
University of Wollongong University of Wollongong

Research Online Research Online

Faculty of Creative Arts - Papers (Archive) Faculty of Arts, Social Sciences & Humanities

1-1-2007

Instrumental relations: software as art, art as software Instrumental relations: software as art, art as software

Brogan S. Bunt
University of Wollongong, brogan@uow.edu.au

Follow this and additional works at: https://ro.uow.edu.au/creartspapers

 Part of the Arts and Humanities Commons, and the Social and Behavioral Sciences Commons

Recommended Citation Recommended Citation
Bunt, Brogan S.: Instrumental relations: software as art, art as software 2007, 78-87.
https://ro.uow.edu.au/creartspapers/233

Research Online is the open access institutional repository for the University of Wollongong. For further information
contact the UOW Library: research-pubs@uow.edu.au

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Research Online

https://core.ac.uk/display/36992975?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://ro.uow.edu.au/
https://ro.uow.edu.au/creartspapers
https://ro.uow.edu.au/assh
https://ro.uow.edu.au/creartspapers?utm_source=ro.uow.edu.au%2Fcreartspapers%2F233&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/438?utm_source=ro.uow.edu.au%2Fcreartspapers%2F233&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/316?utm_source=ro.uow.edu.au%2Fcreartspapers%2F233&utm_medium=PDF&utm_campaign=PDFCoverPages

Instrumental Relations: Software as Art, Art as Software
 Brogan Bunt

University of Wollongong
Wollongong, Australia

brogan@uow.edu.au

ABSTRACT
Software art is characterised by a close concern with the culture of
software and the medium of programming. This inevitably
demands an engagement with the terrain of the instrumental;
software is a sphere of tool-making and programming is governed
by conceptions of functional (and generic) utility. Yet where does
this leave art? If, in Kantian terms, art is defined by its
uselessness (by its lack of any externally grounded necessity) and
if, in classical critical theoretical terms, this alienation from
function opens up a space of critique, then how can art explore
and participate within the instrumental without abandoning its
fragile critical autonomy? This paper addresses this question,
drawing upon Heidegger’s conception of technology and Plato’s
conception of poesis to argue that critical software art can not
simply oppose the instrumental character of software; instead it
must acknowledge its own complicity in the operations of hiding
and unreflective functioning that characterize the instrumental
once the latter is re-conceived apart from the simplicity of human
agency and humanly determinable ends. I examine one of my own
software projects as a means of clarifying the dilemmas of critical
aesthetic purchase that emerge as a result of this engagement with
the instrumental dimension of software.

Keywords
Software art, aesthetics, instrumental, engines, tools

1. INTRODUCTION
Contemporary software art achieved its first notable recognition in
2001 when a prize for ‘artistic software’ was awarded at the
Berlin Transmediale media arts festival. Subsequent key events
included the 2002 Read_Me 1.2 Software Art/Software Art
Games festival (Moscow) and the Whitney Museum’s 2002
CODEeDOC exhibition (New York). The jury for the
Transmediale festival define software art in terms of its difference
from new media. Software art, they argue, shifts the focus from
the visible surface of digital art to the constitutive space of code.
Unlike traditional media, code, in their view, is not a passive
intermediary; it does something, it is executable, it performs
actions [23]. Programming represents a new condition of writing,
in which the terrain of written abstraction obtains powers of
curious literal agency. On this basis, the jury rejects the
conventional notion of software as a tool. They argue that “digital
code is virulent” [23], that it can only appear as a tool by
disguising its actual operations. Software art has the potential -
and crucial aesthetic responsibility - to expose the machinations of
code, to make code visible. It represents an effort to reassert
human, critical aesthetic agency and to counter the motions of
hiding and disguise that are characteristic of code processes. In
this manner, it imagines a direct opposition between software art
and instrumental software – projecting an aesthetic alternative of
manifest and critically reflective code.

My aim in this paper is question the viability of this approach, to
suggest that the issues are more complex and uncertain. This
issue takes shape for me in relation to the uncertainty of one of
my own works. I describe it as a software art work, but with
some hesitation. The work lacks an adequate aesthetic
manifestation – either as code or as visible interface. It is a set of
tools and an engine. It is concerned with the representation of
time and the pragmatics of enabling a temporal display. The title
of the work is Cropper/Propper/Gridder. If the work is of any
interest, it is because it pursues a poetic idea through instrumental
means - or better, it struggles to discover a potential for poetry in
the aesthetic estrangement of software. While software art
conventionally resists the instrumental character of software -
struggling to make software aesthetically, reflectively appear -
Cropper/Propper/Gridder deliberately engages with the aesthetic
blindness of instrumental functioning.

This paper begins by addressing the general issue of the relation
between the aesthetic and the instrumental – considering how the
self-definition of critical software art adheres to a very
conventional aesthetic scheme and how, in contrast, Heidegger’s
notion of technology [13] and Plato’s notion of poesis [20]
suggest an alternative relation that is characterized by dimensions
of affinity, resemblance and undecidable difference. I then
discuss Cropper/Propper/Gridder as a specific instance of the
risking of the aesthetic within the terrain of non-identity and
displacement that the instrumental represents.

2. RETHINKING THE INSTRUMENTAL
Within the tradition of critical theory, the notion of the
instrumental is associated with a specifically modern mode of
rationality that is oriented towards the purposive accomplishment
of tasks, in the process deliberately bracketing questions of human
value. Instrumental rationality addresses issues of efficiency and
running, ignoring wider ethical, political and cultural concerns.
The sociologist Max Weber argues that this mode of reason takes
characteristic form in the mechanisms of modern bureaucratic
administration and industrial capitalism [25]. This broadly social
conception of the instrumental is predicated on a more
fundamental notion of the nature of an instrument. An instrument
is a device that moves but lacks free being. It produces results but
without any awareness of cause or result. It functions
unreflectively. It proceeds blindly. In this sense, despite its status
as a technical contrivance, an instrument - in its motion, in its
running - comes to resemble the deterministic processes of nature.
At the very outset of his discussion of art in his 1790 Critique of
Judgement, Kant explains that “Art is distinguished from nature
as making (facere) is from acting or operating in general (agere);
and the product of the result of the former is distinguished from
the latter as work (opus) from operation (effectus)” ([16] p.523).
In the same manner, an instrument can be regarded as performing
operations which produce effects rather than performing actions

which shape (aesthetic) works. This indicates the obvious
dilemmas that confront any attempt to chart an association
between the instrumental and the aesthetic. Conceived as
intermediary, mechanical and unreflective, the instrumental
appears directly opposed to the finality, freedom and reflective
nature of art.

2.1 Art and Engineering
In 1920 the Russian Constructivist artist, Vladimir Tatlin,
produced a proposal for the Monument to the Third International.
He envisaged a 400 metre high steel and glass tower that
incorporated a dynamic spiral structure and rotating internal
rooms. It was utopian art adopting the guise of an architectural
plan and was criticized for its impracticality by revolutionary
artists and politicians alike. Another Constructivist artist, Gabo,
cautioned Tatlin to “either create functional houses and bridges or
create pure art, not both” [26]. The work was condemned for
confusing two distinct languages and modes of making: art and
engineering. Furthermore it transgressed the conventional
boundaries between the aesthetic end-in-itself and the sphere of
useful things. These flaws are also the basis for its lasting
significance as an icon of avant-garde art. The monument posed
the essential problem concerning art’s relation to modern forms of
making and, more generally, art’s relation to industrial modernity.

Two broad historical strategies emerge in relation to this
challenge. On the one side there is the model supplied by Dada of
incorporating technology and technological forms of making as a
means of waging a multi-pronged assault on autonomous art,
bourgeois humanism and instrumental rationality. This approach
takes archetypal form in Marcel Duchamp’s Large Glass – The
Bride Stripped Bare by Her Bachelors, Even (1915-23), which
provides an ironic take on our pleasant fictions of love, free will
and organic, human difference by representing human courtship
and erotic coupling in mechanical terms. In a parodic reference to
the history of industrial machinery, the processes proceed
upwards from steam, to internal combustion engine to electricity.
This is not, of course, a working machine. It is a playful,
subversive, metaphorical apparatus. It functions as a piece of
critical commentary rather than as a literal instrumental device. A
crucial distance then is maintained between art and engineering so
that art, however fractured, however affected by industrial
modernity, can shape a properly aesthetic space of critique.

The other strategy, evident especially in Constructivism and the
Bauhaus, strives towards a unity of art and industry. It projects an
integration of the aesthetic (as mode of formal appearance) and
the instrumental (as sphere of functional, mass-produced
products). Art abandons its reflective autonomy to enter into the
texture of practical things. While crucial as a critique both of art
and alienated labour [5] ([14] p.12), this strategy runs the risk of
providing an aesthetic sheen for forces that actually undermine the
potential of art to suggest alternative social and imaginative
possibilities. Furthermore, this effort to draw a close association
between the aesthetic and the instrumental is much easier to
manage with simple, everyday things – coffee cups, tables, light
fittings, etc. - in which form and function share a common
immanent material being. Software programming is harder to
conceive in these terms because it institutes a separation between
the domain of instrumental instructions and the visible interface.
The former indicates a space of symbolic abstraction and
functioning that is hidden from view - that is not instantly
coextensive with the terrain of user interaction. Although authors

such as Donald Knuth [18] portray programming as a practical art
which can be regarded aesthetically in terms of values such as
economy and elegance, this has the unfortunate consequence of
making the aesthetics of code only accessible to programmers and
represents a return, as Cramer argues, to a very traditional neo-
classical aesthetic space ([7] p.10).

In short, neither critical nor integrative strategies genuinely
engage with the instrumental in its non-aesthetic distance. Critical
avant-garde art resists literal instrumental functioning while
modernist design works to aestheticize the functional. Neither
provides an adequate means of conceiving the field of software
programming, which refuses to adopt a conventional aesthetic
form, which is directed elsewhere, which shapes instructions
rather than an easily critical or conciliatory work. If there is
anything unique about the situation of software art it lies precisely
in this search for an aesthetic rationale without the possibility of
any recourse to the non-instrumental or the consolation of
immanent form.

2.2 A Problematic Definition
The jury for the 2002 Moscow Read_Me 1.2 festival offer an
influential definition of software art:

“We consider software art to be art whose material is
algorithmic instruction code and/or which addresses
cultural concepts of software.” [22]

Although intended to be inclusive, this definition works to
obscure the key issue of the relation to the instrumental. Instead it
focuses on distinguishing two strands of software art practice -
formally oriented code-based experimentation and culturally
oriented software critique. The formalist option is expressed in
terms that recall the language of high modernism; the focus is
upon defining the material essence of the software medium, which
here takes the form of “algorithmic instruction code” [22]. In this
manner, a complex cultural assemblage – a language and a field of
discourse – is reduced to the status of a simple material, like paint
or clay. This reduction of code to the simplicity of an
aesthetically malleable material is what enables formalist software
art to be represented as a purely conceptual meditation on aspects
of system without any integral concern with dimensions of
culture. However, a close engagement with the medium of code
can have other implications. It can have a cultural dimension. It
can represent an engagement with a specifically culturally
determined discursive space. More particularly, it can represent
an interrogation of the instrumental language and strategies of
conventional software. But unfortunately, by positioning code as
a base aesthetic matter, formalism loses sight of this possibility. It
is left to the other side of the definition to engage with software as
a cultural phenomenon.

But correspondingly, although the culturalist option “addresses
cultural concepts of software” [22] it seems to lack a specific
point of discursive purchase. How is the nature of this mode of
address to be described? Is this critique spoken in the language of
code as actual functioning software or is it expressed in other
terms? There is a need to explain how critical software art relates
to the layer of instrumental, non-reflective language that provides
the basis for its operations. There is a need to think through the
engagement with the material language of code. In this sense, the
cultural critique of software cannot be conceived apart from the
apparently formalist option. The distinction between formalist
and cultural tendencies obscures this vital issue.

If this bifurcated notion of software art is ultimately disabling,
working to impoverish both formal experimentation and cultural
critique, it is because it misconceives the field in terms of a
tension between contrasting aesthetic tendencies rather than in
terms of a more constitutive tension between art and the
instrumental dimension of software.

2.3 Software Becoming Art
The notion of software art appears at one level as a transgression
of ordinary aesthetic proprieties. In a traditional avant-garde
spirit, it seems to unsettle the complacent autonomy of art,
insisting that art engage with a space of non-art - a realm of
engineering and technical implementation. Yet at another level it
proceeds in an opposite fashion. Rather than genuinely risking a
relation to the alterity of another cultural and discursive space, it
conceives software in terms of art. It dialectically subsumes those
aspects of software that are aesthetically useful and digestible,
while discarding everything else. This is evident in as much as the
specific characteristics of software art correspond to a very
conventional aesthetic scheme. It is worth briefly outlining the
contours of this scheme in terms of Kant’s classical model of
aesthetics and fine art.

According to Kant (1980), aesthetics denotes a realm of non-
instrumental engagement with things. It is a sensuously enabled
mode of reflective judgement that rises above the dimension of
sense to enter into dialogue with the apriori space of conceptual
understanding [9] ([16] p.484). The experience of beauty, for
instance, relates to the recognition of order in the symmetrical
forms of nature – mineral and organic forms that are not
themselves conceptual but that nonetheless reveal a systematic,
formal logic (pattern, unity and harmony); an order that is
apprehended through the senses but that instantly summons an
awareness of the universal and the metaphysical ([16] p.493).
Fine art, as a specific experience of the beautiful, manifests a
purposiveness without purpose, a disinterested, non-utilitarian
demonstration of the felt rightness of the conceptual ([16] pp.524-
525). It strips real objects of their ordinary reality, their
contextual significance as objects that are practically desired,
manipulated and used. Art objects suspend the dimension of
conventional instrumental utility in order to attain a higher
conceptual utility as signs of an ultimate reconciliation of human
faculties. Their lack of instrumental utility takes the form of an
organic finality, a dimension of formal coherence without goal.
The production of art depends upon genius; an “innate mental
aptitude (ingenium) through which nature gives the rule to art”
([16] p.525). Unlike instrumental craft, which is the product of
practical, formulaic labour, fine art is conceived as a generative
expression of the soul as a protean ‘second nature’ ([16] p.528).
Kant’s aesthetic scheme is representative of an Enlightenment
conception of art as non-instrumental, final, reflective and the
product of genius.

Now, without trying to suggest that contemporary conceptions of
software art are strictly-speaking Kantian, there are curious
affinities linked to how issues of instrumental function, reflection
and artistic subjectivity are conceived.

2.3.1 Function
We have seen that software art characteristically resists the notion
of software as a tool. There is a strong preference for work that
undermines utility and suspends ordinary functioning. Adrien
Ward’s Signwave Auto-Illustrator (2001) provides an iconic

example, although it is a work that represents, in my view, an
ambivalent relation to the instrumental. In its adherence to the
interface conventions of commercial creative software, Auto-
Illustrator at once deconstructs and delights in the notion of
software as tool. While the deconstructive orientation is
emphasized, the manner in which the work draws inspiration from
the conventional language of tool-based software escapes explicit
attention.

Software art’s suspicion of tools connects to the classical aesthetic
bracketing of the instrumental, although clearly the aim is less to
determine a pure space of disinterested perception than to
critically respond to the dominant models of commercial
application software. Yet it seems to me that the rejection of the
notion of the tool – as well as the rejection of the tool’s effort to
disguise itself – creates fundamental problems for software art.
Even if a piece of software is not ostensibly a tool, it must speak
the language of tools. It is devised as a system, an apparatus. It
functions. As languages and discursive forms, programming
languages bear the necessary imprint of the industrial forces that
have shaped them. The concept of a tool is implicit within
programming structure – in the notion of an algorithm that
processes data, an object that performs a specific (encapsulated)
task and a procedure that runs more or less efficiently. In
bracketing all of this, in trying to think algorithm and procedure
beyond the instrumental space of tools and tool functioning,
software abandons a crucial point of aesthetic purchase. The goal
in my view is not to resist the notion of the tool, but to engage
with issues of abstraction, disguise and efficiency, to somehow
risk and re-imagine the aesthetic in an alien terrain.

There are already models from within software – works that may
not be primarily aesthetically constituted but that have aesthetic,
poetic implications, revealing the potential for an instrumental
imaginary. Just to briefly mention three: Ivan Sutherland’s 1962
Sketchpad, which was not only the first graphic drawing program
but which, more particularly, as Allen Kay argues [17], re-invents
drawing in terms of the conceptual structures of object-oriented
programming; Richard Stallman’s Emacs (1975) which is a
bizarre jalopy-style software, defiantly resisting task
specialisation and ordinary boundaries between work and play;
and finally even the modern integrated development environment,
Eclipse (2004), which is utterly generically conceived – which can
be radically reconfigured to accomplish different programming
tasks and which appears as a kind of meta-tool, a tool for creating
tools. In my view these software tools are as much a source of
inspiration as is work that is specifically (safely, neatly, clearly)
positioned as software art.

2.3.2 Reflection
The primary motivation of software art is to encourage reflection
upon underlying programmatic software processes. This notion of
reflection is hardly the affirmative, grandly reconciling reflection
of Kantian aesthetics – it is often, for instance, critical and
deconstructive, but it nonetheless privileges code that does more
than simply operate - that somehow finds the means to reflect
upon its own operations. Without wishing to altogether question
this orientation towards reflection, the issue, as I have suggested,
is more complex. Programming entails relations that extend
beyond the fantasy of visibility and self-collected reflection.

This is evident at the very outset of modern computer science in
Alan Turing’s model of computation [24] [10]. If Turing chooses
to compute, it is because computation is mechanical, it proceeds

stupidly step by step. Computer programs may represent brilliant
efforts of reflective analysis, abstraction and design, but program
operations at the atomic level of specific digital events are utterly
simple and unambiguous. Reflection constitutes a problem for
underlying digital processes, a quandary that suspends their
functioning. It is worth examining the play of reflection and
machine unconsciousness in Turing’s famous halting problem.
Turing reflects upon the mechanism of computation, upon its
procedural logic. He sets computation a reflective trap. The
universal machine is programmed to halt if it is stuck and proceed
if it is not. Then, in a crucial reflective step, Turing makes the
computer process its own code. Now, it seems, it must halt if it
proceeds and proceed if it halts. Unable to decide whether to
proceed or to halt, the mechanism comes undone precisely
through a motion of reflection.

The jury for the Transmediale.01 festival suggests that the
fascination of computer programming depends precisely upon
code’s capacity to function, the passage it makes from a reflective
conceptual state to one of actual machine processing:

“Perhaps the most fascinating aspect of computing is that
code – whether displayed as text or as binary numbers –
can be machine executable, that an innocuous piece of
writing may upset, reprogram, crash the system.” [23]

Turing’s example suggests that this necessitates a relation of
reflection to something other than reflection – to a space of blind
motion that functions only on condition that it does not reflect.
Programming demands a close engagement with this other space.
It opens up a vital relation to the blindness of machine
processing. The aesthetics of code is as much about the unseen,
the hidden and the disguised as it is about the reflective and the
visible. In this context, strategies of abstraction and
encapsulation are also relevant – indeed as are all of the strategies
that structure programming as a work of inscribing layers and
guises above an unreflective foundation.

Abstraction is not only the positive representation of something
in a symbolic form; it is also indicates a motion of leaving
behind. That which is abstracted no longer itself appears. It is
replaced by the abstraction. While this work certainly has a
reflective aspect, its consequences are to make reflection itself
more difficult. The many layers of computational process work
precisely to make lower layers disappear. The principle of
encapsulation denotes a particular form of this disappearance in
which specific internal features of an object are deliberately
hidden from view in order to protect them from unwarranted
interference and to enable the simplicity of a general public
interface. Encapsulation works both to protect the integrity of
individual objects and to enable them to be treated as simple
building blocks in more complex structures. A work of hiding
then is implicit within the linguistic structure of contemporary
programming. Object-oriented programming involves
choreographing a play of hiding and manifestation. So while
software art expresses a fascination with the executable character
of code, it withdraws from the thinking of this space to the extent
that it insists upon a purely reflective conception of software art.

In an attempt to realize this reflective conception of software art
the 2002 CODeDOC exhibition adopted the strategy of literally
displaying code. The first thing the user encountered was the
code and only then obtained a link to what would ordinarily be
described as the visible work. While appropriate within the

context of drawing attention to the normally neglected space of
programming, this can hardly serve as a general strategy. For a
start, code is simply not meaningful to non-programmers. Visible
code asserts that code is significant, but beyond that it serves as
little more than a connotative surface – indeed it can quickly work
to mystify software art, to suggest some realm of arcane, abstract
power that bears little relation to actual, practically-directed
programming. Even programmers have difficulty simply reading
code. Even the person who actually wrote the code can have
trouble making sense of it (especially after a few days or weeks
away from it). Code is most legible as it is being written,
especially in the alternation between writing and execution. It
resists entirely contemplative visibility (the traditional form of the
aesthetic). Code is engrossing within the overall event space of
writing, performance and debugging. In this sense, the notion of
software art can be interpreted as the artist-programmer’s fantasy
that coding may somehow take literal, exhibitable shape for an
audience. But this is not really possible. Programming is
essentially participatory rather than something to be seen (an
aesthetic spectacle). In order to become visible it has to persist
with abstraction. It has to hide and shape disguises. It has to
render the dimension of code metaphorically apparent. Cramer
and Gabriel acknowledge this point when describing the Web
Stalker (IOD, 1997) alternative browser:

“The code of the Web Stalker may dismantle the code of
the Web, but does so by formatting it into just another
display, a display which just pretends to “be” the code
itself.” ([6] p.2)

In this sense, the notion of rendering code visible entails
something other than a puritanical resistance to code’s processes
of disguise and layering. Revelation is itself a staging, a
manifestation, a motion away from origin.

2.3.3 Expression
Software art associates the aesthetic character of code with a
dimension of personal inflection. Florian Cramer and Ulrike
Gabriel argue that:

“[C]oding is a highly personal activity. Code can be
diaries, poetic, obscure, ironic or disruptive, defunct or
impossible, it can simulate and disguise, it has rhetoric and
style, it can be an attitude.” ([6] p.3)

This is hardly the concept of aesthetic genius (which is actually
much more ambiguous, which actually deeply problematizes
issues of agency) but it places a similar emphasis on the
expressive potential of code. Code that is impersonal and
formulaic appears less aesthetic. In my view, however, code is
inevitably formulaic. There are all kinds of standard idioms,
patterns and stylistic conventions. It is less by resisting these and
affirming some notion of personal, differentiated expression that
code becomes aesthetic, but by pursuing the formulaic closely and
intimately. Rather than asserting subjectivity, it is a matter of
finding it elsewhere, of re-inscribing it at a distance. Code is only
personally inflected within the texture and through the agency of
impersonal formula.

There is a vital need then to consider the instrumental character of
software beyond the conventional framework of Enlightenment
aesthetics. As Derrida argues the tool is never a mere subservient
vessel but always appears as a force that intimately affects and
undermines the notion of human agency. Writing appears as an
aid to human memory but actually destabilizes human memory

and renders it in other, alien terms [8]. Re-conceiving the
instrumental character of the software tool depends upon
considering the nature of a tool more closely, rather than turning
away with a sense of traditional aesthetic disdain.

2.4 Heidegger – Technological Revealing
In his famous 1953 article, “On the Question Concerning
Technology”, Heidegger begins by suggesting that “the essence of
technology is nothing technological” ([13] p.287). He is
determined to reinterpret technology, to discover within it another
meaning. Heidegger questions the common sense view of
technology as a neutral means to an end and as an expression of
human agency. He describes this view as “the instrumental and
anthropological definition of technology” ([13] p.288). This
would seem to represent a similar rejection of human instrumental
agency that we find within software art, yet the notion of the
instrumental makes a strange return as the argument proceeds – a
return in which the notion of a subservient means is thought apart
from the necessity of original agency or determined end.

Re-examining the nature of technological making as traditionally
conceived (in the Aristotelian conception of techne [2]),
Heidegger finds that it involves a motion of “bringing-forth” that
is aligned with poesis ([13] p.293). It also summons a more
complex sense of causality which eludes the modern sense of
means end rationality and engages with processes of revealing -
the manifestation of truth ([13] p.294). A classic instance is
evident, perhaps, in Michelangelo’s conception of uncovering
figures in marble; he less makes the figure (ex nihilo) than
releases and reveals the inherent potential of the figure from
within the marble. In this sense the artist lacks absolute agency,
appearing instead as a mechanism for an overall process of
revealing (he is caught up in the mystery of Being).

Heidegger argues that while this model appears applicable to
traditional handicraft, modern technology radically changes
things. Rather than adapting to implicit nature – tending it and
gently bringing it forth, modern technology exploits materials; it
extracts from them and transforms them. Materials become bare
functional resources that are never revealed as such but that are
instead stored up, ordered and operationalised ([13] p.298).
Traditional processes permit the object its distinct appearance,
autonomy and finality, whereas modern modes of technological
manufacturing enable no space of rest or of contemplative
existence:

“Unlocking, transforming, storing, distributing, and
switching about are ways of revealing. But the revealing
never simply comes to an end.” ([13] p.298)

This operational system affects not only natural materials and the
technological devices but also the human beings that “run” them.
All elements become regulated components within an overall
mechanical constellation; none of them can ever be revealed in
themselves – instead they constantly point elsewhere and only
gain meaning in their systematic (differential) functioning.

Surprisingly, rather than altogether rejecting this prospect of
systemic displacement and human alienation, Heidegger discovers
within it a sense of strange hope. This hope is linked precisely to
the instrumental character of modern technology; specifically to
the ambiguous relation it opens up between revealing and hiding.
Rather than directly, un-problematically, displaying Being in a
natural and organic fashion (as evident in the model of traditional
handicraft), modern technology shapes a blindness, a layering, a

system of guises. For Heidegger this has the potential to provide
access to a deeper layer of revealing – the truth, precisely, that
truth can never appears as such, that it is inevitably in disguise -
dissembling and adopting the form of copy, metaphor and sign.
Heidegger argues that humanity “keeps watch the unconcealment
– and with it, from the first, the concealment – of all coming to
being on this earth” ([13] p.313). If “the essence of technology is
nothing technological”, it is because it is actually about the
ultimate mystery of being and revealing:

“The question concerning technology is the question
concerning the constellation in which revealing and
concealing, in which the coming to presence of truth
comes to pass.” ([13] p.315)

If this alternative thinking of technology appears dangerous it is
because it risks becoming lost in the tissue of concealment – truth
is no longer co-extensive with direct, lucid appearance. It passes
away from itself and beyond the control of self-collected, critical,
human consciousness. The anthropocentric dream of human
control and mastery is abandoned in order to conceive technology
in radical instrumental terms as an opening and a displacement.
Hence, for Heidegger, the importance of art as both a species of
techne and as a means of maintaining a human, reflective element:

“[E]ssential reflection on technology and decisive
confrontation with it must happen in a realm that is, on the
one hand, akin to the essence of technology and, on the
other, fundamentally different from it.” ([13] p.317)

However, art can only perform this task of maintaining reflection
within the space of semblance and loss if it takes technology
seriously, if it “does not shut its eyes to the constellation of truth
concerning which we are questioning” ([13] p.317). The catch,
however, is that this also necessitates a questioning of the nature
of art as critique:

“Yet the more questioningly we ponder the essence of
technology, the more mysterious the essence of art
becomes.” ([13] p.317)

This mystery takes shape precisely as the risking of critique – art
itself appears as a passage away from truth as simple revealing.
This is not a consequence of its inevitable opposition to
technology (the conventional romantic aesthetic attitude that
contrasts irrational, sensible-material art to the rational abstraction
of technology), but instead arises from a fundamental engagement
with the problem of technology. The mystery of art lies in its
participation within the problematic of the instrumental.

Heidegger’s conception of technology has clear relevance to the
nature of software which is characterized by an enframed writing,
a motion of functioning without human agency and by endless
processes of structural hiding (abstraction and encapsulation). Art
cannot resist these processes by simply projecting a naïve
opposite. There is instead a need to insert itself within software,
to partake of its processes, to follow its complex system of
layering and dissembling.

2.5 Plato – Inspiration and Mimesis
Heidegger’s perspective emerges as a creative response to a
specifically modern concern, yet there are also ancient models for
this view. It is easy to imagine an ancient unity of techne and
poesis that is split apart within modernity, yet this sense of
division is also apparent within the ancient world. Plato, for
instance, writing around the same time as Aristotle, is adamant

that techne and poesis are fundamentally opposed [21]. Whereas
Aristotle, in his On the Art of Poetry [3], positions (dramatic)
poeisis as a domain of conceptually-guided skill, Plato, in his
dialogue Ion, casts poesis as form of sympathetic magic, of
intoxication. The discussion between Socrates and the Homeric
rhapsodist Ion sets out to establish that the latter rhapsodises not
through the mechanism of clear aesthetic precepts and skills but
through the agency of divine inspiration:

“For all good poets, epic as well as lyric, compose their
beautiful poems not by art, but because they are inspired
and possessed. And as the Corybantian revelers when
they dance are not in their right mind, so the lyric poets
are not in their mind when they are composing their
beautiful strains: but when falling under the power of
music and metre they are inspired and possessed.” ([21]
p.5)

For my purposes, what is interesting here is that inspiration
renders the artist an instrument. They are no longer in control,
they can no longer entirely reflect upon, or claim essential priority
for, the processes in which they are involved. They are caught up
in operations that exceed them. Plato describes inspiration in
terms of the metaphor of a magnet:

“This stone not only attracts iron rings, but also imparts to
them a similar power of attracting other rings; and
sometimes you may see a number of pieces of iron and
rings suspended from one another so as to form quite a
long chain: and all of them derive their powers of
suspension from the original stone. In like manner the
Muse first of all inspires men herself; and from these
inspired persons a chain of other persons is suspended,
who take the inspiration.” ([21] p.5)

The metaphor suggests a chain of inspiration that takes shape as a
set of mediated relations. The “original stone” can not itself be
seen – it passes away from itself in order to manifest its attractive
force. Each iron ring – Homer, the Homeric rhapsodist Ion and
the audience – is linked together instrumentally as an ordered
sequence and as a chain of unconscious attraction. However the
chain also gives rise to apparitions, because inspiration becomes
manifest through appearances, through mimetic guises. If Plato
ultimately expels the poets from his ideal republic [21], it is not
only because they encourage dimensions of irrational and
emotional excess but because they produce beguiling appearances
that are a “third remove” ([21] p.425) from truth. Genuine truth
has its home in the sphere of abstract, mathematical form, whereas
human beings live in the world of appearances (dark and shadowy
and yet visible), and artists create appearances of appearances.
The fundamental paradox is that inspiration has its basis in the
revelatory experience of music and metre (which traces intimate
links to the realm of ideal truth), but instead of producing truth it
gives rise to falsehoods. Just like technology (conceived in
Heidegger’s terms) mimetic art renders revealing as concealing.

We find then that Plato’s rejection of the mechanism of art
(techne) only enables its more thorough grounding within art – not
as conceptually guided, skill-based practice, but as the
instrumental character of techne which here informs the nature of
poetic inspiration and mimetic form; taking shape as the
suspension of self-collected human agency and in systems of
dissembling that chart an undecidable relation between the
revealing and concealing of truth.

How can Plato’s scheme, in which the aesthetic and the
instrumental discover a surprising space of association, contribute
to a re-evaluation of the status of the instrumental within software
art? The layers of abstraction that characterize code operations
are certainly not mimetic, but they obey the fundamental form of
mimesis inasmuch as they involve a motion away from self-
present origin. Similarly, although Plato’s conception of poetic
intoxication may seem very distant from rational software
processes, the notion of involuntary poesis - in its automatism and
blind pull - summons a sense of Turing’s concern with the
universal machine’s dumb mechanical functioning. Within this
context it is worth recalling that Adorno and Horkheimer conceive
instrumental rationality precisely in terms of a limit point of
reason in which rationality and irrationality coincide ([1] p.172).
If instrumental rationality reveals an irrational dimension, it is not
only in terms of the division it opens up between episteme
(knowledge of invariable principles) and phronesis (morally
guided practical action), but also in terms of its suspension of
human agency, its orientation towards an automatism that
inevitably comes to resemble intoxication.

3. CROPPER/PROPPER/GRIDDER
Overall then the genuine aesthetic potential of software lies in
engaging with everything within software that seems most
intrinsically inimical to the aesthetic – dimensions of instrumental
function, non-reflective process and formulaic expression. Rather
than struggling to find means of lifting up software to the status of
art, there is a need to delve into the instrumental character of
software, to genuinely engage with this space of risk and aesthetic
alienation. This is what Cropper/Propper/Gridder attempts. The
work provides an example of an effort to conceive the relation to
the instrumental differently. If it does not take adequate shape as
either a piece of software art or genuinely useful tool, then it is
because it is concerned to explore a space of tension and awkward
possibility.

3.1 An Awkward Possibility
The name itself is awkward. Cropper/Propper/Gridder refers to
three separate pieces of software that together form an apparatus
for decomposing video and playing it back in discrete, grid-based
portions. When it was exhibited, however, the work had a
different name. It was called Ice Time, which related to a specific
instance of the work which focused on video sequences from the
Ross Sea region in the Antarctic. This suggests another
dimension of awkwardness; that of the distinction between the
visible interface with its specific instances and the generic
character of the work as an engine, as a mechanism of
decomposition, choreography and display. Which of these
demands attention? Which of these has a properly aesthetic
character? Or is it both? If so, how are they to appear
simultaneously? What would this mean? The work raises these
kinds of awkward questions. Prior to considering its uncertain
status as a piece of software art, there is a need to provide more
detail about the work itself, considering the underlying concept,
the technical system and the exhibition context.

3.1.1 Concept
The project had its basis in the philosopher Henri Bergson’s
condemnation of the cinematographic representation of time [4].
According to Bergson, time as duration represents a qualitatively
whole motion that cannot be subdivided without fundamentally
altering its character:

“All is obscure, all is contradictory when we try, with
states, to build up a transition.” ([4] p.313)

Film, as a technology for cutting up time into frames and
reassembling it for illusory temporal display, appears as a
metaphor for the modern alienation from the genuine experience
of duration. In response to this, I wondered, perversely, whether
time was not better experienced through a mechanism; not as a
predictable linear sequence, but as a work of setting time astray,
of manufacturing, emphasizing and exacerbating its obscurity. I
was thinking of projectors that run too slowly, in which the
individual frames are visible, in which a sense of time emerges
precisely through the disengagement of actual continuous time, in
which time is manifest not as a single flow but as a set of
flickering instants which serve both as an alienated reminder of
some other time and as an immediate, yet dislocated, perception
of current duration.

This interest, this thematic space, is clearly not unique. It charts
relations to long-standing aesthetic concerns within avant-garde
film and video art, from the exploration of aspects of temporal
sequence in Dziga Vertov’s 1929 Man with a Movie Camera, to
Chris Marker’s concern with the invisible time of the black film
leader in Sans Soleil (1983), to the Australian artists, Rodney
Glick and Lynette Voevodin’s display of columns of hours from a
single day in 24Hr Panoramas (1999-2006). It also connects to
the tradition of experimental new media which explores issues of
time in terms of the re-combinatory possibilities of computation
[15]. Some influential works include Joachim Sauter’s and Dirk
Lusebruk’s Invisible Shape of Things Past (1995) which
reconstitutes time slices as peculiarly non-temporal, sculptural
entities, Martin Reinhart’s and Virgil Widrich’s tx-transform
(1992-2002) which swaps the axes of temporal and spatial
representation, and most relevantly Camille Utterbach Liquid
Time (2001-2) which enables portions of the video frame to play
at different speeds and in different directions. My work explores
similar possibilities. It decomposes the video frame into rows and
columns of independently playing image sequences - in an effort
to stage both the deconstruction of ordinary time and a
summoning of temporal alterity.

It is at this point that the conventional aesthetic idea necessarily
engages with a technical imaginary. There is a need to consider
how the various aspects of the system can be implemented.
There is a need to devise systems, tools, engines. There is a
temptation to disregard this as a work of subsidiary technical
implementation, but for me it indicates the vital process in which
the aesthetic concept takes practical and poetic shape as an
instrumental apparatus.

3.1.2 Technical System
Figure 1 displays a diagram of the display system. The screen is
composed of any number of squares which may or may not be
arranged in a grid based manner. Each square is composed of a
set of sequences of still images. Each sequence may be played
independently and in various ways (in terms of speed, direction,
etc.). Sequences may have associated sound files which may
loop or play a specific number of times. Finally aspects of
playback may be choreographed in advance or enable live
interactive control.

Fig. 1: Brogan Bunt, Cropper/Propper/Gridder design concept

The basic technical challenge involved finding means to
decompose a video sequence into a set of independently playing
image sections. The neatest and most logical approach was to
employ a single video file and dynamically decompose and
reassemble frames from the cube of spatio-temporal data. For
long sequences, however, this was likely to demand retaining a
very large number of frames within RAM and a constant process
of multi-frame analysis to constitute any specific display frame.
This is probably technically feasible but seemed beyond my
means. Another obvious approach was to cut up the video in
advance and play back any number of independent video streams.
This proved unworkable due to the considerable overhead that
each stream of video imposed on the overall system. It was not
possible to play back more than a couple of video files at once.
My only other option was entirely simple, even anachronistic. It
involved conceiving the video sequences as game-style sprites.
Video sequences were decomposed into sets of video stills and
then decomposed again in to sets of cropped images. Represented
as sprite arrays, these sets of cropped images could be played back
in conventional sequential order, randomly or in any number of
specific algorithmic ways. This was the approach I adopted and
miraculously it seemed to work even for a finely articulated grid
(60 or so sequences running simultaneously), but it had one major
drawback. Instead of a single video file or a relatively small
number of cropped video files, I had multiple directories filled
with innumerable tiny image files. In this sense, it was a plainly
awkward and inefficient solution. Moreover, in its literal
complexity, in its fragmentation of data, it opened up the necessity
for a set of specific tools to handle aspects of decomposition,
choreography and display.

3.1.2.1 Cropper
Cropper is a small and unassuming utility program that handles
the process of first cutting up sequences of video stills into rows
and columns of cropped images and then saving them within an
appropriate directory structure. It obscures the major part of its
underlying functioning, merely displaying dynamic information
concerning the percentage of images processed.

3.1.2.2 Propper
Propper is a much more ambitious program. The role of this tool
is to produce the underlying score that choreographs aspects of
display. It builds XML (Extensible Markup Language)
description files that the display engine, Gridder, reads in order
to know what media to load when and where. XML makes

dimensions of logical structure visible, legible and easily
accessible (within text editors, browsers and so on), however it
can be slow to prepare manually. Propper provides a rapid,
visual means of writing these files.

3.1.2.3 Gridder
Gridder is the display engine. A dialogue opens requesting that
the user point to a relevant project directory. Gridder reads the
project xml description file and commences media display.
Additionally, the software enables interactive control of the
playback parameters of image sections. Gridder displays in a
screen window with a standard title bar. This is intended to
remind the viewer/user that the work is a piece of software, not a
piece of linear, pre-constructed video.

Figure 2 displays a screen shot without the title bar to provide a
sense of the visible output of a more complex piece (a 9X3 grid
with multiple ‘video’ sequences).

Fig. 2: Brogan Bunt, Gridder, Ice Time exhibition (2005)

3.1.3 Exhibition
The emphasis was upon the display of fragmented video
sequences of the Antarctic. The choice of footage was deliberate.
Antarctica is generally perceived as a space of pure glacial
duration, yet we have recently become aware of its extreme
temporal fragility; the Antarctic is entering another time – a time
of division, of breaking up, even of imminent catastrophe.
Without pursuing this point in an explicit political manner, the
conjunction of the software apparatus (as a work of temporal
decomposition and the flickering re-summoning of time) and the
samples of an entirely fragile realm of duration suggests a
dimension of temporal uncertainty that has political implications.

Leaving aside the specific thematic issues addressed in this
exhibition, the issue that mainly concerned me was the near
invisibility of the Cropper/Cropper/Gridder apparatus in the
exhibition display. Although I had spent close to two months
producing the software and perceived it as the vital context in
which the aesthetic concept took generic shape, there seemed no
satisfactory way of acknowledging the apparatus, of making it
appear aesthetically. I was very aware that the project may appear
as a work of video compositing rather than software art. It is this
sense of uncertainty (and frustration) concerning how to
adequately exhibit the work that has prompted this specific
reflection on the instrumental.

3.2 Software Art?
The vital problem that the project raises for me is in identifying
the properly aesthetic character of the work. A conventional view
would distinguish between the aesthetically significant exhibited
work and the aesthetically inconsequential background technical
infrastructure. The contemporary notion of software art seems to
provide a corrective to this view but ends up insisting upon a non-
instrumental model of software as a form of abstract formal

enquiry and/or self-reflexive software critique that has the
unfortunate consequence, once again, of positioning the
instrumental component of Cropper/Propper/Gridder as a work
of mere technical implementation. At the same time the software
art status of the exhibited interface is questionable because it is
less about reflectively revealing the dimension of code than about
setting code into relation with the particularity of specific
temporal samples. On what basis then do I regard the overall
project as a work of software art?

The project represents a meditation on issues of the coded,
discontinuous character of represented time that is conducted
through the medium – the linguistic and discursive forms – of
software. In this sense, it represents an example of what Mathew
Fuller describes as “speculative software” ([11] p.29). Although
the boundaries blur, Fuller distinguishes speculative software
from “critical software” ([11] p.22) in that the former is oriented
less towards deconstruction than making; it engages with “the
havoc of invention” ([11] p.32). Cropper/Cropper/Gridder may
be regarded as a speculative apparatus; it takes shape as a perverse
media player, one in which the dimension of time is disarticulated
and re-composed.

The work gains aesthetic coherence as an overall system that
includes an element of generic operation and specific
instanciation. In terms of the generic character of the work, the
underlying poetic idea is realized as a linked system of functional
tool-based operations which together form an abstract machine, an
engine. Cropper represents the motion of decomposition,
Propper the work of reassembling, and Gridder the rendering of
an unnatural spatio-temporal logic in actual time. In its operation,
the engine inevitably structures a moment of instanciation. The
aesthetic dimension of the latter emerges in the friction between
coded time and the particularity of sampled actual time. Without
an awareness of the background software, this sense of friction is
lost. The dimensions of interface and implementation are
integrally aesthetically related.

The instrumental orientation represents an important aesthetic
choice. The strangeness and technically anachronistic character
of the project is heightened precisely by pursuing it through the
agency of the instrumental, by discovering means to realize a
perverse, absurd, idiosyncratic idea as efficiently as possible.
Accordingly, at a stylistic level the software resists adopting a
conventional aesthetic guise; it is deliberately blankly ordinary.
The Java Swing style interface elements – menus, tabbed panes,
hierarchical lists, radio buttons, etc. - interested me particularly in
their anonymity and their embeddedness in the logic of
instrumental software production and use. If the explicit
conceptual theme is the alienation of time via mechanical division
then the choice of a blank instrumental style works in my view to
heighten the sense of alienation.

Of course, the problem is that none of this was seen by the
exhibition audience. This is written then as a critique of the
work’s original mode of exhibition. The work needed to
demonstrate both the engine and the interface in order to properly
address the conceptual theme of the coded representation of time,
as well as the equally important theme of the relation between an
instrumental apparatus and an aesthetic concept.

4. CONCLUSION
My overall argument is that rather than positioning the
instrumental, tool-based character of software as some grim fact

that must be rigorously resisted there is vital need to work
through the instrumental, to explore its possibilities. This entails
a risk – the risk of facilitating software functioning, of engaging
with its work of abstraction, encapsulation and disguise. It
projects a space of uncertain creation that cannot altogether shake
off a relation to the blindness of mechanical process - that must
find means to reflect amidst a work of operational making. The
clear difficulty is in finding ways to conceive a work of critical
reflection within the texture of instrumental relations when the
self-consciousness of critical awareness is precisely what is put at
risk. In my view there is no easy solution to this dilemma.
Instead there is a constant work of negotiation - of engagement
and distanciation with whatever it is that an instrumental device
and an aesthetic work represents. This would seem to demand a
re-examination of the relation between “software culturalism”
and “software formalism” ([7] p.10). It may be that it is precisely
at the level of form (regarded as a material discursive fact and
experimental space) that the most profoundly cultural questions
are raised. Of course, how these questions are to be articulated -
how they are to take constitutive shape as processes, engines and
interfaces - remains an open question.

6. REFERENCES
[1] Adorno, T. & Horkheimer, M. (2000) 'The Concept of

Enlightenment' in O'Connor, B. The Adorno Reader, London,
Blackwell Publishing, pp. 156-173. First published 1944.

[2] Aristotle (350 BC c.) Nichomachean Ethics,
http://classics.mit.edu/Aristotle/nicomachean.html, accessed
4th January 2007.

[3] Aristotle (1965) On the Art of Poetry in Dorsch, T.S. (ed.)
Classical Literary Criticism, Great Britain, Penguin Books,
pp. 31-75, First published: undated.

[4] Bergson, H. (1911). Creative Evolution. New York, Henry
Holt and Company.

[5] Burger, P. (1984). Theory of the Avant-Garde. Minneapolis,
Minnesota, University of Minnesota Press

[6] Cramer, F. and Gabriel, U. (2001). 'Software Art'.
Transmediale.01 Arts Festival, Berlin.

[7] Cramer, F. (2002). 'Concepts, Notations, Software, Art'.
Seminar for Allegmeine und Vergleischende
Literaturwissenschaft.

[8] Derrida, J. (1976). Of Grammatology. Baltimore & London,
The Johns Hopkins University Press

[9] Eagleton, T. (1990). The Ideology of the Aesthetic. Oxford
and Cambridge, Massachusetts, Basil Blackwell.

[10] Feynman, R. P. (1996). Lectures on Computation. Edited by
Hey, A. J. G. & Allen, R. W. London, Penguin Books.

[11] Fuller, M. (2003). Behind the Blip: Essays on the Culture of
Software. Brooklyn, New York, Autonomedia.

[12] Gere, C. (2002). Digital Culture. London, Reaktion Books.
[13] Heidegger, M. (1978) 'The Question Concerning

Technology' in Krell, D.F. (ed.) Martin Heidegger: Basic
Writings, London, Thames & Hudson, pp. 284-317. First
published 1953.

[14] Huyssen, A. (1986) After the Great Divide: Modernism,
Mass Culture, Postmodernism. Bloomington and
Indianapolis, Indiana University Press

[15] Jaschko, S. (2003) ‘Space-Time Correlations Focused in
Film Objects and Interactive Video’ in Shaw, J. & Weibel, P.
(eds.) Future Cinema: The Cinematic Imaginary After Film.
Cambridge, Massachusetts, ZKM and The MIT Press.

[16] Kant, I. (1980). Kant. 'Great Books of the Western World'
Series, edited by Adler, J. and Brockway, W. Chicago,
University of Chicago Press (Encyclopedia Britannica, Inc.).
First published 1790.

[17] Kay, A. (2003). from video 'The History of the Personal
Workstation' (1986), in Wardrip-Fruin, N. and Montfort, N.
(eds). New Media Reader. Cambridge, Massachusetts, The
MIT Press.

[18] Knuth, D. (1973 -1998). The Art of Computer Programming.
Reading, Massachusetts, Addison-Wesley.

[19] Manovich, L. (2005). 'Remixability & Modularity.'
http://www.manovich.net/

[20] Plato (380 BC c.) Ion, http://classics.mit.edu/Plato/ion.html,
accessed 6th January 2007.

[21] Plato (1955) The Republic, London, Penguin Books,
translated by Lee, D.P. First published: 360 BC c.

[22] Read_Me 1.2 festival jury (2002). ‘Read_Me 1.2 Software
Art/Software Art Games festival jury statement’.
http://www.macros-center.ru/read_me/adden.htm.

[23] Transmediale.01 Media Arts festival jury (2001).
'Transmediale.01 Media Arts festival jury statement.'
Retrieved 15 December, 2006, from
http://transmediale.de/01/de/s_juryStatement.htm.

[24] Turing, A. (1995). 'On Computable Numbers, with an
Application to the Entscheidungsproblem' (extract), in
Norman, M. (ed). From Gutenberg to the Internet: A
Sourcebook on the History of Information Technology.
Novato, California, historyofscience.com. First published in
1936.

[25] Weber, M. (1946). Max Weber: Essays in Sociology. Edited
by Gerth, H. H. & Mills, C. W. New York, Oxford
University Press.

[26] Wikipedia, entry on Constructivism, Retrieved December 23,
2006, http://en.wikipedia.org/wiki/Constructivism_(art)).

7. WORKS MENTIONED
[1] Duchamp, M. (1915-23). Large Glass - The Bride Stripped

Bare by Her Bachelors, Even.
[2] Eclipse Foundation (2004). Eclipse 3.0. [computer program]
[3] Glick, R. and Voevodin, L. (1999-2006). 24Hr Panoramas.

[video art project]
[4] IOD (1997). Web Stalker. London. [software art work]
[5] Marker, C. (1983). Sans Soleil. [film]
[6] Reinhart, M. and Widrich, V. (1992-2002). tx-transform, in

Shaw, J. & Weibel, P. (eds.) (2003) Future Cinema: The
Cinematic Imaginary After Film. Cambridge, Massachusetts,
ZKM and The MIT Press, pp. 442-443. [new media art work]

[7] Sauter, J. and Lusebruk, D. 'Invisible Shape of Things Past'
in Shaw, J. & Weibel, P. (eds.) (2003) Future Cinema: The
Cinematic Imaginary After Film. Cambridge, Massachusetts,
ZKM and The MIT, pp. 436-439 [new media art work]

[8] Stallman, R. (1975). Emacs. [computer program]
[9] Sutherland, I. (1962). Sketchpad. [computer program]
[10] Tatlin, V. (1920). Monument to the Third International.
[11] Utterbach (2001-2). Liquid Time. in Shaw, J. & Weibel, P.

(eds.) (2003) Future Cinema: The Cinematic Imaginary After
Film. Cambridge, Massachusetts, ZKM and The MIT Press,
p.434 [new media art work]

[12] Vertov, D. (1929). Man with a Movie Camera. [film]
[13] Ward, A. Signwave Auto-Illustrator. [software art work]

	Instrumental relations: software as art, art as software
	Recommended Citation

