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Estimates of sampling variance underestimate the variance of survey estimates when

there are strong interviewer effects. However, interviewer effects are rarely consid-

ered in complex field surveys due to the high costs involved with adapting an in-

terpenetrating design to produce estimates of them. This paper demonstrates how

interviewer effects can be estimated by taking a sample of interviewers using the

technique of partial interpenetration. The partial interpenetration approach is de-

veloped to produce cost-optimal survey designs for the estimation of the interviewer

effect and population means for non-linear response variables.

Keywords: Interviewer effect; interpenetration; total survey error, non-sampling

error, multiple objective survey design.

1 Introduction

Interviewers play a central role in the collection of high quality data in

household surveys. They provide initial contact with respondents, elicit and

prompt response and collect and enter data. The presence of the interviewer

may also have unintended impacts on survey data, for example responses col-

lected by the same interviewer tend to be more similar than if the responses

were collected by different interviewers (see Collins, 1980).

Estimates of the contribution of the interviewer effect to the variance of

estimates is necessary to produce estimates of the total variance of survey

estimates. They are also useful in identifying problems in questionnaire

design and interviewer training and performance.
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Running large scale surveys is an expensive exercise and there is ex-

tensive literature dealing with minimizing sampling errors, e.g. Cochran

(1977). Despite a concentrated effort to minimize sampling errors, classical

techniques for estimating the contribution of the interviewer to total sur-

vey error, such as interpenetration (Mahalanobis, 1946) and re-interviewing

(Bailar, 1968) do not occur often in practice due to associated costs and

complexity.

In field enumeration surveys, interviewers collect information from re-

spondents clustered in geographical areas. Interviewer effects and geographic

effects will then be confounded and cannot be separately estimated if some

form of repeated measurement (eg interpenetration or re-interviewing) does

not occur. We now consider how partially interpenetrated survey designs

can be used to produce optimal estimates of interviewer effects and popula-

tion means.

The interviewer effect was recognized in the early social surveys of the

20th century. For example Rice (1929) realized that interviewers with dif-

ferent political opinions tended to obtain different results in a survey of

destitute men. Early studies concentrated on establishing the existence of

interviewer effect (eg Mahalanobis, 1946) while later studies, such as Hansen

and Marks (1958), attempted to establish the relative importance of inter-

viewer effects compared with other sources of error. A review of studies

estimating the interviewer effect prior to 1980 has been provided by Collins

(1980).

Since the 1980s increased computing power and use of statistical models

in data analysis has led to the use of multi-level models to directly estimate

the interviewer effect. For example Anderson and Aitken (1985) investigated

interviewer variability in a survey on consumer spending. The multi-level

modelling approach can be applied to estimate the interviewer effect and

also cater for the hierarchical structure of datasets. Subsequent work by Hox

et al. (1991); Pannekoek (1991); Wiggins et al. (1992); Hox (1994); Goldstein

(1995); Pickery and Loosveldt (2000, 2001, 2004); O’Muircheartaigh and

Campanelli (1998, 1999) and Martin and Beerten (2002) have applied and

extended this approach.

In the above papers it is assumed that there is either an explicitly inter-

penetrated survey design in which a minimum of 2 interviewers are allocated

to each workload or area or an effectively interpenetrated design in which

all of the interviewers are allocated to a single concentrated geographic area.

This occurs even in the case of Pickery and Loosveldt (2000, 2001) who con-

sider application of the longitudinal information available in repeated panel

surveys and Schnell and Kreuter (2005) who explore separating interviewer

2



and sampling-point effects in a fully interpenetrated survey. This paper will

extend the above work to show how estimates of the interviewer effect can

be produced optimally, in practice, under budget constraints.

2 Interpenetrated Sampling

Previous studies to estimate the interviewer effect have relied on costly fully

interpenetrated designs which are rarely applied in practice for surveys which

involve field interviewing because of the costs and complexity of having 2

interviewers in each workload or geographic area. To produce interviewer

effect estimates in such surveys we can simply select a sample of workloads

to interpenetrate. We call this technique partial interpenetration. This com-

pares with the classical full interpenetration of Mahalanobis (1946) in which

at least 2 interviewers are allocated to each geographical area. In the fol-

lowing we have randomly selected interviewers to allocate to interpenetrated

areas, however more complex sampling schemes can also be adopted.

Statistically the interviewer effect is the variance of the interviewer level

residuals. Specification of this problem as a mixed model enables us compare

the properties of fully and partially interpenetrated designs. Mixed models

are useful for estimating interviewer effects as they borrow strength from

other groups, and as a general rule the higher the number of interpenetrated

geographical areas the better our estimate of the interviewer effect.

For example, under the linear mixed model (McCullagh and Nelder,

1989)

y = Xβ + Zu + e (1)

where,

• y is a (n × 1) vector of observations.

• X is a (n × q) matrix of observed covariate values. X is also referred

to as the fixed effect design matrix.

• β is a (q × 1) vector of coefficients for the covariates (i.e. there are

q covariates included in this model or q − 1 if a mean response is

included).

• Z is a (n×t) matrix of known values indicating the presence of random

effects. Z is also referred to as the random effect design matrix. Z

provides an indication of group memberships.
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• u is a (t × 1) vector of random effects (i.e. there are t random effects

included in the model).

• e is a (n × 1) vector of residuals.

If we also assume that both e and u are independent and normally dis-

tributed with expected values of zero and variances matrices of R and D

respectively, we can see that the response y will also be normally distributed

with variance matrix

V = ZDZT + R (2)

The variance covariance matrix, V, can be partitioned into components

representing

• The survey and workload design. This is captured in the random effect

design matrix, Z. Individual columns of Z can be used to describe

different random effects relating to the survey design attributes such as

the allocation of interviewers or the geographical clustering of primary

sampling units.

• The magnitude of variance components, such as the interviewer ef-

fect, σ2

int and the spatial effect, σ2

wk. This is captured in the variance

component matrix, D. The elements of D will correspond to random

effects described in the columns of Z.

• The magnitude of the residual variation, σ2
ε . This is captured in the

residual matrix, R.

A similar decomposition can be performed under the Generalized Linear

Mixed Model (GLMM) (see McCulloch and Searle, 2001).

Then we can see that the degree of interpenetration relates only to the

random effects design matrix, Z, and any change to the degree of inter-

penetration will also effect the variance covariance matrix, V, from which

estimates of D are isolated. Thus the degree of interpenetration influences

our ability to estimate the interviewer effect no matter the magnitude of the

interviewer effect. A discussion of methods for estimating variance compo-

nents in GLMMs can be found in Browne and Draper (2006).

Variance estimates associated with an estimate of the interviewer vari-

ance can be obtained from the information matrix based on the distribution

of the response variable and given estimates of D and R. We can calculate

a Variance Inflation Factor (vif) for estimates derived under a given survey

design compared with the estimates we would have obtained under full in-

terpenetration to assess the impact of interpenetration on the estimation of
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the interviewer effect. Given a partially interpenetrated survey design and

its associated design matrix, Z, let Z∗ be a design matrix describing the

same spatial structure in which all observations within a single spatial zone

are collected by different interviewers and in which all interviewers collect

data from more than one workload. Then Z∗ will be fully interpenetrated

and comparable with the partially interpenetrated Z. Then if V ar(σ̂2

int)Z is

the variance of the estimate of the interviewer effect under Z the vif can be

calculated as

vifZ =
V ar(σ̂2

int)Z
V ar(σ̂2

int)Z∗

(3)

McCulloch and Searle (2001) show that there is no general expression for

the information of the random effects for all possible response distributions

and hence variance estimates of the random effect estimates must be consid-

ered for each distribution. As an example consider a normally distributed

response variable, for which each element in the ith row and jth column of

the information matrix for the random effect is

I(σ2){i,j} =
1

2
tr(V−1ZiZ

T
i V−1ZjZ

T
j ) (4)

where Zi and Zj correspond to the ith and jth column of Z respectively and

which therefore correspond to different random effects. Calculation of (4)

requires an estimate of V−1, which in general requires information regarding

both D and R. In practice this means that we need to know the magnitude

of all of the variance components in order to properly assess the effect of

partial interpenetration on the variance of our interviewer effect estimates.

Although in some cases prior knowledge may give us an approximate idea as

to the magnitude of the interviewer effect, in general this information will

not be available during the survey design process.

In order to design optimal interpenetrating surveys for the purpose of

estimating the interviewer effect we either need approximate prior estimates

of the magnitude of all variance components or we need to be able to make

general statements regarding the relationship between the degree of inter-

penetration and the vif associated with the interviewer effect estimates no

matter the true magnitude of the variance components. Also, because many

variables collected in household surveys are categorical we must consider

mixed models for non-normal data.

Studies examining multilevel survey design have generally either been

simulation based empirical studies, e.g. Mok (1995); Afshartous (1995);

Normand and Zou (2002) or theoretical expositions considering the accuracy

of the fixed effect parameter estimates conditioning on cost and design, e.g.

Snijders and Bosker (1993, 1999); Cohen (1998); Moerbeek et al. (2000,
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2001a,b); Moerbeek and Wong (2002). An extension of the Cohen (1998)

paper is presented by Moerbeek et al. (2001a) who derive a linearization for

the variance of the fixed effect parameter in multilevel models with logistic

response. Moerbeek et al. (2001a, p 18) state that

‘... optimal designs cannot be derived analytically for PQL (Penalized

Quasi-Likelihood) and numerical integration’

As Marginal Quasi-Likelihood (MQL) estimates are generally biased when

considering non-normal response variables (see Rodriguez and Goldman,

1995, 2001; Breslow, 2003) they present a general methodology for empiri-

cally determining the sampling variance of parameters in the multilevel lo-

gistic model. Moerbeek et al. (2001a) conclude that design decisions based

upon biased MQL linearization of the variance of the fixed effect parameter

estimates will generally be similar to those that would have been determined

empirically using unbiased estimation methods. However, simulation tech-

niques should be applied to explore the implications of design scenarios on

variance component parameters such as the interviewer effect.

We now explore the relationship between the survey design used to allo-

cate interviewers to workloads and estimates of the interviewer effect. Our

initial focus will be to minimize the variance of estimates of the interviewer

effect for a given cost function. For binary data items this entails producing

estimates of a vif comparing interviewer effect estimates under competing

survey designs. We present a general empirical methodology for explor-

ing the impact of survey design on estimates of the interviewer effect and

thereby establish a relationship between the degree of interpenetration and

the variance that can be associated with interviewer effect estimates with

particular focus on non-linear response variables. We have already seen that

numerical integration techniques are to be preferred when faced with a non-

linear response variable. Consequently, extending the work of Moerbeek

et al. (2001a), design scenarios for the optimal estimation of the interviewer

effect will be assessed through MCMC simulation techniques.

2.1 Variance Inflation Factors for Logistic Response

In the following we consider a simple binary response multilevel model.

Pr(yijk = 1|πjk) =
exp(πjk)

1 + exp(πjk)
(5)

where π can be decomposed into variance components corresponding to the

levels in the dataset.

πjk = µ + φk + θj
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and

• i, j and k are indices referring to the person/individual level, the

interviewer and workload levels respectively.

• µ is a fixed effect.

• The random effects are independent and normally distributed, i.e.

φk ∼ N(0, σ2

wk) and θj ∼ N(0, σ2

int).

Based on model (5) a simple 3 level logistic response multilevel model was

simulated, with a design matrix based on a known degree of inter-workload

interpenetration and equal workload sizes. The following parameter settings

were applied, µ = 2.5, σ2

int = 0.52, σ2

wk = 1.52, n = 5000, nint = 100 and

nwk = 50 and full intragroup interpenetration was required for all interpen-

etrated groups, ie all responses in an interpenetrated group were collected

by different interviewers. The degree of interpenetration was controlled by

allocating a single interviewer to only enumerate each non-interpenetrated

workload and all respondents in interpenetrated groups were randomly allo-

cated one of the remaining interviewers. Note that under this scheme there

was no scenario in which only one workload was interpenetrated (as inter-

viewers in interpenetrated workloads were required to also collect data from

other workloads). When there were more respondents in a workload than

available interviewers, all available interviewers were allocated as close to an

equal number of respondents as possible. Consequently for dZ = 0.5 there

would be

• 25 interviewers who fully enumerate 25 workloads and do not collect

data from any other workload.

• 75 interviewers who collect at least 1 response from each of the remain-

ing 25 workloads. 25 of these 75 interviewers will collect 2 responses

in any of these interpenetrated workloads, while 50 interviewers will

only collect one response.

The empirical variance of the interviewer effect estimate based on a number

of different degrees of inter-workload interpenetration was then calculated

via equation (6), using R = 250 simulations for each degree of interpenetra-

tion. MCMC estimation in MLwiN was used to produce each estimate of

σ2

int,r.

v̂ar(σ̂2

int) =
1

R − 1

∑

r

(

σ̂2

int,r −

∑

r σ̂2

int,r

R

)2

(6)
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Figure 1: Variance Inflation Factor for Interviewer Effect Estimate by Degree of

Intergroup Interpenetration: Logistic Response Model

The variance inflation factors for the interviewer effect estimate against the

degree of intergroup interpenetration can be seen in Figure 1

In Figure 1 the variance inflation factor on the interviewer effect estimate

increases as the degree of intergroup interpenetration decreases. However

the variance inflation factor does not exceed 1.5 until less than 50% of the

workloads are interpenetrated, i.e. the degree of intergroup interpenetration

falls below 0.5. Moreover we can see that the variance inflation factor in-

creases rapidly for lower degrees of intergroup interpenetration, asymptoting

to infinity when there is full confounding. Consequently, under this simple

model, we would be able to make a reasonable estimate of the interviewer

effect without full interpenetration.

Based on this empirical technique we can now compare any two compet-

ing survey designs and through this determine the most appropriate survey

design for the estimation of the interviewer effect. As increased degrees

of interpenetration are generally associated with increased travel costs this

suggests a cost optimal partially interpenetrated design.

3 Optimal Design Based on Travel Cost Functions

Application of empirical techniques for optimal design purposes would re-

quire an estimate of the magnitude of the interviewer effect. However in

practice we generally cannot obtain this estimate until after the survey has
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been conducted. We therefore need to establish a general relationship that

can be applied in practice to determine an optimal interpenetrating design

for the estimation of the interviewer effect without prior knowledge of the

magnitude of the interviewer effect. We have seen in Figure 1 that there ap-

pears to be a relationship between the degree of intergroup interpenetration

and the variance of the interviewer effect estimate. Next we will explore the

general relationship between the variance of interviewer effect estimates, the

sample size and the degree of intergroup interpenetration in order to pro-

duce an approximate relationship that can be applied in practice to produce

an optimal partially interpenetrated survey design based on a specified cost

function.

3.1 Travel Cost Function

Although full interpenetration will generally lead to a more reliable esti-

mate of the interviewer effect this will require interviewers to travel between

workloads to interview respondents, leading to increased travel costs. A

fully confounded design will minimize travel costs as all of the respondents

enumerated by a single interviewer will reside in closer proximity to one

another.

By way of example assume the cost of an interviewer travelling to an in-

terview in a different workload is four times that of the interviewer travelling

to meet any new respondent within the same workload, i.e. let c1 = 1 cost

unit and c2 = 4 cost units. This is a strong simplification, roughly equivalent

to assuming all workloads are adjacent. The total travel costs are related to

how many workloads an interviewer travels to and how many observations

the interviewer collects in each workload rather than just the total number

of workloads. For a fixed sample size, n, increased levels of interpenetration

will generally lead to higher travel costs. With a fixed budget the methodol-

ogist can therefore either choose to design a survey with an increased total

sample size or with a higher degree of interpenetration. If the aim is to

produce as accurate estimates of the interviewer effect as possible based on

a given budget, this will imply an optimal degree of interpenetration. We

can demonstrate this with a simple cost function

C = (c1 + c3)n + (c2 − c1)
∑

i
bi (7)

where

• C is the total cost.

• c1 is the total cost associated with enumerating different respondents

in the same workload.
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• c2 is cost of travelling to interview the first respondent in a different

workload.

• c3 is the total cost associated with including an extra respondent in

the sample.

• bi is total number of workloads in which interviewer i conducts inter-

views.
∑

i bi is related to the proportion of intergroup interpenetration, dZ , implied

by the random effects design matrix, Z. If we assume our fixed body of

interviewers is greater than the given number of workloads, i.e. nint > nwk,

and that we have full intragroup interpenetration in any interpenetrated

groups then we can say that
∑

i
bi = nwk + nwkdZ (nint − nwk − 1 + nwkdZ)

= nwk {1 + dZ (nint − 1 + nwk [dZ − 1])} (8)

This result recognizes that there must be at least one interviewer allocated

to each of the nwk areas. In the nwkdz interpenetrated areas full intragroup

interpenetration is assumed so that all remaining available interviewers (i.e.

take the total number of available interviewers minus the number who are al-

ready enumerating non-interpenetrated areas; nint−nwk+nwkdz) collect the

data. Result (8) allows us to restrict consideration to only designs containing

full intragroup interpenetration. Other forms of intragroup interpenetration

can also be specified in a similar way, for example random allocation of two

interviewers to each workload would lead to
∑

i bi = nwk(1 + dZ) provided

nint ≥ nwk and full confounding implies
∑

i bi = nwk when nint = nwk.

In large scale surveys the number of workloads is generally determined

geographically and can therefore be considered as fixed. The hiring and

training of interviewers is a slow and costly process and hence for design

purposes we will also consider the body of available interviewers to be fixed.

Note that with longer lead-in periods it will be possible to prepare further

interviewers, however this scenario has not been considered here. Given cost

coefficient estimates, c1, c2 and c3 the total cost is a simple function of both

the degree of intergroup interpenetration and the sample size. Combining

(7) and (8) then gives

C = (c1 + c3)n + (c2 − c1)nwk {1 + dZ (nint − 1 + nwk [dZ − 1])} (9)

We have already seen in Figure 1 that the variance of the interviewer ef-

fect estimate is also a function of the degree of intergroup interpenetration,
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and so we can minimize this variance subject to the cost constraint (9) to

determine the optimal degree of interpenetration for the estimation of the

interviewer effect. To do this we first need to establish the relationship be-

tween the vif , which we are trying to minimize, and the remaining variables

in the cost function (9). As c1, c2, c3, nwk and nint are generally all fixed

this means we need to establish the relationship between the vif , the sam-

ple size, n and the degree of intergroup interpenetration, dZ . The following

section will begin by examining the relationship between the variance of the

interviewer effect estimate and the degree of intergroup interpenetration.

3.2 Relationship Between vif and dZ

The more interviewers we observe the lower the variance that will be associ-

ated with the interviewer effect estimate. Also as the degree of interpenetra-

tion increases we would expect the variance of the interviewer effect estimate

to fall and there would be an approximate inverse relationship between vif

and dZ .

Figure 2 shows the estimated relationship between the inverse of the

variance inflation factor and the degree of intergroup interpenetration and

can be used to estimate the approximate relationship. This data was simu-

lated based on model (5) and with a design matrix based on a known degree

of inter-workload interpenetration and equal workload sizes. The following

parameter settings were applied, µ = 2.5, σ2

int = 0.52, σ2

wk = 1.52, n = 5000,

nint = 100 while nwk = 50, Full intragroup interpenetration was required

for all interpenetrated groups.

Figure 2 suggests that the relationship between the inverse of the vari-

ance inflation factor and the degree of intergroup interpenetration is approx-

imately linear. The fitted OLS regression line has an R-Squared of 0.94 with

an estimated intercept that is not significantly different from 0 and a slope

that is not significantly different from 1.

There is an inverse relationship between the variance inflation factor,

vif , on the interviewer effect estimate and the degree of intergroup inter-

penetration, dZ , conditional on a fixed degree of intragroup interpenetration

(ie the level of repeated use of interviewers in workloads) in any interpen-

etrated groups. Let vdZ be the variance of the interviewer effect estimate

associated with a specific degree of intergroup interpenetration, dZ . Under

our assumptions, for a number of fixed design parameters, C, c1, c2, c3, n,

nint, nwk and the degree of intragroup interpenetration, we can see that

vifdZ =
vdZ

vdZ|dZ=1

≃
1

dZ

(10)
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Figure 2: Inverse of Variance Inflation Factor for Interviewer Effect Estimate by

Degree of Intergroup Interpenetration: Logistic Response Model

Based on this relationship we can now make some statements regarding op-

timal design of partially interpenetrated surveys for the estimation of the

interviewer effect. Recall, however, that larger sample sizes will generally

lead to more accurate estimates of the interviewer effect under full inter-

penetration. In other words vdZ|dZ=1 is also a function of the sample size,

n, conditional on the population parameters, σ2

int, σ2

wk, σ2
ε and µ, the fixed

design parameters, C, c1, c2, c3, ni, nwk and the degree of intragroup in-

terpenetration as specified by
∑

i bi. The following section will explore the

relationship between the variance of the interviewer effect estimate under

full interpenetration and the sample size and assess the implications of this

relationship for optimal interpenetrating survey designs.

3.3 Relationship Between vdZ|dZ=1 and the Sample Size

We can develop an initial analytic understanding of the relationship between

the variance of the interviewer effect estimate under full interpenetration and

the sample size, by considering the simple case of a balanced 2 level (respon-

dent at level 1 and interviewer at level 2) Hierarchical Linear Model (HLM)

for a normally distributed response variable. This can be done by adapt-

ing an asymptotic expression for the second level variance component. For

example, if we take the asymptotic expression for the second level variance

component in the 2 level HLM (Longford, 1993, p 58) and consider the case

of equal size workloads, ie all interviewers collect data from n̄ respondents
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so that n̄ = n
nint

, we can write the asymptotic variance of the second level

variance component as

var(σ2

int) =
2
(

σ2
ε

)2

n

(

1

n̄ − 1
+ 2ω + n̄ω2

)

=
2
(

σ2
ε

)2
nint

n (n − nint)
+

4
(

σ2
ε

)2
ω

n
+

2
(

σ2
εω
)2

nint

(11)

Where ω =
σ2

int

σ2
ε

. By definition n ≥ nint ≥ 1 and holding constant nint

(as recruiting and training interviewers is generally much more costly than

altering the sample size) we can then see in (11) that as the sample size,

n, increases, the variance of the interviewer effect will approach
2(σ2

εω)
2

nint
.

However, generally we are worried about the impact of interviewer effects

when cost constraints limit both the number of interviewers and the sample

size. In general we cannot say anything about the actual magnitude of σ2
ε

and σ2

int, although we would generally expect that σ2
ε > σ2

int
for carefully run

surveys. In this case we would expect that (11) will be dominated by the

second term within the range of interest for the methodologist. Consequently

we would expect that for the purposes of designing cost effective partially

interpenetrated surveys there will be an approximately inverse relationship

between vdZ|dZ=1 and the sample size.

In the logistic response multilevel model (5) the relationship between

the sample size and the variance of the interviewer effect estimate is not

immediately clear as the expansion under MQL is biased and as Moerbeek

et al. (2001a) point out expressions for the variance of the interviewer effect

cannot be derived analytically for PQL and numerical integration. The

relationship between the variance of the interviewer effect estimate and the

sample size can be determined empirically and this relationship is presented

in Figure 3 following.

In Figure 3 the data is simulated according to Model (5) with the same

parameter settings as before and full intragroup interpenetration for all inter-

penetrated groups. The variance of the interviewer effect estimate decreases

as the sample size increases, eventually asymptoting to a level determined

by the given design and population parameters. There appears to be an

approximately inverse relationship between the variance of the interviewer

effect estimate and the sample size and this relationship is presented in

Figure 4 following

Figure 4 indicates that the relationship between the logarithm of the

empirical variance of the interviewer effect estimate and the logarithm of

the inverse of the total sample size is approximately linear. The fitted OLS
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Figure 4: Log of Variance of Interviewer Effect Estimate by Log of Inverse of

Sample Size: Logistic Response Model under Full Interpenetration

regression line has an R-Squared of 0.98 and the estimated coefficients can

be found in Table 1.

There is an inverse relationship between the variance of the interviewer

effect estimate under full interpenetration and the total sample size. Thus

vdZ|dZ=1 ≃
az

n
(12)
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Value Std. Error t value P value

Intercept 4.4868 0.3983 11.2648 0.0000

Slope 1.1102 0.0481 23.4981 0.0000

Table 1: OLS Estimates: Log of Empirical Variance as the Dependent Variable

and Log of the Inverse of Total Sample Size as the Explanatory Variable

where aZ is a constant for any given set of population parameters, σ2

int, σ2

wk,

σ2
ε , µ, the fixed design parameters, nint, nwk and the degree of intragroup

interpenetration as specified by
∑

i bi. So in this case based on our parameter

settings and assuming full interpenetration for each design, we can see in

Table 1 that aZ will be approximately equal to exp(4.4868) or 88.8.

3.4 Optimal Design for Estimation of Interviewer Variance

Putting together (12) and (10) we get the following relationship between

the variance of the interviewer effect estimate, the degree of intergroup in-

terpenetration and the sample size

vdZ ≃
az

n.dZ

(13)

Then combining (13) and (9) we can express the variance of the interviewer

effect estimate for a fixed total cost C in terms of the degree of intergroup

interpenetration

vdZ ≃
az(c1 + c3)

dz {C − (c2 − c1)[nwk + nwkdz(nint − nwk − 1 + nwkdz)]}
(14)

The corresponding sample size is

n ≃
C − (c2 − c1)[nwk + nwkdz(nint − nwk − 1 + nwkdz)]

(c1 + c3)
(15)

To find the optimal degree of interpenetration we minimize the variance

of the interviewer effect as expressed in Equation (14), for a given total

budget, C. As the numerator of (14) is a constant this is equivalent to

maximizing the denominator of (14) over the entire range of possible degrees

of intergroup interpenetration, i.e. 0 < dZ ≤ 1. As the denominator is a

cubic expression in dZ , its derivative will be quadratic and the maximum

value within this range will occur either when we have full interpenetration,

i.e. dZ = 1 or at a local maximum which can be determined by one of the

quadratic roots in Equation (16) following

(c1 − c2)nwk[nint − nwk − 1] ± ∆C

3(c2 − c1)n2

wk

(16)
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where ∆C =
√

((c1 − c2)nwk[nint − nwk − 1])2 − 3((c2 − c1)n2

wk)((c2 − c1)nwk − C).

By way of example consider a binary response variable simulated according

to Model (5) as if it was collected via a survey with a total budget of C =

10000 and design parameters nint = 100, nwk = 50, c1 = 1, c2 = 4, c3 = 2,

design matrices, full intragroup interpenetration as specified by the form of
∑

i bi in (8) and finally aZ = 88.8 (see Table 1). A plot of the variance of

the interviewer effect estimate can be seen in Figure 5 following
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Figure 5: Variance of Interviewer Effect Estimate by Degree of Intergroup Inter-

penetration: Total Fixed Cost 10000

From Figure 5 we see that the total budget is not high enough for full

interpenetration to be considered in this case as the highest degree of in-

tergroup interpenetration affordable under this budget is dZ = 0.756. Note

also that as we approach full confounding, i.e. dZ → 0 it becomes harder to

estimate the interviewer effect and the variance of the estimate approaches

infinity. In comparison as we increase the degree of interpenetration we are

forced to reduce our sample size, n, accordingly due to our total budget con-

straint. Consequently, as dZ → 0.756, n → 0 the impact of this small sample

size is that the variance of the interviewer effect estimate again approaches

infinity.

When the sample size is high, for a fixed budget we can only afford a

low degree of interpenetration, leading to an unreliable estimate of the inter-

viewer effect. When the degree of interpenetration is high, however, we can

only afford a small sample size, which again leads to unreliable estimates of

16



the interviewer effect. Consequently we can see in Figure 5 that there is an

optimal degree of intergroup interpenetration associated with the minimum

possible variance of the interviewer effect estimate given our total budget

constraint. In this case the optimal degree of interpenetration is not at the

end points of the range 0 < dZ ≤ 1 and the optimal degree of interpenetra-

tion is at a local minimum which can be determined by Equation (16). This

corresponds to a degree of intergroup interpenetration of dz = 0.411 with an

implied sample size that can be determined by Equation (15) i.e. n = 1854

and an optimal variance of the interviewer effect estimate of v(σ̂2

int) = 0.12.

We can also see in Figure 5 that the variance of the interviewer effect does

not increase rapidly as we move away from the optimal degree of interpene-

tration and hence degrees of interpenetration near the optimal may still be

applied to produce reliable estimates of the interviewer effect.

We can utilize Equation (16) to determine the minimum total budget re-

quired before the optimal degree of interpenetration occurs when the survey

is fully interpenetrated. In other words to estimate the interviewer effect

with unlimited finances we would require a total budget of at least

C ≥ c12nwk+
(3n2

wkc12 + c12nwk[nint − nwk − 1])2 − (c12nwk[nint − nwk − 1])2

3n2

wkc12

(17)

where c12 = c2− c1, for full interpenetration to be optimal. This reflects the

point at which the positive root of (16) becomes greater than one. In the

case of our example this means that full interpenetration is optimal under

our cost function, design and population parameters when the total budget

is greater than C = 42, 152.

3.5 Effect of Optimal Interpenetrating Design on Sampling

Variance of Mean

We have already seen that there is a cost associated with increasing the

degree of interpenetration when designing a survey and hence under a fixed

budget this will lead to a reduced sample size. In isolation we can use

this information to determine an optimal degree of interpenetration for the

estimation of the interviewer effect. In practice, however, any reduction

in the sample size will have an impact on the sampling variance of other

estimates, in particular estimates of means.

Consider the Sampling Variance (SV) component of the Total Variance

(TV) associated with the sample mean, ȳs. Under a Simple Random Sam-

pling WithOut Replacement (SRSWOR) sampling scheme, the sampling
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variance will be

SV (ȳs) =
(

1 −
n

N

) S2

Y

n

where the population size is N , n is the sample size and S2

Y is the adjusted

population variance and therefore constant for a given population. Then

given a fixed total budget C and information regarding the fixed design pa-

rameters, c1, c2, c3, nint, nwk and the degree of intragroup interpenetration

as specified by
∑

i bi we can calculate the optimal degree of intergroup in-

terpenetration for estimating the interviewer effect. We can see from the

cost function (7) that dz determines n for a fixed C and so the degree of

interpenetration determines the sample size and hence also impacts on the

magnitude of the sampling variance.

We can then work out the variance inflation factors against what would

be achieved at the optimal level of interpenetration for both the variance

of the interviewer effect and the sampling variance of the mean. Figure 6

following compares the variance inflation factors for estimates of both the

sampling variance and the variance of the interviewer effect, compared with

the variance at the optimal degree of interpenetration for a binary response

variable simulated according to Model (5), as if it was collected via a survey

with a total cost of C = 10000 and design parameters nint = 100, nwk = 50,

c1 = 1, c2 = 4, c3 = 2, design matrices, full intragroup interpenetration as

specified by the form of
∑

i bi in (8), aZ = 88.8 and a large population size

of N = 1000000. For our total budget of C = 10000 the optimal degree of

intergroup interpenetration in this example is dZ = 0.411 and the maximum

degree of intergroup interpenetration affordable is dZ = 0.756.

We can see in Figure 6 that as the sample size, n, increases, the sam-

pling variance decreases. Consequently we get a lower sampling variance

component of the total survey error if we decrease the degree of intergroup

interpenetration for a fixed budget constraint. However, if we decrease the

degree of intergroup interpenetration past the optimal level, in this case

dZ = 0.411 then the reduction in sampling variance comes at the expense

of reduced accuracy of the interviewer effect estimate. We can also see the

vif for the variance of the interviewer effect and the sampling variance are

equal at a vif of 1 and a degree of intergroup interpenetration of dZ = 0.411.

This occurs because we have calculated the vifs with respect to the optimal

degree of interpenetration.

When the sample size in Figure 6 is maximized this corresponds to a

degree of interpenetration of dz = 0, as for a fixed budget we can only afford

to increase the degree of interpenetration by reducing the sample size. Thus

when n = 3283 we cannot afford any interpenetrated areas and we cannot
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Figure 6: vifs Against Optimal Degree of Interpenetration for Sampling Variance

and Variance of Interviewer Effect under SRSWOR for Total Cost 10000

produce an estimate of the interviewer effect. We can see in Figure 6 that

this will lead to the lowest possible sampling variance. On the other hand if

we reduced the sample size by a small margin, such as 270, we could afford

a degree of interpenetration of dz = 0.1, with an associated 9.2% increase

in the sampling variance. With dz = 0.1 the interviewer effect would be

estimable, though with a vif of 2.53, so for a minor increase in the sampling

variance we can greatly improve the reliability of estimates of the interviewer

effect. If we wanted to produce the same estimate of the interviewer effect

without altering the sampling variance (i.e. hold the sample size fixed) we

can apply Equation (14) to show this could also be achieved by increasing

the total budget by 9.6%

We can see in Figure 6 that as we use sample sizes less than that cor-

responding to the optimal degree of intergroup interpenetration, n = 1854,

and therefore with a higher degree of interpenetration, the variance inflation

factor for both the sampling variance and the variance of the interviewer ef-

fect increase, indicating these points are sub-optimal for minimizing either

the sampling variance or the variance of the interviewer effect estimate.

Consequently if we are interested in both the sampling variance and the

variance of the interviewer effect estimate, we would never design a survey

with a degree of intergroup interpenetration higher than the optimal degree

of interpenetration chosen for the sole purpose of estimating the interviewer

effect. On the other hand we can see that points to the right of the single-
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objective optimal degree of intergroup interpenetration lead to an increased

variance for the interviewer effect estimate, but a decreased sampling vari-

ance. This implies that a degree of intergroup interpenetration less than the

single-objective optimal may be preferred by the survey designer as it will

lead to a lower sampling variance, even though the interviewer effect esti-

mate will be less accurate than could have been achieved with the optimal

degree of intergroup interpenetration. From our example above we can see

that when faced with a fixed budget of C = 10000 we could achieve a 20%

reduction in the sampling variance by accepting a 9% increase in the vari-

ance of the interviewer effect estimate compared with the single-objective

optimal position, ie when dZ = 0.3 and n = 2323.

Multiple objective designs can also be prepared which aim to simultane-

ously minimize both the total variance of the mean (TV) and the variance

of the interviewer effect estimate. However vifs associated with the TV de-

pend on the relative magnitude of the sampling variance and the interviewer

effect as TV (ȳs) =
(

1 − n
N

) S2

Y

n
+ σ2

ε

n
+

σ2

int

nint
. Thus, although the sampling

variance and individual level measurement error reduce as the sample size

increases, the magnitude of the interviewer effect term in the total variance,
σ2

int

nint
, is fixed for a constant body of interviewers. Consequently, for a fixed

sample size, to reduce the contribution of the interviewer effect to the total

variance we would need to increase the number of interviewers, nint, col-

lecting data in the survey. For a fixed body of interviewers this suggests

that Figure 6 presents a conservative relationship as the vif plot for the

TV will be flatter than the vif plot for the SV. Hence it would generally

be expected that varying the degree of interpenetration, and therefore the

sample size, will have less of an effect on the TV. We must therefore make

assumptions regarding the relative magnitude of the interviewer effect to

the sampling and measurement variance to prepare optimal multiple ob-

jective designs which minimize both the total variance and the variance of

interviewer effect estimates.

In Figure 7 vifs are presented for the total variance against the sample

size when the interviewer effect is both a high and a low proportion of

the total variance. When the interviewer effect comprises the majority of

the total variance, then increasing the sample size, without altering the

number of interviewers conducting the survey, does not greatly affect the

total variance. In this case it is important that the interviewer effect is

estimated as it will be the major source of uncertainty in the survey. On

the other hand, if the interviewer effect is a relatively small component

of the total variance then the sampling variance dominates and increasing

the sample size has a strong impact on the total variance. It is therefore
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important that interviewer effect estimates are prepared so that appropriate

survey designs for minimizing the total variance in surveys can be made.

4 Discussion

Partial interpenetration combined with modern estimation techniques al-

lows us to estimate the interviewer effect even in surveys with low degrees

of interpenetration. In practice almost all surveys contain some degree of

interpenetration even if they have not been designed for the purpose of esti-

mating the interviewer effect and this opens up the possibility for widespread

application of these techniques.

Provided there is no selection bias determining the interviewer allocation,

the cost of estimating the interviewer effect under partial rather than full

interpenetration is one of accuracy. We have demonstrated how to produce

a valid estimate of the interviewer effect under partial interpenetration and

the variance inflation factors that can be associated with these designs.

Using these techniques it will generally be possible to produce an appropriate

estimate of the interviewer effect with only a minor change to current survey

designs and for a small increase in costs. Alternatively we can explicitly

evaluate the increase in budget needed to provide estimates of interview

variance.
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Further extensions to this work would be to consider more complex travel

cost functions and to explore the effect of practical considerations which will

also influence workload formulation decisions. We have demonstrated the

potential gain from utilizing partial interpenetration, but the actual gain will

depend on the structure of the survey to which it is applied. Fully exploring

the implications of a design for a non-linear response is still somewhat com-

putationally intensive, however the approximate relationships allow rapid

calculation of optimal design parameters. Multiple objective optimal de-

signs can be considered in more detail and the potential benefits of explic-

itly incorporating available spatial or longitudinal information remains to

be explored. Optimal partial intragroup interpenetration can also be con-

sidered which should lead to larger budget savings for a given sample size

with smaller gains in the vif of interviewer effect estimates, as compared

with the partial intergroup interpenetration considered here.
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