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Composing For Improvisation with Chaotic Oscillators

Mark Havryliv
Sonic Arts Research Network
University of Wollongong
Australia

mhavryliv@gmail.com

ABSTRACT

This paper describes a novel method for composing and
improvisation with real-time chaotic oscillators. Recently
discovered algebraically simple nonlinear third-order differ-
ential equations are solved and acoustical descriptors relat-
ing to their frequency spectrums are determined according
to the MPEG-T7 specification. A second nonlinearity is then
added to these equations: a real-time audio signal. Descrip-
tive properties of the complex behaviour of these equations
are then determined as a function of difference tones de-
rived from a Just Intonation scale and the amplitude of
the audio signal. By using only the real-time audio signal
from live performer/s as an input the causal relationship
between acoustic performance gestures and computer out-
put, including any visual or performer-instruction output,
is deterministic even if the chaotic behaviours are not.

Keywords

Chaos and Music, Chaotic Dynamics and Oscillators, Dif-
ferential Equations and Music, Mathematica, Audio De-
scriptors and MPEG-7

1. INTRODUCTION

Oscillators derived from the dynamics of chaotic systems
are an increasingly popular tool for novel audio synthesis.
This follows a trend toward a more vigorous engagement
with the properties of chaotic and complex systems that is
witnessed across all the creative arts. While chaotic sys-
tems have been an inspiration for composers since Xenakis
it has only recently become possible to digitally calculate
dynamic chaotic systems in real-time — without recourse to
custom hardware — and use the results of such calculations
to control audio synthesis at control and audio rates.

This paper presents a method for using chaotic oscillators
as a controlled compositional and improvisational compo-
nent; our chaotic oscillators are driven not only by the inter-
nal dynamics of their respective equations but the real-time
audio input from one or many performers. This takes ad-
vantage of the fact that a certain class of chaotic systems,
Sprott’s third-order ‘jerk’ functions [15], necessarily include
a nonlinear component in order to function as chaotic at-
tractors.
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Our experimental work indicates that an additional non-
linear external driving force at a low frequency does not
terminally disrupt the chaotic system’s trajectory and in-
deed can alter perceptually significant characteristics of an
oscillator’s behaviour. A subset of MPEG-7 audio descrip-
tors are used to categorise firstly a chaotic system’s natural
behaviours and then its response to external input. Low
frequency difference tones derived from a Just Intonation
scale are used as the external driving input.

This approach is motivated by the conceptual tidiness of
a performer’s audio driving a complex system with great po-
tential for generating rich behaviour over time that can be
displayed acoustically or visually, and used in myriad other
ways such as real-time score-generation or data-mining. Fur-
ther, the techniques described in §3 on audio descriptors,
like the spectral mean, spectral flatness and inharmonicity
are themselves useful data sources for use in other parts
of performance, like visualisation. And, as the mathemat-
ics of the systems described here are relatively simple, they
can be implemented in several popular real-time synthesis
environments.

1.1 Chaos and Aesthetics

The attractiveness of chaos is easy to see, literally. Chaotic
patterns and their multitudinous representations are the
standard visual trope for the expression of beauty and ele-
gance in mathematics. Artists and researchers are attracted
to the complex but recurring patterns and look to deploy
the patterns or the dynamics behind them to aesthetic ends.

Sprott himself, a doyen of chaotic analysis and whose
third-order differential equations are the focus of this paper,
recognised the creative potential in chaos and co-conducted
empirical studies into aesthetic preferences for different types
of chaotic patterns in 1996 [1]. This was limited to visual
representations. In the same year, Dabby published her
work on chaotic mappings as a method for musical varia-
tion of existing works by Bach, Chopin, Gershwin and oth-
ers [6]. Variations were generated by mapping a series of
pitches from the original work to the chaotic trajectory of
one of the three dynamic variables in Lorenz’s classic chaotic
equation set [11]:

&=o(y—)
gy=x(p—2)—y
z=uxy— Bz (1)

with the Lorenz parameters p = 28,0 = 10 and 8 = 8/3
which lead to the classic ‘butterfly’ image shown in Figure
1, constructed by plotting one dynamic variable against an-
other over time. The musicality and soundness of the results
were subjectively validated by musicians familiar with the
respective composers, however Dabby warns that consider-
able energy is required to intelligently manage mappings. In
a phrase that could be applied to any novel method of mu-
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Figure 1: Classic Lorenz attractor parametric plot
of z(t) against z(t); initial values z(0) = 0,y(0) =
1,z(0) = 1.05.

sic creation, she says: “[tJhough the method will not flatter
fools, it can lead explorers into landscapes where, amidst
the familiar, variation and mutation allow wild things to
grow.”

1.2 Chaos and Audio Synthesis
1.2.1 Granular and FM Synthesis

A 2005 review of works which broaden the scope of mu-
sical applications of chaotic patterns is presented by Bur-
raston and Edmonds [4]. This review focuses on chaotic
systems expressed as Cellular Automata (CA) and tracks
the evolution of musical applications based on the standard
visualisations of CA to the various granular synthesis algo-
rithms and complex filters which engage CA’s chaotic dy-
namics in much more thorough ways and avoid what Peter
Bowcott is quoted as referring to as merely “a representa-
tion of the visual output” [2]. However, they do note the
dominance of software in the MIDI domain and further ob-
serve that CA music made with MIDI software tends to
concentrate on pitch and duration mappings to the visual
representations.

An important article on the use of chaotic systems for
audio synthesis is Slater’s 1998 publication [14] in which he
uses analogue synthesisers, the 100 and 200 series Buchla
Oscillators, to generate chaotic synthesis by creating closed
loops between the inputs and outputs of a series of volt-
age controlled oscillators. More recently, Pinot has imple-
mented many of Slater’s ideas digitally using CSound [13];
Pinot’s crossfm family of opcodes demonstrate that per-
sonal computers and open-source software are capable of
calculating these closed-loop chaotic dynamics for synthe-
sis.

1.2.2  Differential Equations

Of more immediate relevance to our work, however, is
the 2003 paper in which Yadegari published a method for
generating control and audio signals from ordinary differ-
ential equations which exhibit chaotic behaviour; he also
developed an external object, the fexpr™ object for Pd,

Max/MSP and jMax, that facilitates the numerical solu-
tion of the equations in real-time [17]. In his paper, Yade-
gari demonstrates the abilities of the object by solving the
Duffing equation [9]:

i+ 6 + ax + Ba® = v cos(wt + @) (2)

which is a nonlinear second-order differential equation that
exhibits chaotic behaviour. This equation derives its nonlin-
earity from the cubed z® term and the constant-frequency
cosine driving force; without this driving force the system
quickly stabilises from an initial perturbation.

An interesting feature of this system from the perspec-
tive of the musician is its high sensitivity to changes in the
frequency of the driving cosine.

Duffing Equation

LML ML

(ISR

1k

(a) Duffing oscillator with w = 0.7 rad/sec.

Fourier Analysis, w = {0.35, 0.55, 0.75}

s freq (Hz)
0.8 1

(b) Fourier analysis of Duffing oscillator with
changing w, line = 0.35, dashed = 0.55 and dash-
dotted = 0.75.

Figure 2: Oscillation and spectrum of Duffing equa-
tion with § =0.3,a=—-1,4=1,v=0.5 and ¢ = 0.

From Figure 2 we see that changes over a very small
range of frequency values for the cosine function produce
quite large changes in the frequency spectrum of the re-
sulting Duffing oscillator; indeed, that is the point of chaos!
Small changes in initial conditions generate large differences
in trajectory over time. Obviously the dominant frequen-
cies in the spectrums shown here lie significantly below the
threshold for being perceived as a continuous tone, some
manipulation of solving step-size and multiples of the sam-
pling rate is required to raise these frequencies into the au-
dible spectrum.

Another pleasing thing to note is the relatively strong
peak for w = 0.75 rad/sec at approximately 0.25 Hz, and
the regular spacing of peaks for w = 0.55 rad/sec. This
suggests that simply using the series of z(¢) values may
with no manipulation lead to tonally useful oscillations, be-
lying the typical characterisation of chaotic oscillators as
merely coloured noise. The ‘tonality coefficient’ is one of
the MPEG-7 audio descriptors and we use it to measure
the tonal content of some chaotic equations more explicitly
in §3.



Through experimentation the upper limit for possible driv-
ing frequencies was found to be approximately 1.6 rad/sec;
frequencies above this were were unable to overcome the
system’s natural inertia. The upper limit can be raised,
though, by altering other initial variables. Also, this fre-
quency limit is only the case while the Duffing oscillation
period remains as shown in Figure 2(b), that is, well below
1 Hz. As the oscillator is sampled such that its dominant
frequencies enter, the audible spectrum the upper limit for
w will also increase.

2. AUDIOINPUT TO CHAOTIC EQUATIONS

2.1 Just Intonation

This relatively low limit brings to mind the naturally-
occurring difference tones, or beatings, associated with Just
Intonation music which occur between closely-spaced inter-
vals; the amplitude envelope of the resultant signal is domi-
nated by these low-frequency difference tones and seems an
excellent candidate for a real-time driving signal to replace
the constant cosine term in Eq. 2.

Managing and creating difference tones is a large part
of Just Intonation composition and improvisation, and in
strongly harmonic instruments like the marimba the poten-
tial for deliberate and perceivable difference tones is high
when scale intervals are well-chosen. The rate of beating
is determined by the difference in frequency between ad-
jacent scale degrees,! and at low frequencies is perceived
as a constant frequency amplitude envelope rather than an
additional tone.

Just Intonation scales are devised by combining intervals
that can be represented by whole-number frequency ratios
taken from the harmonic series that describe a distance from
an arbitrary fundamental tone [7]. The scale used in this pa-
per is a 12-note Meta Slendro scale based on Erv Wilsons’s
interpretations of Pascal’s Triangle, or Mt. Meru, to which
percussionist Kraig Grady? has tuned his marimba [8].

Table 1: Meta Slendro scale intervals, harmonic
ratios, an octave of frequencies and distance from
equal temperament scale.

Degree  Ratio  Freq. (Hz) Cents from ET
0 1/1 352 F +13.7
1 65/64 357.5 F +40.5
2 9/8 396 G +17.6
3 37/32 407 Gf -35
4 151/128 415.25 Gt -0.2
5 21/16 462 Af-155
6 43/32 473 Af +25.2
7 3/2 528 C +15.6
8 49/32 539 Ct -48.7
9 25/16 550 Ct-13.7
10 7/4 616 Df -17.5
11 57/32 627 Df +13.2

Listed in Table 1, the scale is seen to have six opportu-
nities for generating difference tones below 12 Hz between
adjacent scale degrees which is well below the threshold for
the perception of a continuous tone.

12 Hz is somewhat high for use with the Duffing equa-
tion, though we need not be limited by that. In 2000,

n instruments with strong harmonics separate beating
also occurs between harmonics other than the fundamen-
tal.

2A collaborator of the author’s.

Table 2: List of Sprott’s jerk equations used in this
paper.
System

{=(0),2(0),2(0)}

1: % =—-2017T¢ £ 4% —x {0,0,+1}
2: % =-0.5%—2—x+sgn(z) {0,1,0}
3:% =-06i+28:—2*—x {0,1,0}

Sprott published 22 third-order differential equations which
he classes as the simplest quadratic jerk® function that pro-
duces chaos; most of the equations have only three terms
[15].

These equations are attractive because of their algebraic
and computational simplicity; in the same paper, Sprott de-
signs simple analogue circuits based on the earlier Chua’s
circuit [5]. They are also simpler to solve computationally
because we only need to evaluate the derivative of one func-
tion rather than the three in the Lorenz attractor.

2.2 Sprott’s Jerk Functions

Of the 22 equations, we have selected a subset principally
on the aesthetics of their parametric plots, and then by look-
ing for interesting natural harmonic spectra. The following
parametric plots are created from the equations in Table
2. They were solved for t — 0,250 using the Mathemat-
ica numerical differential equation solver, NDSolve with a
maximum step size of 0.01.

As the equations are solved over time, we record the time-
series values for the respective derivatives. The parametric
plots are then drawn by plotting the time-series values of
either x(t), ©(t) or Z(t) against each other, and they demon-
strate that so simple a decision as which derivatives are
plotted against each other can lead to significantly different
results. As seen here, a general rule of thumb is that the
second derivative Z(t) plotted against z(t) produce figures
with sharper turns, particularly if the nonlinearity in the
system is coupled to the z term as it is in the second sys-
tem where the Figure 3(d) features what resembles a skewed
square shape centred about the origin.

It is outside the scope of this paper to head deeply into
the mathematical properties of these equations but I urge
the interested reader to Sprott’s excellent book [16] for more
information.

3. AUDIO DESCRIPTORS

Now we have the time-series values for x(t), z(¢) and Z(¢)
we can apply some form of acoustic analysis. The first obvi-
ous step is to perform Fourier transforms on the respective
time-series and observe their frequency content. Figure 4
shows the natural frequency spectrum for the time-series
z(t) over 0.25 seconds.

This figure in itself is quite useful; one clearly sees the
peaks at 84, 168 and 248 Hz and gets a sense of the signal-
to-noise ratio. We can go further, though, by employing
the audio descriptors now implemented in the MPEG-7
specification which, among other descriptors, calculate the
signal’s spectral centroid, spectral spread, spectral flatness
and tonality, fundamental frequency (fo) and inharmonicity
[10]. The following is a brief summary of these descriptors,
and their implementations in Mathematica are available for
free download on the author’s website. Mathematica code
was developed to take advantage of its powerful numerical

3Jerk is the 3rd time derivative of position z, after velocity
1, and acceleration .
‘http://www.uow.edu.au/~mh675/mathematica
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Figure 3: Sprott’s equations from Table 2 plotted
parametrically.

differential equation solvers, statistical analysis and graph-
ing abilities.

The following descriptions are taken from Peeters [12]
and reverse-engineered code from the Matlab implemen-
tation®. TFor real-time use, Bullock [3] has released libx-
tract, a library for real-time audio feature extraction in Pd,
Max/MSP and SuperCollider 3.

3.1 Spectral Descriptors

This subsection mathematically describes some of the
simpler descriptors, and provides real values for these and
a few other descriptors the author has found useful for the
frequency distribution in Figure 4.

3.1.1 Spectral Centroid

The spectral centroid p is the centre of mass of the spec-
trum, where the continuous sum of frequency components
multiplied by their amplitudes is divided by the sum of all

® Available at http://mpeg7.doc.gold.ac.uk/.

Fourier[x(t - 0, 0.25)]

amp

L L L i freq (Hz)
100. 200. 300. 400. 500. 600.

Figure 4: Spectrum for z(¢) of system 1.

amplitudes.Combined with the spectral spread, this value
is a useful shorthand for spectral concentration.

p=[ o p@)o (3)
with

x = freq(x)
p(z) amp(z)

S (o)

The spectral centroid for Figure 4 is 159 Hz.

3.1.2  Spectral Spread

The spectral spread is calculated as the variance of the
distribution around the centroid.

0% = / (& — 1)? - p(a) 6a )

The spectral spread for Figure 4 is 98 Hz, or 0.618 of the
centroid.

3.1.3 Spectral Flatness/Tonality Coefficient

The spectral flatness is a measure of the noisiness of a
signal and is also used to determine a ‘tonality co-efficient’.
For tonal signals, the spectral flatness is close to 0 and for
noisy signals it is close to 1, while the opposite is true of
the tonality coefficient. The spectral flatness is given by:

N 1/N
(L)

3 amp(n)

and the tonality coefficient is given by:

10 log,o(SFM) |
—60 ’

1
SFM—N

; (6)

tonality = min ( (7)
The spectral flatness for Figure 4 is 0.1221 and the tonality
coefficient is 0.1522; note that the log function in the con-
version from SFM to tonality means the measure of tonality
drops rapidly with even a small value for the signal’s noisi-
ness.

3.1.4 Fundamental Frequency

The fundamental frequency is defined as the frequency
whose integer multiple best explains the content of the sig-
nal spectrum. This means in some cases a ‘missing funda-
mental’ is computed because it explains existing harmonic
peaks better than the lowest peak. Such is the case with



the calculation of fy for the above spectrum, for which the
function returns 42.49 Hz.

Since it is difficult to assume a ‘sensible’ harmonic content
for a chaotic system this value is usually not particularly
useful on its own, however, it is useful in determining the
next feature: inharmonicity.

3.1.5 Inharmonicity

Inharmonicity describes the divergence of spectral peaks
from a signal that would be constituted of only exact mul-
tiplies of fy. It is determined by comparing and summing
the spectral distance between would-be harmonic peaks and
actual spectral peaks multiplied by the energy content of
that spectral peak, then dividing by the total energy of
the spectral peaks. An inharmonicity value of 0 indicates
a purely harmonic signal and a value of 1, an inharmonic
signal. Once the fundamental frequency is determined, in-
harmonicity is calculated as:

) D 1f(h) = hx fol % a*(h)

inharmonicity = — (8)

Jo > a(h)
h

where f(h) and a(h) are the frequency and amplitude of
the spectral peaks. This algorithm gives an inharmonicity
value for our signal of 0.046, which is very harmonic and
observable from the spacing of the spectral peaks in Figure
4.

4. AUDIO INPUT — RESULTS

The following graphs show the influence of the beating
tones generated by intervals in Table 1 on a time-series
signal for z(t) generated from the first chaotic system in
Table 2 as analysed by the audio descriptor methods just
discussed.

Centroids Eq. 1 Spreads Eq. |
freq (Hz) fireq (H2)

1574
1572

1570 —

1568 85
1566

1564

o 75
1562 interval 7

e e

(a) (b)

Fundamental Frequencies Eq. 1
freq (H)

50 —_—

Inharmonicities Eq. 1

Figure 5: Graphs of audio descriptor outputs for
chaotic system 1 with driving inputs.

In each case a simple model of a marimba tone:

sig(t) = 0.3sin(2m * ft) + 0.2sin(27 * 2ft) 9)

was summed with an adjacent frequency for the intervals in
the scale where the difference tone was less than 12 Hz.
Centroids Eq. 3 Spreads Eq. 3

freq (1) freq (H2)
.

-~

Fundamental Frequencies Eq. 3
SPM tieq (1)

Inharmonicities Eq. 3

Figure 6: Audio descriptor outputs for chaotic sys-
tem 3 with each of the three dynamic variables,
z(t),2(t) and Z(t).

5. CONCLUSION

The response of the chaotic oscillator for system 1 (Figure
5) is shown to change in response to different audio inputs
and these changes are within the bounds of perceptual sig-
nificance, particularly spectral flatness and inharmonicity.
An interesting result comes from the observation that the
difference tones for the final three intervals are equal; some
descriptors are clearly more sensitive to the low frequency
beatings than they are to the actual frequency of the tones.

Figure 7 demonstrates the sensitivity of the spectral flat-
ness measure to the amplitude of the driving signal. Mean-
while, the plots in Figure 6 which display the response of
z(t) and its two derivatives indicate that although most
descriptors are different there are difference tones that pro-
duce very similar results; from a compositional perspective
these moments would be useful as pivot points.
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