /02,} ] (10)
/=1

3.2 Sequence of intermediary distributions

In this section we describe the sequence of distributions used to transition from my to
ms = 7. Recall that we choose to use the formulation (7). Using (10) and (6) it is clear that
the intermediate distributions are proportional to 7, where

775(”’ 02)
1

= exp [ {y"Cr —17b(Cr) - 1B
205

L
= > ((Aue+ % + 1) log(o) + (Aue + uel®) o) }
(=1

+(1 - 75){(” — o) T2 (Y — Dpar)
L
=3 ((Aue+ % + 1) log 0%, + (Aus + Sl /02) }]
(=1
1
= exp |7 {y"Cv = 17b(Cv) — 1B}
98
+(1- ’Ys){(V - /’)I’QL)TE_I(V — 7/\PQL)} (11)
L
= {(Auwe+ % + 1) 1og o + (Aue + Sluel®) /0% } |
/=1

In the absence of any additional information about the shapes of these distributions, it
is difficult to specify a sensible generic sequence of -y, values. Hence for the rest of the
paper we choose to increase vs from 79 = 0 to 7s—5 = 1 in a linear fashion, that is,
values of v, are sequentially incremented by the same amount. Additionally, we append
Vs—4 = --- = s = 1 to this sequence to give five stages at the end of the sampler on
which the particles are not resampled. This means that the final sample is well spread
out over the distribution 7 (it was found that if resampling happened too close to the
end of the sampler then several samples might be identical, resulting in poor density
estimates being produced using the standard techniques).

It is an interesting and open research question as to whether the sequence 7, can be
chosen in a more principled manner. One option would be to choose the sequence in
advance using some properties of the distributions 7y and 7. An alternative would be
to choose the next v, adaptively while the sampler proceeds through the sequence of
distributions; however it is not straightforward to generalise the proofs of validity of the
sampler in this case.



3.3 Transition kernels

For this paper we choose to use Metropolis-Hastings transition kernels for the parameters
in v. The choice of inverse gamma distributions for the components of % within 7
means that we can simply use Gibbs sampling steps to update those components. At each
step s we use a Metropolis—Hastings transition kernels K. Since 7 is an approximation
to m, and 7, is in some sense between 7y and 7, we use the same proposal distributions at
each step s. These proposal distributions are derived from 7 as described in this section.

We form a partition {Z;,...,Z;} of {1,..., P} so that [Cz, -- - Cz,] is the matrix C, but
with columns possibly re-ordered; and

v,

VZJ

is the corresponding partition of v. (The case J = 1 corresponds to no partitioning.)
On each move step of the algorithm we move through the series of subsets Z;, for j =
1,...,J. We apply a Metropolis-Hastings transition kernel to the components vz, =
(Vi)ite-

To describe the transitions we introduce the matrices 37, where X7, is the conditional
covariance under 7 of vz; given the valuesof v_7, = (ui)iﬂj. These can be calculated at
the start of the algorithm. Recall that since 7 is an approximation of 7, the ¥z, matrices
therefore correspond to approximations of the conditional covariance of vz, given v_z,
under the posterior distribution 7.

The proposal distribution for vz, is then a normal distribution centered on the current
value of vz; with covariance 77%7,. The acceptance probability for the move, applied
after reweighting to get a weighted distribution from 7, is simply calculated from the
ratio of 7 values for the proposed and current values.

The scaling parameters 7, are by default chosen to be 2.4/ V/|Z;] following the heuris-
tic of Roberts, Gelman and Gilks (1997). However in practise they are usually chosen,
based on several runs of the algorithm, to ensure that the acceptance rates remain close
to 0.23 (again following Roberts, Gelman and Gilks 1997). Details of specific choices used
are given in the examples.

To update the variance parameters o2, a Gibbs sampling step can be applied. Note
from (11) that for each s the full conditional distribution of ¢2, is simply an inverse
gamma distribution, depending on the corresponding vector of regression coefficients
u,. However if a different prior is used for % then Gibbs sampling will not be available
and a Metropolis—Hastings update should be performed for each o2, in turn.

4 Examples

In this section we will demonstrate the methodology on two examples. The first example
is a semiparametric Poisson regression model, with simulated data so that fair compar-
isons can be drawn with alternative MCMC approaches. The second example is a binary
logistic regression involving respiratory infection in Indonesian children, with both a
semiparametric component and random effects. All computation were carried out in the



Rlanguage (Venables & Ripley, 2005), using dual Opteron 2.0GHz CPU computational
cluster node.

4.1 Semiparametric Poisson regression
In this section, we generate n = 500 Poisson random variables y;,7 = 1,...,n from
y; ~ Poisson(exp {0.7x1; + 2x2; + cos(4mxa;)})

where z1; is 0 or 1 with probability 0.5, and z»; is uniformly sampled from the interval
[0, 1].

We fit model (3), with
1 711 =
Po 1 z12 x22
b(m) = 617 ﬂ - 61 5 X =
B2

1 z1, oo

The radial cubic basis function is used to model the function f(xy;) = cos(4mxe;). This
implies modelling f(z2;) = Be,%2i + Zz,;u, where for knot points xj, chosen to be the

(%)th quantile of the unique predictor values, fork =1,..., K, K = 10,
Ui
u=| : |, [uog]~N(0,03L), and Zg, = [[ws — rxl’][[mr — rxl*]
o 1<k<10 1<k,k’'<10

The gimmPQLmethod of the R statistical package gives an approximate MLE for the
regression coefficients Uy, and the variance parameters o, .We follow the general al-
gorithm given in Section 3. There are 13 regression coefficients to be estimated for this
model, and one variance parameter. In a model of this size we can block update the re-
gression coefficient v in a single random walk Metropolis-Hastings (RWMH) update. As
with MCMC, the tuning of this kernel is crucial to the success of the algorithm; to achieve
an acceptance rate in the MCMC step between 20-30% we set 77 = 1/3. We also choose
the number of steps S = 105 and the number of particles N = 2000 based on preliminary
runs.

We compare the performance of the SMC simulations by monitoring the QQ-plots of
samples from a simple importance sampler, a single-variable slice sampler which updates
one parameter at a time and a standard RWMH sampler with the same transition kernels
as used in the SMC algorithm (i.e. those described in Section 3.3). Figure 1(a) shows the
QQ-plot for the 3; parameter, and the corresponding density estimates for ; is given in
(b). With the exception of the importance sampler, which can perform badly on different
simulated data sets, the remaining samplers achieved good concordance. This required
2,000 particles with 100 steps for the SMC sampler. For comparison, we used 20,000 itera-
tions of both slice sampler and RWMH MCMC scheme, with the first 10,000 discarded as
burn-in. These took approximately 1394 and 580 seconds respectively, whereas the SMC
sampler took approximately 422 seconds.

The nonparametric fits of the model, calculated using the estimated posterior mean
of u, are displayed in Figure 2. The model has successfully recovered the nonlinearity in
the dependency on z; and fits the data well.

9



& 2
°© <]
n
2 2]
[ o
(%] Qo
(2 I 2
= o
- R
e S
8 | g e
o 2
a T T 1 ° T T T
0.65 0.70 0.75 0.80 0.65 0.70 0.75 0.80
SMC SMC
2 = 2 . ;
o o
2 2
I s Z S
g o g 2|
=) =}
8 o2 8 o
S A T T T S T T T
0.65 0.70 0.75 0.80 0.65 0.70 0.75 0.80
SMC Slice
(a)

o |
N
o _|
—
>
£
n o
c —
()
©
o0 -
o —++

0.60 0.65 0.70 0.75 0.80 0.85

betal
(b)

Figure 1: QQ-plots of SMC output against simple importance sampler, the slice sampler and the
RW Metropolis-Hastings sampler for (31 (a). The corresponding density estimates (b).
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Figure 2: The data, the true mean values, and the estimated mean values for the simulated Poisson
example. The fit was based on a SMC run with 2000 particles, as described in the text.
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4.2 Example: Respiratory infection in Indonesian children

Here we apply sequential Monte Carlo algorithm to an example involving respiratory
infection in Indonesian children (see Diggle, Liang & Zeger 1995, Lin & Carroll 2001).
The data contain longitudinal measurements on 275 Indonesian children, where the indi-
cator for respiratory infection is the binary response. The covariates include age, height,
indicators for vitamin A deficiency, sex, stunting and visit numbers (one to six).

Previous analyses have shown the effect of age of the child to be non-linear, hence we
use a logistic additive mixed model of the form

logit{ P(respiratory infection,; = 1)} = fo + U; + Bz + f(age, ;)

for 1 < i < 275 children and 1 < j < n; repeated measures within a child. U; = N (0, o?)
is a random child effect, z;; is the measurement on a vector of the remaining 9 covariates,
and f is modelled using penalized splines with spline basis coefficients uy, i.i.d. N(0,c2).

As recommended by Gelfand el al. (1995), we use hierarchical centering of random
effects. All continuous covariates are standardised to have zero mean and unit standard
deviation, so that the choices of hyperparameters can be independent of scale. Radial
cubic basis functions are used to fit the covariate age, where

f(age) = Bueage + Zygeu

where
Z.g = [lage — wx "]k — ki [ 7% and  u ~ N(0,021)
1<k<K 1<k,k’'<K

k+1

with r, chosen to be the (775

in this example.

We use a vague prior N (0, 10%) for the fixed effects. For both variance components,
we use the conjugate Inverse Gamma prior IG(0.01,0.01). Other prior choices are avail-
able, see Zhao et al. (2006). Here, random walk Metropolis-hastings updates were carried
out for each regression coefficient separately, with Gibbs sampling used for the variance
parameters. We note that blocking highly correlated parameters together will proba-
bly improve the mixing properties of the sampler; in this work we choose instead to
investigate the “vanilla” version of the SMC strategy. The tuning parameters 77 for the

)th quantile of the unique predictor values. We take K = 20

Metropolis-Hastings update are again chosen to achieve an acceptance rate in the MCMC
step between 20-30%, we used 77 = 3 for the fixed effect coefficients, 77 = 6 for the ran-
dom effect coefficients, and 77, = 5 for the spline coefficients.

Figure ?? show the results from simulation, using 1000 particles and 55 intermedi-
ate steps. The Figure shows borderline positive effect of Vitamin A deficiency, sex and
some visit numbers on respiratory infection. These results are in keeping with previous
analyses. Figure ?? shows the nonlinear effect of age; ?? shows the effective sample size
at each of 50 sequential steps of the simulation, vertical lines indicate the occurrence of
resampling.

Again, we compare the performance of the SMC sampler with the importance sam-
pler, slice sampler and RWMH sampler with the same transition kernel as Step 3 of the
SMC algorithm. Results for 5,000 samples of the importance sampler, 1,000 SMC particles
and 5,000 slice samples with 5,000 burn-in and 5,000 RWMH samples with 5,000 burn-in

12



are plotted in Figure ??, good agreements are found between the SMC, slice and MCMC
samplers. Moreover, the SMC sampler took approximately 1.6 hours to run, whereas the
slice sampler took 2.8 hours and the RWMH took about 9 hours (similarly 9 hours was
required in WinBUGS, so a substantial saving in computational time in achieved by using
the SMC algorithm.

5 Conclusion

In this paper we presented a general sequential Monte Carlo algorithm to produce sam-
ples from the posterior distribution for Bayesian analysis of generalised linear mixed
models. The algorithm is an alternative to the popular Markov chain Monte Carlo meth-
ods. We have demonstrated that the algorithm can handle high-dimensional problems,
and it is generally simple to apply. We have also demonstrated that it can have substantial
efficiency gains over traditional MCMC in both a simulated poisson example and a real
data binomial example. Finally, perhaps the biggest advantage of SMC over MCMC sam-
plers is the fact convergence of SMC samplers does not rely on convergence of Markov
chains, which can be extremely slow in complex problems.

In implementing SMC, one has some degree of flexibility within the Markov chain
Monte Carlo update. For example, one may consider a better choice of proposal distribu-
tions for the Metropolis-Hastings algorithm, by allowing the algorithm to automatically
scale a proposal distribution, see for example Chopin, (2002). Here a major advantage
over the traditional MCMC is that the algorithm does not suffer from the restrictions as-
sociated with a Markov chain, and information from previous samples can be freely used
to obtain future samples. Finally, one is not restricted to only MCMC type of moves in
this step, other move types are possible, see Del Moral, Doucet & Jasra (2006).

However, sequential Monte Carlo algorithms are not black-box algorithms, requiring
a certain amount of tuning and user input. In particular, one needs to set the number of
sequential distributions (5) the number of particles to sample (V) and tuning parameters
for the Metropolis-Hastings kernels in the move step of the algorithm.
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Appendix: Algorithmic description of the SMC method for GLMMs

In this appendix we give a detailed description of how to use the SMC method to perform
inference in GLMMs. We use the notation of Section 2; choices made in the implementa-
tion of the algorithm are explained in Section 3.

For any subset Z of {1, ..., P} we write Cz for the submatrix of of the design matrix
C consisting of columns in Z, C_z for the submatrix consisting of columns of C notin Z,
vz and v_7 for the analogously defined subvectors of v. Also for any square matrix Q we
write Qzz for the square submatrix corresponding to rows and columns in 7, Qz,_7 for
the submatrix with rows in 7 and columns not in Z, Q_z 7 for the submatrix with rows
not in 7 and columns in 7, and Q_z,_7 for the square submatrix with rows and columns
notinZ.

Initialisation

e Set the number of particles NV and the number of intermediary distributions S.

e Construct a vector y with sth entry ¢(s), s =
[0,1] is an increasing function such that (0)
this paper we used ¢ (s) = min{1,s/(S —5)}.

0,1,...,5, wherev : {0,1,...,5} —
= and ¥ (S) = 1. For the results in

e Construct subsets Z,...,Z; of {1,..., P} such that U‘jjzl Z; ={1,..., P}. The case
J = 1 corresponds to no blocking of variables for the move step.

e Set tuning parameters 77’ > 0, j = 1,...,J for the Metropolis-Hastings updates.
Usually these will be set based on preliminary runs of the algorithm, and conve-
nient defaults are 7 = 2.4//|Z;|.

e Use the Breslow & Clayton (1993) penalised quasi-likelihood (PQL) algorithm to
obtain initial estimates:
Vpoe and 33@.

This is facilitated by software such as giImmPQL() in the Rpackage MASSVenables
& Ripley, 2005). Use these estimates in (8) to calculate X.

e For each j = 1,...,J, calculate the conditional covariance under my of vz condi-
tional of v_7. If Q = 71, then this conditional covariance is Y7, = (Qrz)~ 1
Initial sample from 7,

e Produce a sample of size N from 7y: foreachi = 1, ..., N sample v; from the normal
distribution with mean ¥po; and covariance ¥, then sample a? from the conditional
inverse gamma distributions (9).

e Set the weights w; = 1/N foreachi=1,...,N.
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Sequential sampling from each 7,
Foreachs=1,...,5in turn,

Reweight Foreachi =1,..., N, update w; according to

7s(vi, 02) _ <7T(Vi,a?) >%_%1
Ts-1(vi,07)  \mo(vi,07)
then normalise the weights by setting w; «— w;/ Z;V: 1 wj. To avoid overflow and
underflow problems it is recommended that logarithms be used in this step.

Wy <— Wy

Resample Calculate the effective sample size (ESS) using

N N
ESS = () _wi)®/ ) (wi)”.
=1 =1

If ESS < N/2 (or if s = min{s : s = 1}) then resample the particles. The naive
version of resampling, which introduces unnecessary Monte Carlo variation into
the scheme, simply samples (with replacement) from the pool of particles, with
particle i selected with probability w;. However in our implementation we use
stratified resampling (Kitagawa, 1996) to reduce the Monte Carlo variation. After
resampling set w; = 1/N foralli=1,...,N.

Move e Foreachj = 1,...,J and each i = 1,..., N, generate proposals (#;)7;, ~
N((#i)z;,7/¥1;), 1 <@ < N. With probability

o = max {L WS((I}i)I-7|(Vi)_Zi’U%) }

775(”1"0-12)

accept the proposal and set (Vi)zj = (f/i)zj. Otherwise reject the proposal and
leave (v;)z, unchanged. Again, it is recommended that logarithms be used
when calculating « to avoid overflow and underflow problems. Note that sev-
eral parts of the ratio in the calculation of « are the same in both the numerator
and denominator and need not be calculated.

e Foreach/ =1,...,L,and foreachi = 1,..., N, sample (¢?), from the inverse
gamma distribution with shape A, + g,/2 and rate A,; + ||u/||?/2. Note that
if inverse gamma distributions are not used as the prior distribution for o>
then sampling from inverse gamma distributions here would not result in a
transition kernel that admits 7, as a stationary distribution. Instead further
Metropolis—Hastings can be used for each o2, in turn.

Note that the decision to resample on the first step at which 7, = 1 means that the
final sample is an unweighted sample from 7. Hence standard techniques for dealing
with samples from posterior distributions can be used. However for plug-in density
estimation techniques it was found that resampling close to step S resulted in poor choice
of bandwidth, since some particles were identical. This is the reason that we generally
set vs_5 = 1 and finish with five applications of the transition kernel to the unweighted
sample, resulting in a suitably diverse sample from 7.

15



References

Besag, J., Green, PJ., Higdon, D. and Mengersen, K. (1995). Bayesian computation and
stochastic systems. Statistical Science, 10, 3—-66.

Breslow, N.E. and Clayton, D.G. (1993). Approximate inference in generalized linear
mixed models. Journal of the American Statistical Association, 88, 9-25.

Breslow, N.E. and Lin X. (1995). Bias correction in generalised linear mixed models with
a single component of dispersion. Biometrika, 82, 81-91.

Chopin, N. (2002). A Sequential Particle Filter for Static Models. Biometrika, 89, 539-551.

Clayton, D. (1996). Generalized linear mixed models, pp. 275-301. In Markov Chain Monte
Carlo in Practice, eds. Gilks, W.R., Richardson, S. and Spiegelhalter, D. J. London:
Chapman & Hall.

Cowles, M. K. and Carlin, B. P. (1996). Markov chain Monte Carlo convergence diagnos-
tics: A comparative review. Journal of American Statistics Association, 91, 883-904.

Cowles, M. K. and Rosenthal, J. S. (1998). A Simulation Approach to Convergence Rates
for Markov Chain Monte Carlo, Statistics and Computing, 8, 115-124.

Del Moral, P.,, Doucet, A. and Jasra, A. (2006). Sequential Monte Carlo samplers. Journal
of the Royal Statistical Society, Series B, 68, 411-436.

Diggle, P, Liang, K-L. and Zeger, S. (1995). Analysis of Longitudinal Data. Oxford: Oxford
University Press.

Doucet, A., Godsill, S. and Andrieu C. (2000). On sequential Monte Carlo sampling meth-
ods for Bayesian filtering. Statistics and Computing, 10, 197-208.

Fearnhead, P. (2004). Particle filters for mixture models with an unknown number of
components. Statistics and Computing, 14, 11-21.

Frigessi, A. (2003). On Some Current Research in MCMC, pp. 172-178. In Highly Struc-
tured Stochastic Systems, eds. Green, PJ., Hjort, N.L. and Richardson, S. Oxford
University Press.

Gamerman, D. (1997). Markov chain Monte Carlo: Stochastic simulation for Bayesian inference.
Chapman & Hall.

Gelfand, A.E., Sahu, S.K. and Carlin, B.P. (1995). Efficient parameterisations for normal
linear mixed models. Biometrika, 82, 479-488.

Gelman, A. (2006). Prior distributions for variance parameters in hierarchical models.
Bayesian Analysis, 1, 515-533.

16



Gilks, W. R. and Berzuini, C. (2001). Following a moving target—Monte Carlo inference
for dynamic Bayesian models. Journal of the Royal Statistical Society, Series B, 63,
127-146.

Kitagawa, G. (1996). Monte Carlo filter and smoother for non-Gaussian, non-linear state
space models. Journal of Computational and Graphical Statistics, 5, 1-25.

Lin, X. and Carroll, R.J. (2001) Semiparametric regression for clustered data. Biometrika,
88, 1179-1865.

McCulloch, C.E., and Searle, S.R. (2000). Generalized, Linear, and Mixed Models. New York:
John Wiley & Sons.

Neal, R. (2001). Annealed importance sampling. Statistics and Computing, 11, 125-139.

Roberts, G. O., Gelman, A. and Gilks, W. R. (1997). Weak convergence and optimal scal-
ing of random walk Metropolis algorithms. Annals of Applied Probability, 7, 110-120.

Roberts, G. O. and Sahu, S. K. (1997). Updating schemes, covariance structure, blocking
and parameterisation for the Gibbs sampler. Journal of the Royal Statistical Society,
Series B, 59, 291-317.

Rosenthal, J.S. (1995). Minorization conditions and convergence rates for Markov chain
Monte Carlo. Journal of American Statistics Association, 90, 558-566.

Ruppert, D., Wand, M. P. and Carroll, R.J. (2003). Semiparametric Regression. New York:
Cambridge University Press.

Skrondal, A. and Rabe-Hesketh, S. (2004). Generalized Latent Variable Modeling: Multilevel,
Longitudinal and Structural Equation Models. Boca Raton, Florida: Chapman & Hall.

Venables, W. & Ripley, B.D. (2005). MASSR package within the bundle VR 7.2-24 .
http://cran.r-project.org

Zhao, Y., Staudenmayer, ]J., Coull, B.A. and Wand, M.P. (2006). General design Bayesian
generalized linear mixed models. Statistical Science, 21, 35-51.

17



coefficient

density

summary

vitamin A deficit

-2

posterior mean: 0.627
95% credible interval:
(-0.442,1.65)

male

posterior mean: 0.49
95% credible interval:
(-0.0509,1.05)

height

0.1

posterior mean: 0.0386

95% credible interval:
(-0.0199,0.0947)

stunted

posterior mean: 0.434
95% credible interval:
(-0.624,1.4)

visit 2

posterior mean: -1.2
95% credible interval:
(-1.99,-0.49)

visit 3

posterior mean: —0.621
95% credible interval:
(-1.38,0.102)

visit 4

—0.

posterior mean: -1.35
95% credible interval:
(-2.39,-0.425)

visit 5

posterior mean: 0.536
95% credible interval:
(-0.108,1.17)

visit 6

D
]
AR

3
15

posterior mean: 0.0373
95% credible interval:
(-0.603,0.709)

st.dev.(subject)

A
AN

L
-1 0 1 2 3
|/\

0 0.5 1 1.5
/l/\
.05 0 0.05 0.1 0.15
1 0 1 2
N

2 1 0

—1 0
2 1 0
I/\
0 1 2
-0.5 0 0.5 1
1 1.5

posterior mean: 1.11
95% credible interval:
(0.873,1.41)

Figure 3: Summary of coefficients in respiratory infections in Indonesian children example.
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Figure 4: Respiratory infections in Indonesian children example. (a) Posterior mean of the es-
timated probability of respiratory infection f(age) with all other covariates set to their average
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Figure 5: QQ-plots of SMC output against simple importance sampler, the slice sampler and the
RW Metropolis-Hastings sampler for the coefficient of vitamin A deficiency (a). The corresponding
density estimates (b).
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