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Abstract

The assessment of the performance of learners by means of benchmark experiments is an
established exercise. In practice, benchmark studies are a tool to compare the performance of
several competing algorithms for a certain learning problem. Cross-validation or resampling
techniques are commonly used to derive point estimates of the performances which are com-
pared to identify algorithms with good properties. For several benchmarking problems, test
procedures taking the variability of those point estimates into account have been suggested.
Most of the recently proposed inference procedures are based on special variance estimators
for the cross-validated performance.

We introduce a theoretical framework for inference problems in benchmark experiments
and show that standard statistical test procedures can be used to test for differences in the
performances. The theory is based on well defined distributions of performance measures
which can be compared with established tests. To demonstrate the usefulness in practice,
the theoretical results are applied to regression and classification benchmark studies based on
artificial and real world data.

Keywords: model comparison, performance, hypothesis testing, cross-validation, bootstrap.

1. Introduction

In statistical learning we refer to a benchmark study as to an empirical experiment with the aim
of comparing learners or algorithms with respect to a certain performance measure. The quality
of several candidate algorithms is usually assessed by point estimates of their performances on
some data set or some data generating process of interest. Although nowadays commonly used in
the above sense, the term “benchmarking” has its root in geology. Patterson (1992) describes the
original meaning in land surveying as follows:

A benchmark in this context is a mark, which was mounted on a rock, a building or
a wall. It was a reference mark to define the position or the height in topographic
surveying or to determine the time for dislocation.

In analogy to the original meaning, we measure performances in a landscape of learning algo-
rithms while standing on a reference point, the data generating process of interest, in benchmark
experiments. But in contrast to geological measurements of heights or distances the statistical
measurements of performance are not sufficiently described by point estimates as they are in-
fluenced by various sources of variability. Hence, we have to take this stochastic nature of the
measurements into account when making decisions about the shape of our algorithm landscape,
that is, deciding which learner performs best on a given data generating process.

This is a preprint of an article published in Journal of Computational and Graphical Statistics,
Volume 14, Number 3, Pages 675–699. Copyright c© 2005 American Statistical Association,
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2 The Design and Analysis of Benchmark Experiments

The assessment of the quality of an algorithm with respect to a certain performance measure,
for example misclassification or mean squared error in supervised classification and regression,
has been addressed in many research papers of the last three decades. The estimation of the
generalisation error by means of some form of cross-validation started with the pioneering work
of Stone (1974) and major improvements were published by Efron (1983, 1986) and Efron and
Tibshirani (1997); for an overview we refer to Schiavo and Hand (2000). The topic is still a
matter of current interest, as indicated by recent empirical (Wolpert and Macready 1999; Bylander
2002), algorithmic (Blockeel and Struyf 2002) and theoretical (Dudoit and van der Laan 2005)
investigations.

However, the major goal of benchmark experiments is not only the performance assessment of
different candidate algorithms but the identification of the best among them. The comparison of
algorithms with respect to point estimates of performance measures, for example computed via
cross-validation, is an established exercise, at least among statisticians influenced by the “algo-
rithmic modelling culture” (Breiman 2001b). In fact, many of the popular benchmark problems
first came up in the statistical literature, such as the Ozone and Boston Housing problems (by
Breiman and Friedman 1985). Friedman (1991) contributed the standard artificial regression prob-
lems. Other well known datasets like the Pima indian diabetes data or the forensic glass problem
play a major role in text books in this field (e.g., Ripley 1996). Further examples are recent bench-
mark studies (as for example Meyer, Leisch, and Hornik 2003), or research papers illustrating the
gains of refinements to the bagging procedure (Breiman 2001a; Hothorn and Lausen 2003).

However, the problem of identifying a superior algorithm is structurally different from the per-
formance assessment task, although we notice that asymptotic arguments indicate that cross-
validation is able to select the best algorithm when provided with infinitively large learning samples
(Dudoit and van der Laan 2005) because the variability tends to zero. Anyway, the comparison
of raw point estimates in finite sample situations does not take their variability into account, thus
leading to uncertain decisions without controlling any error probability.

While many solutions to the instability problem suggested in the last years are extremely suc-
cessful in reducing the variance of algorithms by turning weak into strong learners, especially
ensemble methods like boosting (Freund and Schapire 1996), bagging (Breiman 1996a) or random
forests (Breiman 2001a), the variability of performance measures and associated test procedures
has received less attention. The taxonomy of inference problems in the special case of supervised
classification problems developed by Dietterich (1998) is helpful to distinguish between several
problem classes and approaches. For a data generating process under study, we may either want
to select the best out of a set of candidate algorithms or to choose one out of a set of predefined
fitted models (“classifiers”). Dietterich (1998) distinguishes between situations where we are faced
with large or small learning samples. Standard statistical test procedures are available for compar-
ing the performance of fitted models when an independent test sample is available (questions 3 and
4 in Dietterich 1998) and some benchmark studies restrict themselves to those applications (Bauer
and Kohavi 1999). The problem whether some out of a set of candidate algorithms outperform all
others in a large (question 7) and small sample situation (question 8) is commonly addressed by
the derivation of special variance estimators and associated tests. Estimates of the variability of
the naive bootstrap estimator of misclassification error are given in Efron and Tibshirani (1997).
Some procedures for solving question 8 such as the 5 × 2 cv test are given by Dietterich (1998),
further investigated by Alpaydin (1999) and applied in a benchmark study on ensemble methods
(Dietterich 2000). Pizarro, Guerrero, and Galindo (2002) suggest to use some classical multiple
test procedures for solving this problem. Mixed models are applied for the comparison of algo-
rithms across benchmark problems (for example Lim, Loh, and Shih 2000; Kim and Loh 2003). A
basic problem common to these approaches is that the correlation between internal performance
estimates, such as those calculated for each fold in k-fold cross-validation, violates the assumption
of independence. This fact is either ignored when the distribution of newly suggested test statistics
under the null hypothesis of equal performances is investigated (for example in Dietterich 1998;
Alpaydin 1999; Vehtari and Lampinen 2002) or special variance estimators taking this correlation
into account are derived (Nadeau and Bengio 2003).

Copyright c© 2005 American Statistical Association, Institute of Mathematical Statistics, and Interface
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Torsten Hothorn, Friedrich Leisch, Achim Zeileis, Kurt Hornik 3

In this paper, we introduce a sound and flexible theoretical framework for the comparison of can-
didate algorithms and algorithm selection for arbitrary learning problems. The approach to the
inference problem in benchmark studies presented here is fundamentally different from the pro-
cedures cited above: We show how one can sample from a well defined distribution of a certain
performance measure, conditional on a data generating process, in an independent way. Conse-
quently, standard statistical test procedures can be used to test many hypotheses of interest in
benchmark studies and no special purpose procedures are necessary. The definition of appropriate
sampling procedures makes special “a posteriori” adjustments to variance estimators unnecessary.
Moreover, no restrictions or additional assumptions, neither to the candidate algorithms (like lin-
earity in variable selection, see George 2000, for an overview) nor to the data generating process
are required.
Throughout the paper we assume that a learning sample of n observations L = {z1, . . . , zn} is
given and a set of candidate algorithms as potential problem solvers is available. Each of those
candidates is a two step algorithm a: In the first step a model is fitted based on a learning sample
L yielding a function a(· | L) which, in a second step, can be used to compute certain objects of
interest. For example, in a supervised learning problem, those objects of interest are predictions
of the response based on input variables or, in unsupervised situations like density estimation,
a(· | L) may return an estimated density.
When we search for the best solution, the candidates need to be compared by some problem specific
performance measure. Such a measure depends on the algorithm and the learning sample drawn
from some data generating process: The function p(a,L) assesses the performance of the function
a(· | L), that is the performance of algorithm a based on learning sample L. Since L is a random
learning sample, p(a,L) is a random variable whose variability is induced by the variability of
learning samples following the same data generating process as L.
It is therefore natural to compare the distribution of the performance measures when we need to
decide whether any of the candidate algorithms performs superior to all the others. The idea is
to draw independent random samples from the distribution of the performance measure for an
algorithm a by evaluating p(a,L), where the learning sample L follows a properly defined data
generating process which reflects our knowledge about the world. By using appropriate and well
investigated statistical test procedures we are able to test hypotheses about the distributions of the
performance measures of a set of candidates and, consequently, we are in the position to control
the error probability of falsely declaring any of the candidates as the winner.
We derive the theoretical basis of our proposal in Section 2 and focus on the special case of
regression and classification problems in Section 3. Once appropriate random samples from the
performance distribution have been drawn, the established statistical test and analysis procedures
can be applied and we shortly review the most interesting of them in Section 4. Especially, we
focus on tests for some inference problems which are addressed in the applications presented in
Section 5.

2. Comparing performance measures

In this section we introduce a general framework for the comparison of candidate algorithms.
Independent samples from the distributions of the performance measures are drawn conditionally
on the data generating process of interest. We show how standard statistical test procedures can
be used in benchmark studies, for example in order to test the hypothesis of equal performances.
Suppose that B independent and identically distributed learning samples have been drawn from
some data generating process DGP

L1 =
{
z1
1 , . . . , z1

n

}
∼ DGP ,

...
LB =

{
zB
1 , . . . , zB

n

}
∼ DGP ,

Copyright c© 2005 American Statistical Association, Institute of Mathematical Statistics, and Interface
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4 The Design and Analysis of Benchmark Experiments

where each of the learning samples Lb (b = 1, . . . , B) consists of n observations. Furthermore we
assume that there are K > 1 potential candidate algorithms ak (k = 1, . . . ,K) available for the
solution of the underlying problem. For each algorithm ak the function ak(· | Lb) is based on the
observations from the learning sample Lb. Hence, it is a random variable depending on Lb and has
itself a distribution Ak on the function space of ak which depends on the data generating process
of the Lb:

ak(· | Lb) ∼ Ak(DGP), k = 1, . . . ,K.

For algorithms ak with deterministic fitting procedure (for example histograms or linear models)
the function ak(· | Lb) is fixed whereas for algorithms involving non-deterministic fitting or where
the fitting is based on the choice of starting values or hyper parameters (for example neural
networks or random forests) it is a random variable. Note that ak(· | Lb) is a prediction function
that must not depend on hyper parameters anymore: The fitting procedure incorporates both
tuning as well as the final model fitting itself.
As sketched in Section 1, the performance of the candidate algorithm ak when provided with the
learning sample Lb is measured by a scalar function p:

pkb = p(ak,Lb) ∼ Pk = Pk(DGP).

The random variable pkb follows a distribution function Pk which again depends on the data
generating process DGP . For algorithms with non-deterministic fitting procedure this implies
that it may be appropriate to integrate with respect to its distribution Ak when evaluating its
performance.
The K different random samples {pk1, . . . , pkB} with B independent and identically distributed
observations are drawn from the distributions Pk(DGP) for algorithms ak (k = 1, . . . ,K). These
performance distributions can be compared by both exploratory data analysis tools as well as
formal inference procedures. The null hypothesis of interest for most problems is the equality of
the candidate algorithms with respect to the distribution of their performance measure and can
be formulated by writing

H0 : P1 = · · · = PK .

In particular, this hypothesis implies the equality of location and variability of the performances.
In order to specify an appropriate test procedure for the hypothesis above one needs to define an
alternative to test against. The alternative depends on the optimality criterion of interest, which
we assess using a scalar functional φ: An algorithm ak is better than an algorithm ak′ with respect
to a performance measure p and a functional φ iff φ(Pk) < φ(Pk′). The optimality criterion most
commonly used is based on some location parameter such as the expectation φ(Pk) = E(Pk) or
the median of the performance distribution, that is, the average expected loss. In this case we are
interested in detecting differences in mean performances:

H0 : E(P1) = · · · = E(PK) vs. H1 : ∃ i, j ∈ {1, . . . ,K} : E(Pi) 6= E(Pj).

Other alternatives may be derived from optimality criteria focusing on the variability of the per-
formance measures. Under any circumstances, the inference is conditional on the data generating
process of interest. Examples for appropriate choices of sampling procedures for the special case
of supervised learning problems are given in the next section.

3. Regression and classification

In this section we show how the general framework for testing the equality of algorithms derived
in the previous section can be applied to the special but important case of supervised statistical
learning problems. Moreover, we focus on applications that commonly occur in practical situations.

Copyright c© 2005 American Statistical Association, Institute of Mathematical Statistics, and Interface
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3.1. Comparing predictors

In supervised learning problems, the observations z in the learning sample are of the form z = (y, x)
where y denotes the response variable and x describes a vector of input variables. The aim of the
learning task is to construct predictors which, based on input variables only, provide us with
information about the unknown response variable. Consequently, the function constructed by
each of the K candidate algorithms is of the form ŷ = ak(x | Lb). In classification problems ŷ may
be the predicted class for observations with input x or the vector of the estimated conditional class
probabilities. In survival analysis the conditional survival curve for observations with input status
x is of special interest. The discrepancy between the true response y and the predicted value ŷ for
one single observation is measured by a scalar loss function L(y, ŷ).
The performance measure p is defined by some functional µ of the distribution of the loss function
and the distribution of pkb depends on the data generating process DGP only:

pkb = p(ak,Lb) = µ
(
L
(
y, ak

(
x | Lb

)))
∼ Pk(DGP).

Consequently, the randomness of z = (y, x) and the randomness induced by algorithms ak with
non-deterministic fitting are removed by appropriate integration with respect to the associated
distribution functions.
Again, the expectation is a common choice for the functional µ under quadratic loss L(y, ŷ) =
(y − ŷ)2 and the performance measure is given by the so called conditional risk

pkb = Eak
Ez=(y,x)L

(
y, ak

(
x | Lb

))
= Eak

Ez=(y,x)

(
y − ak

(
x|Lb

))2
, (1)

where z = (y, x) is drawn from the same distribution as the observations in a learning sample L.
Other conceivable choices of µ are the median, corresponding to absolute loss, or even the supre-
mum or theoretical quantiles of the loss functions.

3.2. Special problems

The distributions of the performance measure Pk(DGP) for algorithms ak (k = 1, . . . ,K) depend
on the data generating process DGP . Consequently, the way we draw random samples from
Pk(DGP) is determined by the knowledge about the data generating process available to us. In
supervised learning problems, one can distinguish two situations:

• Either the data generating process is known, which is the case in simulation experiments
with artificially generated data or in cases where we are practically able to draw infinitively
many samples (e.g., network data),

• or the information about the data generating process is determined by a finite learning
sample L. In this case the empirical distribution function of L typically represents the
complete knowledge about the data generating process we are provided with.

In the following we show how random samples from the distribution of the performance measure
Pk(DGP) for algorithm ak can be drawn in three basic problems: The data generating process is
known (simulation), a learning sample as well as a test sample are available (competition) or one
single learning sample is provided only (real world). Special choices of the functional µ appropriate
in each of the three problems will be discussed.

The simulation problem

Artificial data are generated from some distribution function Z, where each observation zi (i =
1, . . . , n) in a learning sample is distributed according to Z. The learning sample L consists of
n independent observations from Z which we denote by L ∼ Zn. In this situation the data
generating process DGP = Zn is used. Therefore we are able to draw a set of B independent
learning samples from Zn: L1, . . . ,LB ∼ Zn. We assess the performance of each algorithm ak

Copyright c© 2005 American Statistical Association, Institute of Mathematical Statistics, and Interface
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6 The Design and Analysis of Benchmark Experiments

on all learning samples Lb(b = 1, . . . , B) yielding a random sample of B observations from the
performance distribution Pk(Zn) by calculating

pkb = p(ak,Lb) = µ
(
L
(
y, ak

(
x | Lb

)))
, b = 1, . . . , B.

The associated hypothesis under test is consequently

H0 : P1(Zn) = · · · = PK(Zn).

If we are not able to calculate µ analytically we can approximate it up to any desired accuracy
by drawing a test sample T ∼ Zm of m independent observations from Z where m is large and
calculating

p̂kb = p̂(ak,Lb) = µT

(
L
(
y, ak

(
x | Lb

)))
.

Here µT denotes the empirical analogue of µ for the test observations z = (y, x) ∈ T. When µ is
defined as the expectation with respect to test samples z as in (1) (we assume a deterministic ak

for the sake of simplicity here), this reduces to the mean of the loss function evaluated for each
observation in the learning sample

p̂kb = p̂(ak,Lb) = m−1
∑

z=(y,x)∈T

L
(
y, ak

(
x | Lb

))
.

Analogously, the supremum would be replaced by the maximum and theoretical quantiles by their
empirical counterpart.

The competition problem

In most practical applications no precise knowledge about the data generating process is available
but instead we are provided with one learning sample L ∼ Zn of n observations from some
distribution function Z. The empirical distribution function Ẑn covers all knowledge that we
have about the data generating process. Therefore, we mimic the data generating process by
using the empirical distribution function of the learning sample: DGP = Ẑn. Now we are able to
draw independent and identically distributed random samples from this emulated data generating
process. In a completely non-parametric setting, the non-parametric or Bayesian bootstrap can
be applied here or, if the restriction to certain parametric families is appropriate, the parametric
bootstrap can be used to draw samples from the data generating process. For an overview of those
issues we refer to Efron and Tibshirani (1993).
Under some circumstances, an additional test sample T ∼ Zm of m observations is given, for
example in machine learning competitions. In this situation, the performance needs to be assessed
with respect to T only. Again, we would like to draw a random sample of B observations from
P̂k(Ẑn), which in this setup is possible by bootstrapping L1, . . . ,LB ∼ Ẑn, where P̂ denotes the
distribution function of the performance measure evaluated using T, that is, the performance
measure is computed by

p̂kb = p̂(ak,Lb) = µT

(
L
(
y, ak

(
x | Lb

)))
where µT is again the empirical analogue of µ for all z = (y, x) ∈ T. The hypothesis we are
interested in is

H0 : P̂1(Ẑn) = · · · = P̂K(Ẑn),

where P̂k corresponds to the performance measure µT. Since the performance measure is defined
in terms of one single test sample T, it should be noted that we may favour algorithms that perform
well on that particular test sample T but worse on other test samples just by chance.

Copyright c© 2005 American Statistical Association, Institute of Mathematical Statistics, and Interface
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The real world problem

The most common situation we are confronted with in daily routine is the existence of one single
learning sample L ∼ Zn with no dedicated independent test sample being available. Again, we
mimic the data generating process by the empirical distribution function of the learning sample:
DGP = Ẑn. We redraw B independent learning samples from the empirical distribution function
by bootstrapping: L1, . . . ,LB ∼ Ẑn. The corresponding performance measure is computed by

p̂kb = p̂(ak,Lb) = µ̂
(
L
(
y, ak

(
x | Lb

)))
where µ̂ is an appropriate empirical version of µ. There are many possibilities of choosing µ̂ and
the most obvious ones are given in the following.
If n is large, one can divide the learning sample into a smaller learning sample and a test sample
L = {L′,T} and proceed with µT as in the competition problem. If n is not large enough for this
to be feasible, the following approach is a first naive choice: In the simulation problem, the models
are fitted on samples from Zn and their performance is evaluated on samples from Z. Here, the
models are trained on samples from the empirical distribution function Ẑn and so we could want
to assess their performance on Ẑ which corresponds to emulating µT by using the learning sample
L as test sample, i.e., for each model fitted on a bootstrap sample, the original learning sample L
itself is used as test sample T.
Except for algorithms able to compute ‘honest’ predictions for the observations in the learning
sample (for example bagging’s out-of-bag predictions, Breiman 1996b), this choice leads to overfit-
ting problems. Those can be addressed by well known cross-validation strategies. The test sample
T can be defined in terms of the out-of-bootstrap observations when evaluating µT:

• RW-OOB. For each bootstrap sample Lb(b = 1, . . . , B) the out-of-bootstrap observations
L \ Lb are used as test sample.

Note that using the out-of-bootstrap observations as test sample leads to non-independent ob-
servations of the performance measure, however, their correlation vanishes as n tends to infinity.
Another way is to choose a cross-validation estimator of µ:

• RW-CV. Each bootstrap sample Lb is divided into k folds and the performance p̂kb is defined
as the average of the performance measure on each of those folds. Since it is possible that
one observation from the original learning sample L is part of both the learning folds and the
validation fold due to sampling n-out-of-n with replacement, those observations are removed
from the validation fold in order to prevent any bias. Such bias may be induced for some
algorithms that perform better on observations that are part of both learning sample and
test sample.

Common to all choices in this setup is that one single learning sample provides all information.
Therefore, we cannot compute the theoretical performance measures and hence cannot test hy-
potheses about these as this would require more knowledge about the data generating process.
The standard approach is to compute some empirical performance measure, such as those sug-
gested here, instead to approximate the theoretical performance. For any empirical performance
measure, the hypothesis needs to be formulated by

H0 : P̂1(Ẑn) = · · · = P̂K(Ẑn),

meaning that the inference is conditional on the performance measure under consideration.

4. Test procedures

As outlined in the previous sections, the problem of comparing K algorithms with respect to any
performance measure reduces to the problem of comparing K numeric distribution functions or

Copyright c© 2005 American Statistical Association, Institute of Mathematical Statistics, and Interface
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8 The Design and Analysis of Benchmark Experiments

certain characteristics, such as their expectation. A lot of attention has been paid to this and
similar problems in the statistical literature and so a rich toolbox can be applied here. We will
comment on appropriate test procedures for only the most important test problems commonly
addressed in benchmark experiments and refer to the standard literature otherwise.

4.1. Experimental designs

A matched pairs or dependent K samples design is the most natural choice for the comparison of
algorithms since the performance of all K algorithms is evaluated using the same random samples
L1, . . . ,LB . We therefore use this design for the derivations in the previous sections and the
experiments in Section 5 and compare the algorithms based on the same set of learning samples.
The application of an independent K sample design may be more comfortable from a statistical
point of view. Especially the derivation of confidence intervals for parameters like the difference of
the misclassification errors of two algorithms or the visualisation of the performance distributions
is straightforward in the independent K samples setup.

4.2. Analysis

A sensible test statistic for comparing two performance distributions with respect to their locations
in a matched pairs design is formulated in terms of the average d̄ of the differences db = p1b − p2b

(b = 1, . . . , B) for the observations p1b and p2b of algorithms a1 and a2. Under the null hypothesis
of equality of the performance distributions, the studentized statistic

t =
√

B
d̄√

(B − 1)−1
∑
b

(
db − d̄

)2 (2)

is asymptotically normal and follows a t-distribution with B − 1 degrees of freedom when the
differences are drawn from a normal distribution. The unconditional distribution of this and
other similar test statistics is derived under some parametric assumption, such as symmetry or
normality, about the distributions of the underlying observations. However, we doubt that such
parametric assumptions to performance distributions are ever appropriate. The question whether
conditional or unconditional test procedures should be applied has some philosophical aspects and
is one of the controversial questions in recent discussions (see Berger 2000; Berger, Lunneborg,
Ernst, and Levine 2002, for example). In the competition and real world problems however, the
inference is conditional on an observed learning sample anyway, thus conditional test procedures,
where the null distribution is determined from the data actually seen, are natural to use for the test
problems addressed here. Since we are able to draw as many random samples from the performance
distributions under test as required, the application of the asymptotic distribution of the test
statistics of the corresponding permutation tests is possible in cases where the determination of
the exact conditional distribution is difficult.
Maybe the most prominent problem is to test whether K > 2 algorithms perform equally well
against the alternative that at least one of them outperforms all other candidates. In a dependent
K samples design, the test statistic

t? =

∑
k

(
B−1

∑
b

p̂kb − (BK)−1
∑
k,b

p̂kb

)2

∑
k,b

(
p̂kb −K−1

∑
k

p̂kb −B−1
∑
b

p̂kb + (BK)−1
∑
k,b

p̂kb

)2 (3)

can be used to construct a permutation test, where the distribution of t? is obtained by permuting
the labels 1, . . . ,K of the algorithms for each sample Lb(b = 1, . . . , B) independently (Pesarin
2001).

Copyright c© 2005 American Statistical Association, Institute of Mathematical Statistics, and Interface
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Torsten Hothorn, Friedrich Leisch, Achim Zeileis, Kurt Hornik 9

Once the global hypothesis of equality of K > 2 performances could be rejected in a dependent
K samples design, it is of special interest to identify the algorithms that caused the rejection.
All partial hypotheses can be tested at level α following the closed testing principle, where the
hierarchical hypotheses formulate subsets of the global hypothesis and can be tested at level α,
for a description see Hochberg and Tamhane (1987). However, closed testing procedures are com-
putationally expensive for more than K = 4 algorithms. In this case, one can apply simultaneous
test procedures or confidence intervals designed for the independent K samples case to the aligned
performance measures (Hájek, Šidák, and Sen 1999).
It is important to note that one is able to detect very small performance differences with very high
power when the number of learning samples B is large. Therefore, practical relevance instead of
statistial significance needs to be assessed, for example by showing relevant superiority by means
of confidence intervals. Further comments on those issues can be found in Section 6.

5. Illustrations and applications

Although the theoretical framework presented in Sections 2 and 3 covers a wider range of applica-
tions, we restrict ourselves to a few examples from regression and classification in order to illustrate
the basic concepts. As outlined in Section 3.2, the degree of knowledge about the data generating
process available to the investigator determines how well we can approximate the theoretical per-
formance by using empirical performance measures. For simple artificial data generating processes
from a univariate regression relationship and a two-class classification problem we will study the
power of tests based on the empirical performance measures for the simulation, competition and
real world problems.
Maybe the most interesting question addressed in benchmarking experiments is “Are there any
differences between state–of–the–art algorithms with respect to a certain performance measure?”.
For the real world problem we investigate this for some established and recently suggested super-
vised learning algorithms by means of three real world learning samples from the UCI repository
(Blake and Merz 1998). All computations were performed within the R system for statistical
computing (Ihaka and Gentleman 1996; R Development Core Team 2004), version 1.9.1.

5.1. Nested linear models

In order to compare the mean squared error of two nested linear models consider the data gener-
ating process following a univariate regression equation

y = β1x + β2x
2 + ε (4)

where the input x is drawn from a uniform distribution on the interval [0, 5] and the error terms
are independent realisations from a standard normal distribution. We fix the regression coefficient
β1 = 2 and the number of observations in a learning sample to n = 150. Two predictive models
are compared:

• a1: a simple linear regression taking x as input and therefore not including a quadratic term
and

• a2: a simple quadratic regression taking both x and x2 as inputs. Consequently, the regres-
sion coefficient β2 is estimated.

The discrepancy between a predicted value ŷ = ak(x|L), k = 1, 2 and the response y is measured
by squared error loss L(y, ŷ) = (y − ŷ)2.
Basically, we are interested to check if algorithm a1 performs better than algorithm a2 for values
of β2 varying in a range between 0 and 0.16. As described in detail in Section 3.2, both the
performance measure and the sampling from the performance distribution depend on the degree
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Simulation Competition Real World
β2 m = 2000 m = 150 OOB OOB-2n CV

0.000 0.000 0.000 0.072 0.054 0.059 0.054
0.020 0.029 0.287 0.186 0.114 0.174 0.109
0.040 0.835 0.609 0.451 0.297 0.499 0.279
0.060 0.997 0.764 0.683 0.554 0.840 0.523
0.080 1.000 0.875 0.833 0.778 0.973 0.777
0.100 1.000 0.933 0.912 0.925 0.997 0.926
0.120 1.000 0.971 0.953 0.984 1.000 0.978
0.140 1.000 0.988 0.981 0.996 1.000 0.996
0.160 1.000 0.997 0.990 1.000 1.000 1.000

Table 1: Regression experiments: Power of the tests for the simulation, competition and real
world problems for varying values of the regression coefficient β2 of the quadratic term. Learning
samples are of size n = 150.

of knowledge available and we therefore distinguish between three different problems discussed
above.

Simulation

The data generating process Zn is known by equation (4) and we are able to draw as many learning
samples of n = 150 observations as we would like. It is, in principle, possible to calculate the mean
squared error of the predictive functions a1(· | Lb) and a2(· | Lb) when learning sample Lb was
observed. Consequently, we are able to formulate the test problem in terms of the performance
distribution depending on the data generating process in a one-sided way:

H0 : E(P1(Zn)) ≤ E(P2(Zn)) vs. H1 : E(P1(Zn)) > E(P2(Zn)). (5)

However, closed form solutions are only possible in very simple cases and we therefore approximate
Pk(Zn) by P̂k(Zn) using a large test sample T, in our case with m = 2000 observations. Some
algebra shows that, for β2 = 0 and model a1, the variance of the performance approximated by a
test sample of size m is V(pb1) = m−1(350/3 · (2− β̂1)4 + 25/2 · (2− β̂1)2 + 2). In order to study
the goodness of the approximation we, in addition, choose a smaller test sample with m = 150.
Note that in this setup the inference is conditional under the test sample.

Competition

We are faced with a learning sample L with n = 150 observations. The performance of any
algorithm is to be measured by an additional test sample T consisting of m = 150 observations.
Again, the inference is conditional under the observed test sample and we may, just by chance,
observe a test sample favouring a quadratic model even if β2 = 0. The data generating process
is emulated by the empirical distribution function DGP = Ẑn and we resample by using the
non-parametric bootstrap.

Real World

Most interesting and most common is the situation where the knowledge about the data generating
process is completely described by one single learning sample and the non-parametric bootstrap
is used to redraw learning samples. Several performance measures are possible and we investi-
gate those based on the out-of-bootstrap observations (RW-OOB) and cross-validation (RW-CV)
suggested in Section 3.2. For cross-validation, the performance measure is obtained from a 5-fold
cross-validation estimator. Each bootstrap sample is divided into five folds and the mean squared
error on each of these folds is averaged. Observations which are elements of training and vali-
dation fold are removed from the latter. In addition, we compare the out-of-bootstrap empirical
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Figure 1: Regression experiments: Power curves depending on the regression coefficient β2 of the
quadratic term for the tests in the simulation problem (Sim) with large (m = 2000) and small
(m = 150) test sample (top) and the power curve of the test associated with the competition
problem (Comp, bottom).

performance measure in the real world problem with the empirical performance measure in the
competition problem:

• RW-OOB-2n. A hypothetical learning sample and test sample of size m = n = 150 each are
merged into one single learning sample with 300 observations and we proceed as with the
out-of-bootstrap approach.

For our investigations here, we draw B = 250 learning samples either from the true data generating
process Zn (simulation) or from the empirical distribution function Ẑn by the non-parametric
bootstrap (competition or real world). The performance of both algorithms is evaluated on the
same learning samples in a matched pairs design and the null hypothesis of equal performance
distributions is tested by the corresponding one-sided permutation test where the asymptotic
distribution of its test statistic (2) is used. The power curves, that are the proportions of rejections
of the null hypothesis (5) for varying values of β2, are estimated by means of 5000 Monte-Carlo
replications.
The numerical results of the power investigations are given in Table 1 and are depicted in Figures 1
and 2. Recall that our main interest is to test whether the quadratic model a2 outperforms the
simple linear model a1 with respect to its theoretical mean squared error. For β2 = 0, the bias
of the predictions a1(·|L) and a2(·|L) is zero but the variance of the predictions of the quadratic
model are larger compared to the variance of the predictions of the simple model a1. Therefore,
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Figure 2: Regression experiments: Power of the out-of-bootstrap (RW-OOB) and cross-validation
(RW-CV) approaches depending on the regression coefficient β2 in the real world problem (top)
and a comparison of the competition (Comp) and real world problem (RW-OOB) (bottom).

the theoretical mean squared error of a1 is smaller than the mean squared error of a2 for β2 = 0
which reflects the situation under the null hypothesis in test problem (5). As β2 increases only
a2 remains unbiased. But as a1 has still smaller variance there is a trade-off between bias and
variance before a2 eventually outperforms a1 which corresponds to the alternative in test problem
(5). This is also reflected in the second column of Table 1 (simulation, m = 2000). The test
problem is formulated in terms of the theoretical performance measures Pk(Zn), k = 1, 2, but we
are never able to draw samples from these distributions in realistic setups. Instead, we approximate
them in the simulation problem by P̂k(Zn) either very closely with m = 2000 or less accurately
with m = 150 which we use for comparisons with the competition and real world problems where
the empirical performance distributions P̂k(Ẑn) are used.

The simulation problem with large test samples (m = 2000) in the second column of Table 1
offers the closest approximation of the comparison of the theoretical performance measures: For
β2 = 0 we are always able to detect that a1 outperforms a2. As β2 increases the performance of
a2 improves compared to a1 and eventually outperforms a1 which we are able to detect always for
β2 ≥ 0.08. As this setup gives the sharpest distinction between the two models this power curve
is used as reference mark in all plots.

For the remaining problems the case of β2 = 0 is analysed first where it is known that the
theoretical predictive performance of a1 is better than that of a2. One would expect that although
not this theoretical performance measure but only its empirical counterpart is used only very few
rejections occur reflecting the superiority of a1. In particular, one would hope that the rejection
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probability does not exceed the nominal size α = 0.05 of the test too clearly. This is true for the
simulation and real world problems but not for the competition problem due to the usage of a
fixed test sample. It should be noted that this cannot be caused by size distortions of the test
because under any circumstances the empirical size of the permutation test is, up to derivations
induced by using the asymptotic distribution of the test statistic or by the discreteness of the test
statistic (2), always equal to its nominal size α. The discrepancy between the nominal size of
tests for (5) and the empirical rejection probability in the first row of Table 1 is caused, for the
competition problem, by the choice of a fixed test sample which may favour a quadratic model
even for β2 = 0 and so the power is 0.072. For the performance measures defined in terms of out-
of-bootstrap observations or cross-validation estimates, the estimated power for β2 = 0 is 0.054.
This indicates a good correspondence between the test problem (5) formulated in terms of the
theoretical performance and the test which compares the empirical performance distributions.

For β2 > 0, the power curves of all other problems are flatter than that for the simulation problem
with large test samples (m = 2000) reflecting that there are more rejections when the theoretical
performance of a1 is still better and fewer rejections when the theoretical performance of a2

is better. Thus, the distinction is not as sharp as in the (almost) ideal situation. However, the
procedures based on out-of-bootstrap and cross-validation—which are virtually indistinguishable—
are fairly close to the power curve for the simulation problem m = 150 observations in the test
sample: Hence, the test procedures based on those empirical performance measures have very
high power compared with the situation where the complete knowledge about the data generating
process is available (simulation, m = 150).

It should be noted that, instead of relying on the competition setup when a separate test sample is
available, the conversion into a real world problem seems appropriate: The power curve is higher
for large values of β2 and the value 0.059 covers the nominal size α = 0.05 of the test problem (5)
better for β2 = 0. The definition of a separate test sample when only one single learning sample
is available seems inappropriate in the light of this result.

5.2. Recursive partitioning and linear discriminant analysis

We now consider a data generating process for a two-class classification problem with equal class
priors following a bivariate normal distribution with covariance matrix Σ = diag ((0.2, 0.2)). For
the observations of class 1, the mean is fixed at (0, 0), and for 50% of the observations of class 2
the means is fixed at (0, 1). The mean of the remaining 50% of the observations of class 2 depends
on a parameter γ via (cos(γπ/180), sin(γπ/180)). For angles of γ = 0, . . . , 90 degrees, this group of
observations moves on a quarter circle line from (1, 0) to (0, 1) with distance 1 around the origin. In
the following, the performance measured by average misclassification loss of recursive partitioning
(package rpart, Therneau and Atkinson 1997) and linear discriminant analysis as implemented in
package MASS (Venables and Ripley 2002) is compared.

For γ = 0, two rectangular axis parallel splits separate the classes best, and recursive partitioning
will outperform any linear method. As γ grows, the classes become separable by a single hyper
plane which favours the linear method in our case. For γ = 90 degrees, a single axis parallel
split through (0, 0.5) is the optimal decision line. The linear method is optimal in this situation,
however, recursive partitioning is able to estimate this cutpoint. For learning samples of size
n = 200 we estimate the power for testing the null hypothesis ‘recursive partitioning outperforms
linear discriminant analysis’ against the alternative of superiority of the linear method. Again,
the power curves are estimated by means of 5000 Monte-Carlo replications and B = 250 learning
samples are drawn.

The numerical results are given in Table 2. The theoretical performance measure is again best
approximated by the second column of Table 2 (simulation, m = 2000). For angles between 0
and 15 degrees, we never reject the null hypothesis of superiority of recursive partitioning and the
linear method starts outperforming the trees for γ between 20 and 30 degrees. Note that although
linear discriminant analysis is the optimal solution for γ = 90 degrees, the null hypothesis is not
rejected in a small number of cases. When a smaller test sample is used (m = 200), more rejections
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Simulation Competition Real World
γ m = 2000 m = 200 OOB OOB-2n CV
0 0.000 0.006 0.011 0.016 0.001 0.016
5 0.000 0.022 0.039 0.050 0.006 0.049

10 0.000 0.064 0.113 0.123 0.024 0.120
15 0.000 0.152 0.236 0.242 0.088 0.262
20 0.045 0.285 0.409 0.385 0.202 0.451
30 0.884 0.632 0.730 0.695 0.514 0.770
50 1.000 0.965 0.958 0.938 0.942 0.949
70 1.000 0.837 0.827 0.781 0.867 0.799
90 0.999 0.823 0.712 0.721 0.803 0.733

Table 2: Classification experiments: Power of the tests for the simulation, competition and real
world problems for varying means of 50% of the observations in class 2 defined by angles γ.
Learning samples are of size n = 200.

occur for angles between 0 and 20 degrees and fewer rejections for larger values of γ. The same
can be observed for the competition and real world setups. The out-of-bootstrap and the cross-
validation approach appear to be rather similar again. The two most important conclusions from
the regression experiments can be stated for this simple classification example as well. At first, the
test procedures based on the empirical performance measures have very high power compared with
the situation where the complete knowledge about the data generating process is available but a
small test sample is used (simulation, m = 200). And at second, the out-of-bootstrap approach
with 2n observations is more appropriate compared to the definition of a dedicated test sample
in the competition setup: For angles γ reflecting the null hypothesis, the number of rejections is
smaller and the power is higher under the alternative, especially for γ = 90 degrees.

5.3. Benchmarking applications

The basic concepts are illustrated in the preceding paragraph by means of simple simulation mod-
els and we now focus on the application of test procedures implied by the theoretical framework to
three real world benchmarking applications from the UCI repository (Blake and Merz 1998). Nat-
urally, we are provided with one learning sample consisting of a moderate number of observations
for each of the following applications:

Boston Housing: a regression problem with 13 input variables and n = 506 observations,

Breast Cancer: a two-class classification problem with 9 input variables and n = 699 observa-
tions,

Ionosphere: a two-class classification problem with 34 input variables and n = 351 observations.

Consequently, we are able to test hypotheses formulated in terms of the performance distributions
implied by the procedures suggested for the real world problem in Section 3.2. Both the 5-fold cross-
validation estimator as well as the out-of-bootstrap observations are used to define performance
measures. Again, observations that occur both in learning and validation folds in cross-validation
are removed from the latter.
The algorithms under study are well established procedures or recently suggested solutions for
supervised learning applications. The comparison is based on their corresponding implementations
in the R system for statistical computing. Meyer (2001) provides an interface to support vector
machines (SVM, Vapnik 1998) via the LIBSVM library (Chang and Lin 2001) available in package
e1071 (Dimitriadou, Hornik, Leisch, Meyer, and Weingessel 2004). Hyper parameters are tuned
on each bootstrap sample by cross-validation, for the technical details we refer to Meyer et al.
(2003). A stabilised linear discriminant analysis (sLDA, Läuter 1992) as implemented in the
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Figure 3: The distribution of the cross-validation (top) and out-of-bootstrap (bottom) performance
measure for the Boston Housing data visualised via boxplots and a density estimator.

ipred package (Peters, Hothorn, and Lausen 2002) as well as the binary logistic regression model
(GLM) are under study. Random forests (Breiman 2001a) and bundling (Hothorn 2003; Hothorn
and Lausen 2005) as a combination of bagging (Breiman 1996a), sLDA, nearest neighbours and
GLM are included in this study as representatives of tree-based ensemble methods. Bundling is
implemented in the ipred package while random forests are available in the randomForest package
(Liaw and Wiener 2002). The ensemble methods average over 250 trees.
We draw independent samples from the performance distribution of the candidate algorithms based
on B = 250 bootstrap samples in a dependent K samples design and compare the distributions
both graphically and by means for formal inference procedures. The distribution of the test
statistic t? from (3) is determined via conditional Monte-Carlo (Pesarin 2001). Once the global
null hypothesis has been rejected at nominal size α = 0.05, we are interested in all pairwise
comparisons in order to find the differences that lead to the rejection.

Boston Housing

Instead of comparing different algorithms we now investigate the impact of a hyper parameter
on the performance of the random forest algorithm, namely the size of the single trees ensembled
into a random forest. One possibility to control the size of a regression tree is to define the
minimum number of observations in each terminal node. Here, we investigate the influence of the
tree size on the performance of random forests with respect to a performance measure defined
by the 95% quantile of the absolute difference of response and predictions, i.e., the d0.95 · meth
value of the m ordered differences |y − a(x,L)| of all m observations (y, x) from some test sample
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Figure 4: The distribution of the cross-validation (top) and out-of-bootstrap (bottom) misclassi-
fication error for the Ionosphere data.

T. This choice favours algorithms with low probability of large absolute errors rather than low
average performance. We fix the minimal terminal node size to 1%, 5% and 10% of the number
of observations n in the learning sample L.
The three random samples of size B = 250 each are graphically summarised by boxplots and
a kernel density estimator in Figure 3. This representation leads to the impression that small
terminal node sizes and thus large trees lead to random forest ensembles with smaller fraction of
large prediction errors. The global hypothesis of equal performance distributions is tested using
the permutation test based on the statistic (3). For the performance measure based on cross-
validation, the value of the test statistic is t? = 0.0018 and the conditional P -value is less than
0.001, thus the null hypothesis can be rejected at level α = 0.05. For the performance measure
defined in terms of the out-of-bootstrap observations, the value of the test statistic is t? = 0.0016,
which corresponds to the elevated differences in the means compared to cross-validation. Again,
the P -value is less than 0.001. One can expect an error of not more than US$ 6707,– for 95% of
the house prices predicted with a forest of large trees while the error increases to US$ 8029,– for
forests of small trees. It should be noted that out-of-bootstrap and cross-validation performance
distributions lead to the same conclusions.

Ionosphere

For the Ionosphere data the supervised learners SVM, random forests and bundling are compared.
The graphical representation of the estimated densities of the distribution of misclassification error
in Figure 4 indicate some degree of skewness for all methods. Note that this is not visible in the
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Figure 5: The distribution of the out-of-bootstrap performance measure for the Breast Cancer
data (top) and asymptotic simultaneous confidence sets for Tukey all-pair comparisons of the
misclassification errors after alignment (bottom).

boxplot representations. The global hypothesis can be rejected at level α = 0.05 (P -value ≤ 0.001)
and the closed testing procedure indicates that this is due to a significant difference between the
distributions of the performance measures for SVM and the tree based ensemble methods while
no significant difference between bundling and random forests (P -value = 0.063) can be found. In
this sense, the ensemble methods perform indistinguishably and both are outperformed by SVM.
For the out-of-bootstrap performance measure, significant differences between all three algorithms
can be stated: Bundling performs slightly better than random forests for the Ionosphere data
(P -value = 0.008).

Breast Cancer

The performance of sLDA, SVM, random forests and bundling for the Breast Cancer classification
problem is investigated under misclassification loss. Figure 5 depicts the empirical out-of-bootstrap
performance distributions. An inspection of the graphical representation leads to the presumption
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that the random samples for random forests have the smallest variability and expectation. The
global hypothesis of equality of all four algorithms with respect to their out-of-bootstrap perfor-
mance can be rejected (P -value ≤ 0.001). Asymptotic simultaneous confidence sets for Tukey
all-pair comparisons after alignment indicate that this is due to the superiority of the ensemble
methods compared to sLDA and SVM while no significant differences between SVM and sLDA on
the one hand and random forests and bundling on the other hand can be found.
The kernel density estimates for all three benchmarking problems indicate that the performance
distributions are skewed in most situations, especially for support vector machines, and the vari-
ability differs between algorithms. Therefore, assumptions like normality or homoskedasticity are
hardly appropriate and test procedures relying on those assumptions should not be used. The con-
clusions drawn when using the out-of-bootstrap performance measure agree with those obtained
when using a performance measure defined in terms of cross-validation both quantitatively and
qualitatively.

6. Discussion and future work

The popularity of books such as ‘Elements of Statistical Learning’ (Hastie, Tibshirani, and Fried-
man 2001) shows that learning procedures with no or only limited asymptotic results for model
evaluation are increasingly used in mainstream statistics. Within the theoretical framework pre-
sented in this paper, the problem of comparing the performance of a set of algorithms is reduced to
the problem of comparing random samples from K numeric distributions. This test problem has
received a lot of interest in the last 100 years and benchmarking experiments can now be analysed
using this body of literature.
Apart from mapping the original problems into a well known one, the theory presented here clarifies
which hypotheses we ideally would like to test and which kind of inference is actually possible
given the data. It turns out that in real world applications all inference is conditional on the
empirical performance measure and we cannot test hypotheses about the theoretical performance
distributions. The discrepancy between those two issues is best illustrated by the power simulations
for the competition problem in Sections 5.1 and 5.2. The empirical performance measure is defined
by the average loss on a prespecified test sample which may very well, just by chance, favour
overfitting instead of the algorithm fitting the true regression relationship. Consequently, it is
unwise to set a test sample aside for performance evaluation. Instead, the performance measure
should be defined in terms of cross-validation or out-of-bootstrap estimates for the whole learning
sample. Organizers of machine learning competitions could define a sequence of bootstrap or
cross-validation samples as the benchmark without relying on a dedicated test sample.
It should be noted that the framework can be used to compare a set of algorithms but does not
offer a model selection or input variable selection procedure in the sense of Bartlett, Boucheron,
and Lugosi (2002), Pittman (2002) or Gu and Xiang (2001). These papers address the problem
of identifying a model with good generalisation error from a rich class of flexible models which is
beyond the scope of our investigations. The comparison of the performance of algorithms across
applications (question 9 in Dietterich 1998), such as for all classification problems in the UCI
repository, is not addressed here either.
The results for the artificial regression and the real world examples suggest that we may detect
performance differences with fairly high power. One should always keep in mind that statistical
significance does not imply a practically relevant discrepancy and therefore the amount of the
difference should be inspected by confidence intervals and judged in the light of analytic exper-
tise. In some applications it is more appropriate to show either the relevant superiority of a new
algorithm or the non-relevant inferiority of a well-established procedure, i.e., one is interested in
testing one-sided hypotheses of the form

H0 : φ(P1) ≤ φ(P2)−∆,

where ∆ defines a pre-specified practically relevant difference.
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This paper leaves several questions open. Although virtually all statistical methods dealing with
numeric distributions are in principle applicable to the problems arising in benchmark experi-
ments, not all of them may be appropriate. From our point of view, procedures which require
strong parametric assumptions should be ruled out in favour of inference procedures which con-
dition on the data actually seen. The gains and losses of test procedures of different origin in
benchmarking studies need to be investigated. The application of the theoretical framework to
time series is easily possible when the data generating process is known (simulation). Drawing
random samples from observed time series in a non-parametric way is much harder than redrawing
from standard independent and identically distributed samples (see Bühlmann 2002, for a survey)
and the application within our framework needs to be investigated. Details of the framework to
unsupervised problems have to be worked out. The amount of information presented in reports
on benchmarking experiments is enormous. A numerical or graphical display of all performance
distributions is difficult and therefore graphical representations extending the ones presented here
need to be investigated and applied. Point estimates need to be accomplished by some assessement
of their variability, for example by means of confidence intervals. In principle, all computational
tasks necessary to draw random samples from the performance distributions are easy to implement
or even already packaged in popular software systems for data analysis but a detailed description
easy to follow by the practitioner is of main importance.
To sum up, the theory of inference for benchmark experiments suggested here cannot offer a fixed
reference mark such as for measurements in land surveying. However, the problems are embedded
into the well known framework of statistical test procedures allowing for reasonable decisions in
an uncertain environment.

Acknowledgements

This research was supported by the Austrian Science Foundation (FWF) under grant SFB#010
(‘Adaptive Information Systems and Modeling in Economics and Management Science’) and the
Austrian Association for Statistical Computing. In addition, the work of Torsten Hothorn was
supported by the Deutsche Forschungsgemeinschaft (DFG) under grant HO 3242/1-1. The authors
would like to thank two anonymous referees and an anonymous associate editor for their helpful
suggestions.

References

Alpaydin E (1999). “Combined 5× 2 cv F Test for Comparing Supervised Classification Learning
Algorithms.” Neural Computation, 11(8), 1885–1892.

Bartlett PL, Boucheron S, Lugosi G (2002). “Model Selection and Error Estimation.” Machine
Learning, 48(1–3), 85–113.

Bauer E, Kohavi R (1999). “An Empirical Comparison of Voting Classification Algorithms: Bag-
ging, Boosting, and Variants.” Machine Learning, 36(1–2), 105–139.

Berger VW (2000). “Pros and Cons of Permutation Tests in Clinical Trials.” Statistics in Medicine,
19(10), 1319–1328.

Berger VW, Lunneborg C, Ernst MD, Levine JG (2002). “Parametric Analyses in Randomized
Clinical Trials.” Journal of Modern Applied Statistical Methods, 1(1), 74–82.

Blake CL, Merz CJ (1998). “UCI Repository of Machine Learning Databases.” http://www.ics.
uci.edu/~mlearn/MLRepository.html.

Blockeel H, Struyf J (2002). “Efficient Algorithms for Decision Tree Cross-Validation.” Journal of
Machine Learning Research, 3, 621–650.

Copyright c© 2005 American Statistical Association, Institute of Mathematical Statistics, and Interface

Foundation of North America

http://www.ics.uci.edu/~mlearn/MLRepository.html
http://www.ics.uci.edu/~mlearn/MLRepository.html


20 The Design and Analysis of Benchmark Experiments

Breiman L (1996a). “Bagging Predictors.” Machine Learning, 24(2), 123–140.

Breiman L (1996b). “Out-of-Bag Estimation.” Technical report, Statistics Department, Univer-
sity of California Berkeley, Berkeley CA 94708. ftp://ftp.stat.berkeley.edu/pub/users/
breiman/.

Breiman L (2001a). “Random Forests.” Machine Learning, 45(1), 5–32.

Breiman L (2001b). “Statistical Modeling: The Two Cultures.” Statistical Science, 16(3), 199–231.
With discussion.

Breiman L, Friedman JH (1985). “Estimating Optimal Transformations for Multiple Regression
and Correlation.” Journal of the American Statistical Association, 80(391), 580–598.

Bylander T (2002). “Estimating Generalization Error on Two-Class Datasets Using Out-of-Bag
Estimates.” Machine Learning, 48(1–3), 287–297.
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