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Abstract 

For skewed data linear model assumptions are questionable. Consequently, the 

standard techniques for small domain estimation based on linear mixed model can be 

inefficient. The estimation methods for small domains for skewed data that are linear 

following a log-log transformation are investigated by Chandra and Chambers (2006). 

However, application of their methods is limited to strictly positive survey variables. In 

many surveys (e.g. business and enterprises, income and expenditure, agricultural and 

ecological surveys etc) variables that are skewed often take zero values. In this paper we 

introduce small domain estimation techniques for skewed data in presence of zeros. In 

this context, following Fletcher et at. (2005) and Karlberg (2000) we extend Chandra 

and Chambers (2006) approach of small domain estimation under a mixture model. Our 

empirical results show the method works well and produces an efficient set of small area 

estimates. 

 

Key Words: Skewed data; Small domain estimation; Mixture model; Expected-value model 

 

1. Introduction 

Reliable estimates for small domains are often required for regional planning, fund 

allocation and formulating policies. A domain is regarded as small if the domain specific 

sample information is not large enough (i.e. domain specific sample size is too small) to 

produce usual design unbiased direct estimates of adequate precision. This sensitivity of 
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Southampton –SO171BJ, U.K , Telephone: 0044-23 8059 4083  Fax: 0044-23 8059 3846   
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sample sizes has led the theory of small area estimation (SAE). The term small domain 

and small area are interchangeably used in the literature. The linear mixed models 

provide a better and efficient approach to SAE by incorporating random area effects that 

account for between area or domain dissimilarities beyond that is explained by 

covariates included in the model. See Rao (2003). In many surveys (e.g. business and 

enterprises, income and expenditure, agricultural and ecological surveys etc) data are 

skewed, and linear model provides a poor fit. Commonly used methods for SAE based 

on linear mixed models lead to inefficient estimates. Chandra and Chambers (2006) 

proposed SAE for skewed data that are linear following a log-log transformation. See 

Chandra (2006). In this case, they extended the model-based direct (MBD) approach of 

SAE discussed in Chandra and Chambers (2005). In particular, they derived sample 

weights via model calibration (Wu and Sitter, 2001) based on log-log transform model 

with random area-specific effects and then defined the MBD estimators for small area 

quantities. However, application of this method of SAE is limited to the strictly positive 

survey variables. In practice, skewed data often contains many zeros. In this situation, 

Chandra and Chambers (2006) method cannot be implemented. A naïve approach would 

be to add a constant (usually 1) to the survey variables and then apply their framework 

with adjusted variables. An obvious disadvantage, choice of constant is arbitrary and 

may influence the results. Among several methods proposed in the literature to model 

such data, mixture model is commonly employed. See Fletcher et at.(2005), Welsh et 

al.(1996) and Lambert (1992).  

In this paper we discuss the small area estimation methods for skewed data in 

presence of zeros under the mixture model. Following Fletcher et at.(2005) and Karlberg 

(2000), our approach works in three stages. First a log-log linear mixed model is fitted 
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for positive values and then in the second stage a logistics model is fitted for probability 

of positive values. Finally, two models are combined in estimation. We then adopt 

Chandra and Chambers (2006) approach to derive the sample weights via ‘expected 

value’ model (also called the ‘fitted value’ model) and to define the MBD estimators for 

small area means. The next section, illustrates the mixture model, defines ‘expected 

value’ model and the related estimators for small domain means and their mean squared 

error estimators. In section 3 we present some empirical results. Finally, section 4 is 

devoted to concluding remarks and further research topics. 

 

2. Estimation under mixture model 

In this section we first define mixture model underpinning the skewed data with zeros 

and we then derive an ‘expected value’ model. To start, let Y
d

 be the N
d
!1  vector of 

values of the variable of interest y and X
d
 be the N

d
! (m "1)  matrix of values of the 

auxiliary variables in small area d, N
d

 is the number of population units in the small 

area d (d =1,2…,D) and D is the total number of small areas. We assume that the survey 

variable y is positively skewed with both zero and non-zero values. Our aim is then to 

estimate the population mean for y in small area d, i.e. Yd = Nd

!1
yii=1

Nd

" . We used 

subscript d for restriction to area. For estimation of population level quantities for the 

skewed survey variable with zeros, Karlberg (2000) advocated the used of combination 

of log-log normal and logistics model, assuming that population units are independent. 

This independence assumption is not true when our interest is estimation of small areas. 

Following Karlberg (2000), we express the survey variable 
 
yi = ai !yi  as a product of two 

components, where 
 
!yi  is referred as a log-log normal or logarithmic component and a

i
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as a logistic component. We define a
i
 as a Bernoulli random variable for occurrence of 

a positive value of y. That is a
i
= 1  if yi > 0  and a

i
= 0  otherwise. The variable 

 
!yi  is 

assumed to be linear on log-log scale.  

For the logarithmic component, we follow the log-log linear mixed model defined in 

Chandra and Chambers (2006). That is 
 
!L
d
= log( !Y

d
)  and Z

d
 follows a linear mixed 

model in the small area d of the form 

 
log( !Y

d
) = Z

d
! + G

d
u

d
+ e

d
 (1) 

where Z
d
= 1, log(X

d
)( ) is the N

d
! m  matrix of covariates, !  is a m !1  vector of fixed 

effects, G
d
 is a Nd ! q  matrix of known covariates, u

d
 is the area-specific random 

effect associated with area d and e
d

 is a N
d
!1  vector of individual level random errors. 

The two random effects u
d

 and e
d

 are assumed to be independently distributed, with 

zero means and variances Var(u
d
) = !(")  and Var(e

d
) = !

e

2
I
Nd

 respectively, and they 

are assumed to be normal. Here 
 
Var( !L

d
) = !

e

2
I
Nd

+G
d
"(#) $G

d
= V

d
. Note that the 

covariance matrix V
d

 depends on a vector !  of fixed parameters, usually referred as the 

variance components of the model. Throughout this article we assumed that sampling is 

uninformative given the values of the auxiliary variables, so the sample data also follow 

the population model and expectation and variance are under the model. 

Under the assumption of spatial independence between small areas, aggregating D-

area level models (1) over the population, we are led to the population level model 

 
!L = Z! +Gu + e  (2) 

where 
 
!L = ( !L

1
! ,.., !L

D
! !) ,Z = ( !Z1,.., !Z

D
!)  ,G = diag(Gd ;1 ! d ! D)  , u = ( !u1,..., !u

D
!)  and 

e = ( !e1,.., !eD !) . The covariance matrix of  
!L  is V = diag(Vd ;1 ! d ! D) . Similar to 
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Chandra and Chambers (2006) we consider the decomposition of  !L , Z, G and V into 

sample and non-sample components so that Z
s
 is the n ! m  matrix of sample values of 

the auxiliary variables, G
s
 is the corresponding n ! q  matrix of sample components of 

G and V
ss

 is the n ! n  covariance matrix associated with the n sample units that make up 

the n !1  sample vector 
 
!L
s
. A subscript of r is used to denote corresponding quantities 

defined by the N ! n  non-sample units, with V
rs

 denoting the (N ! n) " n  matrix 

defined by 
 
Cov( !L

r
, !L

s
) . In what follows we denote 1

N
, 1

n
and 1

r
 as vectors of 1’s and 

I
N

, I
n

and I
r
 as identity matrices of order N, n and N ! n  respectively. We use similar 

notation at the small area level by introducing an extra subscript d to denote small area. 

For example, we denote by s
d

 the set of n
d

 sample units in area d, r
d
 the corresponding 

N
d
! n

d
 non-sampled units in the area and put V

dss
= !

e

2
I
nd
+G

ds
"(#) $G

ds
 and 

V
dsr

= G
ds
!(") #G

dr
. In practice the variance components that define the covariance matrix 

V are unknown and we estimate them from the sample data under the model (2) with 

suitable estimation methods such as maximum likelihood (ML), restricted maximum 

likelihood (REML) or methods of moment. See for example Harville (1977). Then the 

estimated covariance matrix of  
!L  is V̂ = diag(V̂d ;1 ! d ! D)  with 

V̂
d
= !̂

e

2
I
Nd

+G
d
"(#̂) $G

d
.  

For the logistic component, we assume that a
i
 given Z

i
 are independent Bernoulli  

random variable with ! i = P(yi > 0 | Zi ) = P(ai = 1 | Zi ) . That is a
i
 takes the values 1 and 

0 with distinct population values of a
i
’s are independently distributed. There can be 

three possible options for estimating probability !
i
 for the positive values. These are (i) 

fitting a generalised linear mixed model (GLMM) to the logit of the probability !
i
 (ii) 
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fitting a generalised linear model (GLM) to the logit of the probability !
i
 and (iii) 

simple area specific proportions of number of positive values to the total sample size. 

Fletcher et at. (2005) and Karlberg (2000) used the generalised linear model and fit the 

logit of the probability !
i
 to estimate probabilities. In the context of SAE, GLMM is 

widely used to model such probabilities. Although we are not presenting the results here 

in this paper, empirical investigations show the performance of proposed estimators for 

SAE do not have much differences due to these three methods/choices of estimating the 

probabilities. In other words, the estimates of probabilities for the positive values by the 

area specific proportions produce the equivalent result to that based on GLMM or GLM 

based methods. Consequently, we motivate to use the area specific proportions to 

estimate these probabilities, which are straightforward and easy to work. However, 

authors do have empirical evidence supporting this statement and reader can get it on 

request. The theoretical descriptions of the GLMM and GLM based estimation methods 

for SAE are not given in this paper since these are not pursued furthermore. See for 

example Rao (2003) for further details. 

 

2.1 Estimation of parameters  

For the estimation of logarithmic component of the survey variable under a log-log 

linear mixed model (2), we denote by sp = i !s, yi > 0{ }  the subset of the sample with 

respect to the positive values of the survey variable, and np =| sp |= a
ii!s"  denotes the 

number of positive sample units. Let us denote by L
ps ,Zps , Gps  and Vpss  the 

corresponding vector and matrices related to strictly positive survey variable values. At 

small area level we use similar notation by introducing an extra subscript d. With these 
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notation, and assuming model (2) holds, the empirical best linear unbiased estimator of β 

is  

 ˆ! = "ZpdsV̂pdss

#1
Zpdsd=1

D

$( )
-1

"ZpdsV̂pdss

#1
Lpdsd=1

D

$( )  with E(!̂ | y > 0) = ! , and  

Var(!̂ | y > 0) = "ZpdsV̂pdss

#1
Zpdsd=1

D

$( )
-1

. 

For unit i !d , we can see that  

 

E( !̂yi | ai = 1) = E exp( !̂li ) | ai = 1{ } = exp(Zi! +
bii

2
)  

 

! exp(Zi" +
vii

2
) = E exp(!li ) | ai = 1{ } = E( !yi | ai = 1)  

where v
ii
= !

e

2
+G

i
"(#) $G

i
 and bii = Zi !ZpdsV̂pdss

"1
Zpdsd=1

D

#( )
-1

!Zi . This indicates that 

back-transformation leads to biased predictor. The second order bias corrected predictors 

are  

 

!̂yi = ki
!1
exp(Zi"̂ +

v̂ii

2
) ; i !d   

(3) 

where k
i
= exp b

ii
+Var(v̂

ii
) / 4( ) / 2!" #$  is the bias correction with 

bij = Zi !ZpdsV̂pdss

"1
Zpdsd=1

D

#( )
-1

!Z j $ 0  as n!"  and Var(v̂
ii
)  is the asymptotic 

covariance matrix of v̂
ii
= !̂

e

2
+ G

i
"(#̂) $G

i
 , see Chandra and Chambers (2006). 

For logistic component, as we mentioned earlier, estimated probabilities are given by  

!̂ i = ndp / nd ; i !d  (4) 

where ndp  is number of positive values and n
d

 is sample size in area d.  

We now grouped (3) and (4) at the area level in vector from as follows 
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!̂Y
d
= ( !̂Y

d1
,......, !̂Y

dNi
!) = k

d

"1
e
Zd #̂+

v̂d

2  so that 
 
E( !̂Y

d
! !Y

d
| a

d
= 1) " 0  with k

d
= (k

d1
,....,k

dNi
!) , 

v̂
d
= (v̂

d11
,...., v̂

dNiNi
!) , and !̂

d
= (!̂

d1
,..,!̂

dNi
")  so that E(!̂

d
) " E(a

d
)  = E(!̂

d
) " !

d
 

!O(n
"1
) . That is !̂

d
 is a biased predictor of !

d
, however, we assume that 

E(!̂
d
) " !

d
# 0  as n!" .  Further,  

 
E( !̂Y

d
! !Y

d
) = E{E( !̂Y

d
! !Y

d
| a

d
= 1) | a

d
= 1} " 0  

 
! E( !̂Y

d
| a

d
= 1) " E( !Y

d
| a

d
= 1) = e

Zd#+
vd

2 . 

In order to obtain an unbiased predictor for the survey variable Y
d

, we assume that 

 
!̂Y
d

 and !̂
d

 are uncorrelated. Although they are not exactly, but in reality it is 

approximately true (Karlberg, 2000). This leads to  

 

E(!̂
d
!̂Y
d
) = E E(!̂

d
!̂Y
d

| a
d
= 1){ } = E !̂

d
E( !̂Y

d
| a

d
= 1){ }

                   = E(!̂
d
)E E( !̂Y

d
| a

d
= 1){ } " ! d

e
Zd#+

vd

2 = E(Y
d
)

. 

 

(5) 

This indicates 
 

Ê(yi ) = !̂ i Ê !yi | ai = 1( ) = !̂ i ki
"1
e
Zi #̂+

v̂ii

2
$
%
&

'
(
)
= !̂ i
!̂yi;i *d . An approximately 

model-unbiased predictor of survey variable Y
d

 is  

Ŷ
d
= !̂

d
k
d

"1
e
Zd #̂+

v̂d

2
$
%
&

'
(
)
= h(Z

d
,*̂)  

(6) 

Note that expression (6) is a second order bias corrected first moment. To get second 

moment, using the properties of lognormal and Bernoulli distribution (Casella and 

Berger, 1990), covariance between yi  and yj  (which is product of lognormal and 

Bernoulli variable) is evaluated as below. For units in small area d, under normality of 

the random errors, we have   
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! ij = Cov(yi , yj ) =
e

(Zi +Z j )"
e

1

2
(vii +vjj )

(# ije
vij $ # i# j )       for  i % j

e
2Zi"e

vii (# ie
vii $ # i

2
)                       for  i = j

&
'
(

)(
. 

 

(7) 

Here E(yiyj ) = P(ai = 1,aj = 1)E E(yiyj ) | ai = 1,aj = 1( ) = !
ij
e
(Zi +Z j )" e

(vii +vjj +2vij )/2  and 

E(yi ) = ! i e
Zi"+

vii

2 .  

From (7) covariance matrix of Y
d

 is written as    

V (Y
d
) = !

d
= A

d
 "

d  
#A
d
  (8) 

where Ad = diag(e
Zdi! ) ;1 " i " Nd{ }  and !d = ["dij ]  is N

d
! N

d
 positive definite matrix 

with !dij = " ij e
vij
# " i" j{ }e(vii +vjj )/2 . The area-specific approximately bias corrected 

predictor (6) and covariance matrix (8), grouped at population level define the 

population level version of ‘expected value’ or ‘fitted value’ model as a general model 

with first and second moment as 

E(Y | h) = !
0
1
N
+!

1
h(Z;") = !J  and Var(Y | h) = !      (9) 

where Y = ( !Y1,..., !Y
D
!) , ! = diag(!d ;1 " d " D) , ! = (!

0
,!

1 ")  is a vector of unknown 

parameters and J denotes the ‘design matrix’ for the linear model (9) linking Y and 

h(Z;!) . Under model (9), we use Wu and Sitter (2001) model calibration approach to 

derive the sample weights. The key idea of this approach is provided model (9) is a 

reasonable one, Y is then (at least approximately) a linear function of its ‘fitted value’ 

h(Z;!) . Under this model we carry out linear estimation using these ‘fitted values’ as 

auxiliary variables and we then derive the sample weights to define small area 

estimators, see Chandra and Chambers (2006). 
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2.2  Small area means estimators   

With an appropriate sample and non-sample partition of Y, J and ! , as below 

equation (2), the EBLUP type sample weights under the model (9) are  

w
EBLUP

h
= 1

n
+ !Ĥ

h
( !J 1

N
" !J

s
1
n
) + (I

n
" !Ĥ

h
!J
s
)#̂

ss

"1
#̂

sr
1
r
 (10) 

where Ĥ
h
= ( !J

s
"̂

ss

#1
J
s
)
#1

!J
s
"̂

ss

#1 . See Royall (1976). Following Chandra and Chambers 

(2005) we now define estimator for small area means. There can be two types of model-

based direct (MBD) estimators for small area means, Hájek type and Horvitz-Thompson 

(HT) type. Chandra and Chambers (2006) considered both the Hájek type and Horvitz-

Thompson type of the MBD estimators for small area means defined by using the model 

calibration sample weights derive under fitted-value model for the skewed data. They 

suggested that for the model calibration sample weights an appropriate (and efficient) 

MBD estimator is one defined as the Horvitz-Thompson (HT) type. The sample weights 

(10) associated with the sample units in the small area d can be used to define the HT 

type of MBD estimators for the small area d mean,  Y
d

 as 

ˆ
Yd

HT ,MBD
= wiyisd
! Nd

 (11) 

The estimator (11) also depends on how the model sample weights (10) are specified. 

That is whether the ‘fitted value’ model (9) has the ratio or the regression specification. 

For !
0
= 0  in model (9) we refer as ratio specification of this model, otherwise 

regression specification. However, Chandra and Chambers (2006) concluded that the 

estimator (11) have equivalent performance for both ratio and regression specification of 

model (9). Consequently, we used only the ratio specification for the model (9). Then we 

considered the HT type of MBD (11) under ratio specification of the fitted values model 

(9) and denote this estimator as TrMBD.  
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Besides the MBD estimator (TrMBD) defined by (11), we also define an empirical 

best predictor for the small area d mean of Y (denoted by TrEBP) under ‘fitted value’ 

model (9) as 

 

ˆ
Yd

EBP
= Nd

!1
yisd

" + #̂ i
!̂yird

"{ } = Nd

!1
yisd

" + #̂ iki
!1
e
Zi
ˆ$+ v̂ii /2( )rd

"{ }  (12) 

where k̂
i
;i !s

d
 is define below (3).  

 

2.3 Mean squared error estimation  

For the estimation of mean squared error (MSE) of (11) we follow Chandra and 

Chambers (2005, 2006) approach and adapt standard methods for estimating the mean 

squared error of a weighted linear estimator. This approach treats (11) as simple 

weighted domain mean estimate. Under this approach the sample weights derived from 

(9) are treated as fixed and the prediction variance of (11) is estimated using a standard 

robust variance estimator. See Royall and Cumberland (1978). A “plug-in” estimate of 

the squared bias of (11) under this model is added to this estimated prediction variance 

to finally define a simple estimate of the mean squared errors. This MSE estimator is 

consistent for MSE of MBD under linear mixed model (Chambers, Chandra and 

Tzavidis, 2007). In contrast, MSE estimation of EBP (13) is not straightforward. We can 

use resampling methods for MSE estimation of (12). See Jiang, Lahiri and Wang (2002) 

and Maiti (2004). In this paper we do not pursue the MSE estimation of (12).  

 

3.  Monte Carlo simulation experiment 

In this section, we design series of simulation studies to contrast the performance of 

different SAE estimators. In particular, we considered four different SAE estimators in 

our simulation studies. These are described as:  
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(i) the HT type MBD estimator for SAE of skewed data with zeros (11) based on 

model-calibrated sample weights (10) derived via ‘fitted value’ model (9), 

denoted by TrMBD  

(ii) the empirical best predictor (12) under ‘fitted value’ model (9), denoted by 

TrEBP  

(iii) the Hájek types MBD estimators based on sample weights derived under a 

linear mixed model (Chandra and Chambers, 2005), denoted by MBD0, and 

(iv)  the empirical best linear unbiased predictor under a linear mixed model (Rao, 

2003), denoted by EBLUP.  

Note that the model-calibrated EBLUP weights (10) derived under fitted value model (9) 

within small areas produces extremely variable estimates of the small area population 

sizes, implying that these weights cannot be considered as ‘multipurpose’-they function 

well when used with variables that are reasonably correlated with the variable that 

defines the fitted value model, but can fail with other, less well correlated, variables (e.g. 

the indicator variable for small area inclusion). Obviously, as mentioned earlier, the HT 

type of MBD estimator is better choice in this situation. See Chandra and Chambers 

(2006). We further note that this problem does not arise with the ‘standard’ EBLUP 

weights, as the Hájek type and HT type MBD estimators derived under a linear mixed 

model are very close in their performances. Consequently, for sample weights derived 

under raw scale linear mixed model we considered the Hájek type of MBD estimator 

(MBD0).  

We computed three measures of estimation performance using estimates generated in 

the simulation study. These are the relative bias (RB) and the relative root mean squared 

error (RRMSE), both expressed as percentages, of regional mean estimates and the 
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coverage rate (CR) of nominal 95 per cent confidence intervals for regional means. In 

the evaluation of coverage performances intervals are defined by the small area mean 

estimates plus or minus twice their standard error. These are defined as below. 

The percentage relative bias, defined as 

RB(T̂
d
) = R

!1
T
d (r )r=1

R

"( )
!1

R
!1

T̂
d (r )r=1

R

"( ) ! R
!1

T
d (r )r=1

R

"( ){ } #100 . 
(13) 

The percentage relative root mean squared error, defined as 

RRMSE(T̂
d
) = R

!1
T
d (r )r=1

R

"( )
!1

R
!1

T̂
d (r )

! T
d (r )( )

2

r=1

R

"
#
$
%

&
'
(
)100 . 

(14) 

The coverage rate, defined as 

CR(T̂
d
) = R

!1
1

r=1

R

" T
d
# T̂

d (r )
± 2 mse(T̂

d (r )
)( ){ } . (15) 

Here T̂
d

 is the estimator (e.g. for the mean) for the small area d for parameter T
d

 and T̂
d (r )  

is the specific outcome of T̂
d

 obtained in the simulation r (r = 1,…..,R = 1000) , mse(T̂
d (r )
)  

is the estimate of the MSE of T̂
d (r )  given by the data for the rth simulation. 

In simulation studies, population and sample data are generated under the model. We 

choose a population size N = 15,000 and a sample size n = 600  and then generated 

randomly small area population sizes N
d
,  d = 1,...,D; N

dd
! = N  and sample sizes as 

n
d
= N

d
(n / N ); n

dd
! = n . The average sizes of small area population and sample are 

500 and 20 respectively with total of D = 30  areas. These are fixed for all simulations. 

We carry out following model-based simulations: 

1. We generated population values of ydi i = 1,...,Nd
;d = 1,...,D( )  from a 

multiplicative model
 
 ydi = 5.0xdi

2
udedi , which is linear on log-log scale. Then we 

created zero values for ydi  randomly. The random errors e
di

 are independently 
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generated from a lognormal distribution, LN (0,!
e
= 1.0 ).  The random effects u

d
 

are generated from LN (0,!
u
= 0.5 ). The covariate values x

di
 are generated from 

LN (5,!
x
= 1.2 ). From this model, values of the ydi  (that contains zeros values as 

well) are generated for 30 small areas of sizes Nd and then random samples of sizes 

nd are drawn from each area. We consider following two combinations for the 

simulation experiments: 

Set 1: We created data with p= 0.50 and 0.75 for all small areas at population level. 

Here p is proportion of positive values defined as total number of positive values in 

the population divided by total number of values in the population. Results from 

this simulation are presented in Table 1. 

Set 2: We created data with proportion of positive values p=0.90 for 25 areas and 

different p values for 5 selected areas (these are area numbers 5, 10, 15, 20 and 25) 

at population level. The proportion of positive values for area numbers 5, 10, 15, 20 

and 25 are 0.25, 0.35, 0.50, 0.65 and 0.75 respectively. Results generated from this 

simulation are set out in Table 2 and Figures 1-2. 

2. This simulation set examines the performances of different methods of SAE under 

model misspecifications. Here population values for ydi 's i = 1,...,N
d
;d = 1,....,D( )  

are generated from ydi = 5.0xdi
2 exp log(xdi )[ ]

2{ }udedi . Note that this model is not 

linear on log-log scale. We then generated zero values for some of the ydi  

randomly. The values of covariate x
di

 are generated from LN (3,!
x
= 0.2 ). The 

random errors e
di

 and random area effects u
d

 are independently generated from a 

lognormal distribution, with LN (0,!
e
= 1.0 ) and LN (0,!

u
= 0.5 ). Then values of 

the ydi  (that contains both zeros and positive values) are generated for 30 small 
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areas of sizes Nd and then random samples of sizes nd are drawn from each area. 

The combination of this simulation is denoted by set-3 as below. 

Set 3: Like set-2, at population level we created data with proportion of positive 

values p=0.90 for 25 areas and varying p values for rest 5 areas (these are area 5, 

10, 15, 20 and 25 with p=0.25, 0.35, 0.50, 0.66 and 0.75 respectively). Results from 

this simulation are shown in Table 3. 

Table 1 presents the average values of relative bias, ratio of relative root mean 

squared error to EBLUP and the average coverage rate for the different methods from 

simulation set-1. In this simulation set the proportion of zeros (p=0.50 and p=0.75) are 

same for all areas. We observed an improvement (in terms of biases, RMSE and 

coverage rate) in the performance of all methods as proportion of zeros decreases (from 

50% to 25%) in the data. These results show the average relative bias and the average 

root mean squared error (RRMSE) of MBD0 and EBLUP are larger than both TrMBD 

and TrEBP. The average relative bias of TrMBD is marginally higher than TrEBP, 

however, the average relative RMSE of TrMBD is smaller than the TrEBP. With same 

magnitude of average relative biases, EBLUP method dominates to MBD0 in terms of 

RRMSEs. In terms of coverage performances there is not much to choose.  

Note that simulation set-1 and results reported in Table 1 corresponds to data that 

contains equal proportion of zeros in all areas. However, in simulation set-2 proportions 

of zeros varies for different areas from 25 to 90%. Table 2 set out the average (and 

median) values of relative bias, ratio of relative root mean squared error to EBLUP and 

the average coverage rate generated by different methods from this simulation set. 

Figure 1 and 2 present region-specific results. These results further show that TrMBD 

and TrEBP dominate EBLUP and MBD0. Area-specific results reflect that areas with 
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relatively large proportion of zeros (For example, areas 5, 10, 15 and 20 with p= 0.25, 

0.35, 0.50 and 0.65 respectively) EBLUP method is very unstable. In these areas 

synthetic part of EBLUP contributed extremely high, which results in over estimation. In 

such cases MBD estimator still works well except in presence of outliers data since the 

MBD methods are sensitive to outliers (Chambers and Chandra, 2006). These results 

clearly show TrMBD is efficient overall. In contrast, TrEBP methods with marginally 

large biases and higher values of RRSME than TrMBD are sensitive to presence of zeros 

especially when a GLM method was used for estimating probabilities (although we have 

not presented the results based on GLM methods of estimating the probability). Use of 

area-specific proportion for the probability of positive values seems to working 

reasonably well for both TrMBD and TrEBP. Overall mixture model based methods of 

SAE for skewed data with zeros lead to efficient estimates for small areas with smaller 

relative biases and relative root mean squared errors and with relatively good coverage 

properties.  

The values of relative biases and relative root mean squared errors generated by 

simulation set-3, both expressed in terms of percentage are presented in Table 3. These 

results are generated under wrong model choices. In Tables 3 we see that region-specific 

results contain lot of outlying estimates. These results show median relative bias of 

MBD0 is smaller overall. Between ‘expected-value’ model based methods, TrMBD has 

smaller bias than TrEBP. Although results are not reported here, under TrMBD, it hardly 

makes any difference due to three methods used for estimation the probabilities of 

positive values. Under TrEBP, the use of proportions seems to be more appropriate. We 

note for the areas with large proportion of zeros use of GLM based estimation leads to 

very unstable results with larges biases for TrEBP. In contrast, use of GLMM in this 
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situation is as good as area specific proportions. That is for zeros contaminated areas it is 

important to have area effects in estimating the probabilities when using TrEBP. Further, 

as noticed earlier region-specific results show in zeros inflated regions (5, 10, 15 and 20) 

EBLUP is very unstable and MBD0 is relatively better. In Table 3 we further noticed 

that even under wrong model choices median values of RRMSE of TrMBD are smaller 

overall. The MBD0 is performing better in terms of relative bias but very unstable. 

These results conclude that under wrong model choices proposed method have large 

biases than MBD0 and EBLUP but smaller RRMSE. If model holds, the method 

produce estimates with both smaller bias and RMSE. Note that for zero inflated regions, 

TrMBD works well for all three choices for estimating the probabilities. However, in 

this situation, GLM is not a good choice for estimating the probabilities for the TrEBP 

(area specific proportion or GLMM is preferable) since it produces biased results. 

Overall mixture model based methods of SAE for the skewed data with zeros shows a 

significant gain when model hold. In the event slight model misspecifications, the 

methods still work well with marginal gain.   

 

4. Concluding remarks 

In this paper we introduced small area estimation for skewed data that contain a 

substantial proportion of zeros. We use a mixture type of model for this purpose. The 

idea of using a mixture model for skewed data that contain a large proportion of zeros is 

not new. See Welsh et al.(1996), Lambert (1992), Karlberg (2000) and Fletcher et at. 

(2005). However, we apply this approach in context of small area estimation. Our results 

from simulation experiments show the method works well and produce efficient set of 

small area estimates. We described two different estimators based on ‘expected-value’ 
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model (9) derived from mixture model. We conclude that TrMBD (H-T type MBD 

estimator based on ratio specification of expected value model) is more efficient. 

Further, identification of appropriate model relationship on transform scale is very 

crucial in application this method otherwise results can be misleading. In this paper we 

used mixture type of model, however it is interesting to model such data under 

generalized linear mixed model with Gamma and Poisson (for count data) or other class 

of distributions for skewed data with zeros. We are currently working on these issues. 
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 ARB,% Ratio of ARRMSE to EBLUP 
 

ACR 
Methods p =0.50 p =0.75 p =0.50 p=0.75 p =0.50 p =0.75 
TrMBD 1.15 0.76 0.83 0.73 0.90 0.89 
TrEBP 0.72 0.39 0.84 0.80 * * 
MBD0 -9.69 -8.02 2.04 2.03 0.83 0.86 
EBLUP -9.57 -7.54 1.00 1.00 0.87 0.87 
* we do not pursue MSE estimation for the TrEBP. 

 

Table 2 Average (ARB) and median (MRB) values of relative bias, average (ARRMSE) 

values of relative root mean squared error and average (ACR) coverage rate for 

simulation set-2. 

 Methods ARB,% MRB,% Ratio of ARRMSE to EBLUP ACR 
TrMBD 0.03 0.59 0.62 0.89 
TrEBP 0.78 0.84 0.69 * 
MBD0 -3.73 -3.02 2.28 0.88 
EBLUP 4.16 -9.10 1.00 0.88 
* we do not pursue MSE estimation for the TrEBP. 
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Table 3 Relative biases and relative RMSE for simulation set-3. 

Relative Bias Relative RMSE 
Region TrMBD TrEBP MBD0  EBLUP  TrMBD TrEBP MBD0  EBLUP  

1 -8.09 -9.62 -1.55 -5.85 51.4 66.4 119.1 68.0 
2 -7.04 -10.58 3.42 -7.12 54.8 70.8 164.8 75.6 
3 -9.58 -11.45 12.90 -8.36 46.2 64.4 233.7 67.1 
4 -8.61 -11.32 -10.34 -9.85 78.6 83.2 146.4 86.2 
5 -19.81 -9.26 -0.95 110.70 69.7 65.0 211.7 157.2 
6 -9.94 -9.97 -6.72 -8.71 45.3 61.4 111.0 63.9 
7 -11.32 -8.84 -15.09 -7.84 46.7 61.0 118.4 64.2 
8 -5.89 -6.68 -9.04 -4.21 42.1 60.6 107.7 65.4 
9 -8.70 -10.96 -7.87 -8.67 54.7 67.2 124.6 69.3 

10 -22.96 -8.07 -11.11 94.10 81.0 80.4 207.7 146.1 
11 -8.63 -9.26 -7.97 -8.09 47.6 63.3 122.0 66.3 
12 -7.99 -8.35 0.30 -2.60 42.9 60.9 143.4 72.2 
13 0.06 -8.63 17.02 -1.42 54.2 63.9 196.7 68.4 
14 -8.78 -12.23 5.11 -7.01 44.1 59.5 211.8 60.7 
15 -22.27 -9.13 -7.36 46.30 69.3 73.6 142.6 98.9 
16 -9.18 -7.11 -4.37 -4.05 49.0 57.6 121.4 66.1 
17 -6.66 -10.39 15.04 -6.35 41.2 57.7 245.9 60.9 
18 -9.51 -9.79 -3.46 -7.03 38.7 63.0 144.8 64.0 
19 -7.51 -9.96 0.46 -6.80 43.1 59.7 164.2 63.8 
20 -14.24 -8.20 2.01 18.14 82.1 90.1 154.8 98.7 
21 -6.58 -4.49 3.30 -0.83 40.3 56.6 126.8 57.1 
22 -10.08 -13.87 2.46 -9.60 46.4 66.4 191.6 64.4 
23 -11.91 -12.19 -12.55 -10.36 51.8 72.2 119.8 79.1 
24 -7.69 -5.36 -8.56 -3.66 44.3 58.7 110.6 57.9 
25 -11.26 -11.56 4.24 3.79 54.5 62.2 288.8 77.2 
26 -7.73 -11.04 0.65 -5.69 39.4 54.5 131.7 60.9 
27 -15.00 -13.12 -9.82 -11.98 37.3 47.3 95.6 50.8 
28 -12.36 -11.11 -3.29 -8.73 53.8 69.5 144.5 74.4 
29 -8.96 -10.20 -2.86 -7.91 45.3 62.6 113.0 67.0 
30 -11.87 -15.01 -11.91 -11.87 68.5 81.5 112.1 85.8 

Average -10.34 -9.93 -2.26 3.28 52.1 65.4 154.4 75.2 
Median -9.07 -9.97 -3.08 -6.91 47.2 63.2 143.0 67.0 
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Figure 1 Region-specific relative biases for TrMBD (solid line), TrEBP (thin line), 

EBLUP (dash line) and MBD0 (dotted line) methods from simulation set-2. 
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 Figure 2 Region-specific relative root mean squared errors for TrMBD (solid line), 

TrEBP (thin line) and EBLUP (dash line) methods from simulation set-2. 
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