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Fitting Finite Mixtures of Linear Mixed
Models with the EM Algorithm

Betting Griin

Department fiir Statistik und Mathematik, Wirtschaftsuniversitat Wien
Augasse 2-6, 1090 Wien, Austria, Bettina. Gruen@uwu-wien. ac.al

Abstract. Finite mixtures of linear mixed models are increasily applied in different
areas of application. They conveniently allow to account for correlations between
observations from the same individual and to model unobserved heterogeneity be-
tween individuals at the same time. Different variants of the EM algorithm are
possible for maximum likelihood (ML} estimation. In this paper two different ver-
sions for fitting this model class are presented. One variant of the EM algorithm
requires weighted ML estimation. As this fitting method might not be readily avail-
able in standard software sufficient conditions which allow to transform a weighted
into an unweighted ML estimation problem are derived.

Keywords: EM algorithm, finite mixture, lincar mixed model, unobserved
heterogencity

1 Introduction

Finite mixture models are a popular method for modelling unobserved het-
erogeneity. In the last decades the original model of finite mixtures of distri-
butions has been extended in several ways and nearly arbitrary component
specific models are nowadays used in applications. This development has been
faciliated by estimation techniques which constitute a common framework for
fitting arbitrary mixture models and which require only to modify the com-
ponent specific model estimation for different mixture models. This holds for
the Expectation-Maximization (EM) algorithm (Dempster, Laird and Rubin
(1977)) for maximum likelihood (ML) estimation.

Finite mixtures of mixed effects models allow to account for different
kinds of heterogeneity between individuals (Friithwirth-Schnatter 2006). The
components of the mixture represent different groups with distinct param-
eterizations while the random effects allow for individual differences which
cluster around a common mean value. These models are applied in several
different areas such as marketing (Lenk and DeSarbo (2000)), medicine (Xu
and Hedeker (2001)) and bicinformatics (Luan and Li (2004)).

This paper is organized as follows: Section 2 introduces the model. Sce-
tion 3 outlines two variants of the EM algorithm for ML estimation of this
model class and derives sufficient conditions for allowing the use of imple-
mentations of fitting algorithms for unweighted mixed-effects models. A short
sketch of a possible implementation in R is provided.



166 Griin, B.
2 Model specification

In the following finite mixturcs of mixed effects models are considered where
the mixed effects are needed to account for correlations between observations
from the same individual and the finite mixture models the unobserved het-
erogeneity between the individuals. This implies that the component mem-
berships of the individuals are fixed.

Assume observations from N individuals are given and for each individual
1 the data (Y5, X;, Z;,w;) is given which consists of n; observations on the de-
pendent variables Y; = (yi;);=1,... n,, the covariates for the fixed effects X; =
(a:ij )jzl,,_’m and the covariates for the random effects Z; = (2;5) =1, n.- Wi
denote the individual specific concomitant variables.

The finite mixture density of mixed effects models with K components is
given for the observations of individual 7 by

K n;
h(Y3| Xs, Ziywi, ©) = Zﬂ"k(wi)/n b1 (Yis; ag B+ 2igbf, 07 ) (b5 0,0 )dbY
k=1 =1

K
= m(wi)n, (Yis XiBg, 29027 + opl,)-

k=1

a1, ) denotes the d-dimensional normal distribution with mean p and
variance-covariance matrix 3. The fixed effects are given by 8;, and the ran-
dom effects by b¥. The random effects are assumed to have mean zero which
implies that any constant influence is already captured by the fixed effects.
This can be ensured by constraining that the covariates Z; span a subset of
the space spanned by X; over all individuals i =1,..., N.

The variance-covariance matrix of Y; for component k is given by

b =olxk = 2w, 2T + 0i1,,.

It is assumed that ¥y, = 026y, and LF = 02(Z,0,.27 + I,,).

The component weights 7 (w;) arc assumed to fulfill the following condi-
tions for all

M=

mp(w;) >0 Vk and i (w;) = 1.

k=1

The most common concomitant variable model for w; is the multinomial logit
model (Dayton and Macready {1988)).

This model specification implies that there exist no common parame-
ters which are constant over the components and hence, cach of the com-
poncents can be separately estimated given the component memberships of
the individuals. As the component memberships are fixed for all observations
ji=1,...,n; of individual ¢, it is also assumed that the concomitant variables
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w; are constant for each individual. A different model specification where the
concomitant variables for individual 4 are given by Wi = (ws;);=1,... n, and
the component membership 7y, is not fixed for each individual is for example
given in Yau et al. (2003) and Hall and Wang (2005).

3 Estimation with the EM algorithm

The EM algorithm is in general applied in a missing data context. It is an
iterative procedure which alternates between an E(xpectation)-step and a
M(aximization)-step. The EM algorithm works on the complete likelihood
derived by also including the missing data and exploits the fact that the com-
plete likelihood is in general easier to maximize than the original likelihood.
The missing data is integrated out in the E-step by determining the expee-
tation of the complete likelihood given the available data and the current
parameter estimates. The expected complete likelihood is then maximized in
the M-step.

The EM algorithm has been shown to increase the likelihood in cach
step and hence to converge for bounded likelihoods. The implementation of
the EM algorithm can often be simplified by introducing more variables as
missing data. However, the disadvantage is that the convergence of the EM
algorithm depends on the amount of missing data and hence, more iterations
are needed if the amount of missing data is increased.

For finite mixtures of linear mixed effects models different variants for
ML cstimation with the EM algorithm have been proposed. In the following
two different versions are discussed in detail which differ with respect to the
variables they use as missing data.

3.1 Random effects and component memberships as missing data

The most popular variant of the EM algorithm for fitting finite mixtures of
linear mixed effects models is where the component memberships as well as
the random cffects arc treated as missing data and imputed in the E-step
(see for example Xu and Hedcker (2001) or Celeux ct al. (2005)).

For this variant the E-step consists of determining

1. the a posteriori probabilities that an individual 7 is from component k:

. 7k (Wi) b, (XiBr, Zi¥ ZF + o2l,,)
ik =
leil ! (w1)¢nq (‘(lﬁla Zl'plZ;T + 0'[2-[17,1)

and

2. the mean and the variance of the random effects b; conditional on the
current parameter estimates ©, the observations Y;, the covariates X;
and Z; and the component k. These are calculated using that b; and Y;



168  Griig, B.

follow a joint multivariate normal distribution conditional on &, X;, Z;
and k:

b, e = E[b|Yi, X5, Z5, 0, k)

1 1
= [ 2] Zi + 07— 2T (Vi = XiBy)
of o2

1 . -1
Eooke = Vb|Y;, X3, 2,0,k = {;‘5217 Zi + ‘I’k—l] .
A

The expected complete likelihood is given by

K N
sz {logm (w;) — ((nI + ¢) log(27) + n;log a,\ + log |W |+

k=1 1=1

Zi (Yis — ZigHes k — TigBr)? + 2155, AZ
> >
j=1 O

0 o)) |

tr(-) denotes the trace of a matrix.

For the M-step the parameters of the concomitant variable model and the
component specific model can be separately determined. For the concomitant
variable model a weighted multinomial logit model has to be cstimated if the
component weights are determined through a multinomial logit model. This
estimation method is often already available in standard statistical software.
For the component specific model the parameters can be determined in closed
form by solving the equations derived by determining the derivatives of the
expected complete likelhood and setting them to zero:

N n;
Br = Z Tik Z whwis) T D T Y wh (Yig — Zabtei k)
L i=1  g=1

=1 Tik =1
67 = Zﬂk Z(yzj — Zijlhb, k — ngﬂk) + 245 %%, kZ
Z 1 TakT 5—1
. 1 N
Uy = e Zﬂk(lzb & b kB, 1)

Zr— Tik =1

3.2 Component memberships as missing data

An alternative implementation would be the straightforward application of
the EM algorithm as in general used for finite mixtures, i.e., only the com-
ponent membership is treated as missing data. This implementation requires
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the weighted ML estimation of the linear mixed modecl for the M-step and
the determination of the posterior probabilities in the E-step. Standard soft-
ware for fitting linear mixed effects models often does not allow for weighted
ML estimation or does ouly account for different variance-covariance matrices
for the error term. Under certain conditions an unweighted ML estimation
can be used for weighted ML estimation where the observations are suitably
transformed. The following corollary gives sufficient conditions.

Corollary 1 (Weighted ML estimation). The weigthed ML estimate of
0 of a linear mized model with observations (Y;, X;, Z;) and weights 7; for
i =1,..., N is equivalent to the ML estimate of 8 of a linear mized model
with transformed variables X; = VT X; and Y; = VTiY; and the same Z; if

Z;=Z Vi=1,...,N.

Proof. The weighted deviance which is equivalent to —2 log-likelihood is given
by

N
dev(B,0,0%) = Znni log(2m0?) + 7 log | K|+

i=1

7i -
+ 5 (Vi = X:B)T 551 (¥ - X.8).

The ML estimates of the cocﬁidonts 3 and the variance 62 depend on the
weighted residual sum of squares 72; and for determining the profile deviance
they are all functions of 8:

r2,(0) = 1i(Yi — X:5(0))" 5! (Yi - X:(6)) )

AQ({)) Zz—l Tl(e) (2)
PO
Given Equation (1) ,3(9) is given by the generalized least squares estimate

for the variance-covariance matrix Xyg.
The profile deviance is then given by

N 72
dev(f) = Z Tin; log (Zw%l__l_&> + 7:log | Zig| + ins. (3)

i=1 i=1 TiTh

If Z; = Z for all i and hence also n; = n, this gives
dev(p) = 7 [n <1 + 100 )+ log(z 2, ) +1log|2627 + 1,4]

- N
where 7 =377 | 7.
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The profile deviance for Xl = /w; X; and f’l = JW;Y; is given by

N
dev(g) = N {n (1 + log(-]%/,—?%) + log(z ri,)) +log|Z62T + I,,,|} .

i=1

As the profile deviances are equivalent up to an additive constant and a
constant factor they are maximized for the same 6.

The estimates for 8 and o2 are then determined using Equations (1) and
(2). The estimate of 3 is the same for the weighted and the unweighted but
transformed fitting problem, because the residual sum of squarcs term is
identical up to a constant factor. Ouly the estimate of ¢2 has to be modified
if the estimates of the unweighted but transformed fitting problem are used.
As can be seen in Equation (2) the denominator of the weighted estimation
problem is Efil T;n; while it is Zil n; for the unweighted but transformed
problem.

From the weighted profile deviance (Equation 3) it can be seen which
changes are necessary to allow for weighted ML estimation. It is not sufficient
to only change the residual sum of squares but the weights also influence
the sum over the logarithm of the determinant of the individual variance-
covariance matrices. Accounting for the weights in the estimation might then
not be easily possible if for example the following simplification is used by
the software for the determining the determinant

1227 + Inw o) =122 + 1.

The sufficient conditions indicate that standard software can casily be
used in the case where a balanced design is given, i.e., the same observa-
tions are available for each individual. Without missing data this occurs for
example in bioinformatics where gene expression data is observed over time
at a priori specified time points. The conditions might also be more likely
applicable in the case where only a random intercept is fitted.

If the entire data set does not fulfill the sufficient conditions, only the sub-
sample fulfilling the conditions might be used in a first step to pre-analyse
the data. The entire data set can then be fitted using the EM algorithm
where also the random effects are used as missing information but which is
initialized in the previously found solution.

If the transformation of the weighted into an unweighted ML estimation
problem is not possible, the Classification EM algorithm (CEM; Celeux and
Govaert (1992)) can be used instead of the classical EM algorithm. The CEM
algorithm allows to use unweigthed ML estimation methods. However, it does
not maximize the likelihood but the classification likelihood. The advantage
of the CEM algorithm is that it converges in general faster than the EM
algorithm, i.e., it needs less iterations. It has been therefore proposed to
use the CEM algorithm with different random initializations to find a good



Mixtures of Linear Mixed Models 171

starting point for the ordinary EM algorithm which in the case of finite
mixtures of mixed effects models might be the variant where the random
effects arc also included in the missing data.

3.3 Implementation in R

Both variants of the EM algorithm can easily be implemented in R, an envi-
ronment for statistical computing and graphics (R Development Core Team
(2007)). Package flexmix (Leisch (2004)) for example implements the EM al-
gorithm for ML estimation of finite mixture models. It provids the E-step and
all data handling and arbitrary mixture models can be fitted by modifying
the M-step. The implementation of the package aims at ecasy extensibility
and tries to enable rapid prototyping. In general only a model driver for the
component specific model needs to be written which specifies the fitting func-
tion. In addition the package also allows fitting of finite mixture models with
the CEM algorithm.

The recommended package in R for fitting linear mixed cffects models is
nlme (Pinheiro and Bates (2000)). Function 1me () allows to specify a weights
argument, which can be used to describe the within-group heteroscedasticity
structure. An alternative implementation is provided by the package Imed
(Bates (2007)). The weights argument of function lmer() specifics that a
weighted residual sum of squares is minimized. Hence, the recommended func-
tions in R do not allow for weighted ML estimation of linear mixed models.
The sufficient conditions can be used to determine when it is possible to es-
timate the transformed problem using this functionality in combination with
package flexmix.

4 Conclusion and future work

The most common way of fitting finite mixtures of mixed effects models with
the EM algorithm is by introducing the component memberships and the
random effects as missing data. However, this signifies that this EM algorithm
is different from the general application of the EM algorithm for finite mixture
models where only the component memberships are used as missing data and
the M-step consists of weighted ML estimation of the component specific
models.

As the reason for the preference of this variant might be that weighted ML
estimation of linear mixed models is not readily available in standard statisti-
cal software, this paper investigates which conditions need to be fulfilled that
the weighted ML problem is equivalent to an unweighted but transformed
ML problem. The results indicate that this is possible in applications where
a balanced design is used to collect the data. In addition it is likely to be at
least applicable for a subset of the data in random intercept models.
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In the future the performance of the two EM algorithms should be com-
parcd. The variant where the component memberhips as well as the random
effects arc used as missing data can be expected to need more iterations while
each iteration will take less time as the M-step is given in closed form. The
advantage of the other variant is that if the fitting function of the linear
mixed model is improved this can be exploited in the M-step. In addition it
might be useful to investigate how the fitting function of the linear mixed
models has to be modified to allow for weighted ML estimation.
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