University of Wollongong

Research Online

Department of Computing Science Working Faculty of Engineering and Information
Paper Series Sciences
1984

Modularization: a first draft

Alfs T. Berztiss
University of Pittsburgh, uow@berztiss.edu.au

Follow this and additional works at: https://ro.uow.edu.au/compsciwp

Recommended Citation

Berztiss, Alfs T., Modularization: a first draft, Department of Computing Science, University of Wollongong,
Working Paper 84-8, 1984, 43p.
https://ro.uow.edu.au/compsciwp/81

Research Online is the open access institutional repository for the University of Wollongong. For further information
contact the UOW Library: research-pubs@uow.edu.au

https://ro.uow.edu.au/
https://ro.uow.edu.au/compsciwp
https://ro.uow.edu.au/compsciwp
https://ro.uow.edu.au/eis
https://ro.uow.edu.au/eis
https://ro.uow.edu.au/compsciwp?utm_source=ro.uow.edu.au%2Fcompsciwp%2F81&utm_medium=PDF&utm_campaign=PDFCoverPages

MODULARIZATION: A FIRST DRAFT

Prof. A.T. Berztiss

Department of Computer Science
University of Pittsburgh

Preprint No. 84-8 May 29, 1984

P. O Box 1144, WOLLONGONG N.S.W. 2500, AUSTRALIA
tel (042)-270-85%3
telex AA29022

N OO~

MODULARIZATION: A FIRST DRAFT

introduction 1

Principles of modularization 3

A case study: file update 8
Specification 13

fterators and their synchronization 19
Case study. two-way merge 25
Modules in Ada 36

Bibliography 39

1. introduction

From the very beginning of eiectronic computation program size has
created problems. They have been both conceptual (How am | to under-
stand this f{ifty page listing?} and physicai (Must | recompile 2500 lines of
code after every littie change?). Software engineering has been our
response to these problems. Two primary toois of soiftware engineering are
data abstraction and modularization. and our purpose here is to try and
make them consistent with each other.

Data abstraction encompasses three concepts: identification of data
structures with operations, data independence. and encapsulation. The
essence of an algebra are its operations, e.g.. union and compiementation
for the algebra of sets. Similarly we now regard the essence of a data
structure o be the set of operations associated with it. e.g.. openstack.
push, pop. readtop. and empty in the case of a stack. The Iinterpretation
of data structures as algebraic systems can be carried as far as expressing
the meaning of the data structure operations in the form of axioms. This
formal approach is called algebraic specification.

There may be some doubts regarding the practicality and even practi-
cabiiity of algebraic specification. but less formal approaches to specification
of data structures can certainly be made a permanent part of the
programmer’s craft. and the practical utility of data Iindependence has been
well established. What the latter means is that programs that make use of
data structures shouid be unaffected by changes in the implementation of
these data structures. In other words. a program should communicate with
its data structures only by means of procedure and function calls. This
enables the effecis of any change in the impiementation of a data structure
to be confined to the impiementation aione; we do not have 1o examine all
programs that make use of our data structure for the effects the change
might have on these programs. This heips a lot because we would be
sure to forget to examine some such programs. we would be sure to miss
a place where a change is needed. we would be sure to make erroneous
changes.

Encapsufation carrles data independence one step further. Under
encapsulation the programmer is forced to access ali data structure imple-
mentations by means of function and procedure calis aione. No other

means of access are provided. This approach is aiso- called information
hiding. The effect of encapsulation is to make the interface of the encap-
sutated unit with the rest of the program as. smail as possible.

The term module has received many definitions. Here are a few of
the more common ones:

(1) A separately compilable unit.

2 A separately compilable unit kept within certain size limits, e.g.. 50
lines of. code.

(3) An encapsuled unit, ie. a unit that presents a small interface to the
rest of the program. but need not be identified with a data type.

(4) An encapsuled unit representing the implementation of a particuiar data
type. e.g.. of a symboi table.

Qur purpose of wanting to combine data abstraction with modularization
makes us pick (4) as our definition of a moduie. Moreover, because we
shall dea! with both specifications and impiementations of modules, we must
arrive at an understanding of what is meant by a specification. We adopt
the following definition:

A specification of a module is a description of the interface between
the moduie and a user program that is sufficiently detalled and precise
to enabie the user to design the program that is to use the module
without any knowiedge of how the module is impiemented. and 1o
enable the module to be implemented without any knowledge of the
programs that are to use the module. The specification should also
enable us to establish separately the correctness of the module and of
the programs that are to use fit.

Throughout we shall see the need for compromise. On the one hand.
for purposes of verlfication of the consistency of a moduie with its specifi-
cation. and for reusability of a module in a variety of settings. we would
prefer a module to be fairly small. On the other hand, we want to keep
down the traffic of data across a module interface. and this objective Is
easier to achieve with large modules.

2. Principtes of modularization

Modules have been around almost as long as programming. but., to
begin with, their significance was seen exclusively in separable compilation.
The 1dea that modules are not just subroutines found its first significant
realization in the design of Simula {Bi73]. the Simula class is what we now
understand a module to be. '

Simula is an extension of Algoi60. and. whereas Fortran provides com-
piex numbers as a built-in data type. AIgQoi60 does not. Our example of a
Simula class definition will be the class of complex:

class complex(re,im). rveal re,im:
begin
ref(compiex) procedure add{c): ref(complex) c:
if c=/=none then add:- new compiex(retc.re, im+c.im);
ref(complex) procedure sub(c): ref(complex) c.
if c=/=none then sub- new compiexGre-c.re, im-c.im);
ref(compliex) procedure mult(c); ref(compiex) c: _
H c=/=-none then muit:- new complex(re*c.re-im*c.im, re*c.im+im*c.re):
reficomplex) -procedure conjugate:
conjugate:- new complexte,—im):
ref(compiex) procedure stretch(k). veal k:
stretch:~ new complex(k*re, k*im);
real procedure modulus;
modulus:= sqrtre*re+im*im);
ref(compliex) procedure div(c). ref(compiex) c:
begin real m: '
i c=/=none then
begin
m:= C.modulus:
if m#0.0 then
div.- mult(c.conlugate).‘stretch(I/m)
. end
end div;
end complex:

Although the procedures of a class declaration were intended to be the
only means of access to objects of a ciass, proper encapsulation did not
become a feature of Simula implementations untit 1976 or so [Pa76]. How-
ever, already in 1972 Parnas had clarified the principles on which to base
encapsulation (Pa72a}l, and perform the decomposition of systems into
modules {Pa72bl. These papers have dated remarkably littie.

The first of Parnas’ papers enunciates the principies of information hid-
ing. and gives five examples of specifications of modules. The first two
specify a stack and & binary tree. The other three specify modules of a
program for the construction of KWIC indexes. The second paper takes up
the KWIC index program, outlines two different modularizations., and discusses
why one of the modularizations is preferable to the other. The task con-
sists of accepting a sequence of text lines that are themseives sequences
of text words. The lines are to be subjected to circular shifting In which
the first word of each line is repeatedly moved from the beginning to the
end of the line. (n the example below five circular shifts have been pro-
duced by this process:

software module specification with examples
madule specification with examples software
specification with exampfes software module
with examples software module specification
examples software module specification with

The output of the program is to be an aiphabetized list of all circular shifts
of all input lines. '

Parnas starts out by defining what he calis a conventional program
decomposition into five modules: input. circular shifting, alphabetization, out~
put. and master control. Then he proposes a second decomposition: line
storage. input. circular shifting. ailphabetization. output, master control. The
only obvious difference between them is the addition of the line storage
moduie to the second decomposition, but this change brings about such
differences in the specifications of the other moduies that in the end very
littie beslides their names remains unchanged.

Let us examine the first decomposition in detail. The input module is
to read data lines and store them in fast memory. Characters are to be
packed in machine words. and a special word tefmlnatlng character Is to
be inserted after every text word. The output of this module is to be the
stored text, and an index of line starting addresses. The circular shifting
module is to generate an index that gives the address of the first character
of each text word of each line paired to the number of the line in which
the word occurs. Entries in this index follow the order in which the words

of the text are stored., and the purpose of the aiphabetization module is to
arrange these entries in alphabetical order of the words. The output
modute is to use the atphabetical word index and the line index to generate
an alphabetical listing of alf circular shifts. The master control module Is
to look after the sequencing among the other modules, produce error mes-
sages. etc. The essential feature of this decomposition is its linearity: data
enter a pipeline, and the master controi module pushes the data along this
pipeline. »

Under the second decomposition each module typically consists of
several procedures. The ensemble of procedures that make up the line
storage module could contain the f{ollowing: (3) tunction getchar that is to
have for its value a designated character in a designated word of a desig-
nated line, e.g.. getchar(1,2.3) would return the third character of the
second word of the first line: (b) procedure putchar that is to insert a
glven character in a designated position of a designated word in a desig-
nated line; (c) function wordcount that is to have the number of words In a
designated line for its value: (d) function charcount that is to return _the
number of characters in a particular word: and so forth. Here, whenever
we speak of a word, we mean a text word.

The Iinput module uses the procedures of the line storage module.
Parnas’ circular shifting module consists of procedures that are analogous
to those of the line storage module. Their purpose is to create an
impression that every line of n words has been replaced by n lines, which
are the circular shifts of the original line. For example, csgetchar(1.,2,3)
wouid return the third character of the second word of the first line of this
"expanded” table. Of course, the procedures of the circular shift module
couid be defined in terms of the procedures of the line storage module.
indeed. they should be so defined because then there would be no need
for a separate specification; the definition would be its own specification.
The procedures of the alphabetization and output moduies could similarly be
defined in terms of those of the iine storage module. The second decom-
position is hilerarchical in nature. with the line storage module its founda-
tion.

The chief advantage of the second decomposition is that only the line
storage module need be concerned with the physical storage of the text.
Suppose we were to change the line storage mode, packing a different
number of characters to a machine word. or doing without the text word
separator. Under the first decomposition such changes would affect every
module. Under the second. only the line storage module would have to be
changed. It seems that we still have the pipeline aspect. input done before
circular shifting. circular shifting before aiphabetization. and alphabetization
before output. However, now we can make changes among these modules,
for example intermeshing alphabetization and output, without any effect on

the remaining modules.

Whereas the flrst decomposition was based on the notion of a
sequence of tasks. the basis for the second decomposition is data. The
line storage module Is a data structure. composed of an object--the line
store--and a set of operations. The input module creates the object. cir-
cular shifting expands it. alphabetization rearranges it. Because we are
dealing with an abstract data structure, the expansion and rearrangement
may be actual, or, alternatively. the same effect may be achieved by means
of indexes. The output module mertely demands output lines in alphabetical
order of circular shifts. Whether there actually exists an expanded tabie of
circular shifts from which to pick up lines for output. or the text of the cir-
cular shifts is generated as and when required by means of indexes is
immaterial as regards the output module.

Three interesting features of modularization remain to be discussed.
The first relates to muitiple representations. The input text. has to be
stored somewhere in its original form, but a circular shift may be merely
an index entry. Therefore the table of inputs and the table of circular
shifts can differ in kind. This difference becomes targely immaterial when
we make the line our primary data object. Then the tables are lists of
lines, and the Internal representation of a fine shouid be irrelevant. In
practice. however, this is not quite so. For example, an equality test for
iines raises nontrivial conceptual probiems. Modules provide a convenient
way of dealing with muitiple representations. We stipulate. when a set of
moduies subsumes a data type. the data type may have different represen-—
tations from module to module, but not within a modufe.

This stipulation has a significant effect on module interfaces. Suppose
a line is handed from module to module. If representation of lines differs
in the two modules. then the interface should take care of the mapping
between representations. The problem is how to make this consistent with
data independence as far as practicable. One soiution Is to introduce spe-
ciai procedures that we call transformers. They would be interposed
between modules. and their purpose woulid be to map the output of one
module into the form expected as input by the other. Transformers would
be implementation dependent, i.e.. whenever the form of the output from the
impiementation of a moduie would change, alli transformers associated with
the module would have to be rewritten.

Next let us consider pipefining. We mentioned above that the pipeline
concept was the basis for the first decomposition. We should note now
that a pipeline is more than just a bunch of modules set end to end. and
that there are two distinct kinds of moduies. Modules of the first kind are
data types. modules of the second kind processes. One way of looking at
a process is that it accepts an input, and transforms it into an output. In
other words. we are dealing with objects. A data type, on the other hand,

is a set of operations. Some appreciation of this distinction can be seen
in the second decomposition. but there has not been total separation. If a
total separation were t0 be made, then we would have a set of data types
consisting of operations. and a set of processes expressed in terms of
invocations of these operations. The processes would then form a pipeline
In which the output of one process becomes the input of the next. and—-
and this is the important property of a pipeline——a receiving process could
start to receive and process data before the generating process had com-
pleted its work.

Finally. let us be aware of a certain arbitrariness in aill of this. The
text line seems the most appropriate data type for our problem. However,
in dectding on the operations that wiil constitute this data type. we should
look beyond the immediate probiem. imagine other contexts in which the
data type might come to be used, and try to make the data type very gen-
eral. Obviously we cannot imagine all future uses of the data type. and the
data type will keep evolving. One way of decreasing the costs of this evo-
iutionary process is to select a set of unchanging primitive operations, and
define all other operations in terms of these primitives or of operations pre—
viously defined in terms of these primitives. But does not then the distinc-
tion between operations and processes become somewhat blurred? More-
over, in a broader context, should not the entire KWIC Index program be
regarded as a primitive operation? These are difficult questions. but we
hope that we shall be giving enough insight into the problems assoclated
with modularization to enable one to tackie such questions.

3. A case study: file update

Consider the customer sailes file of a company. We shall distinguish
between a master file. which constitutes a substantially complete source of
information r\egarding sales by the company, and a temporary transaction
file. Each working day the company makes sales and receives payments.
information regarding these transactions goes into the transaction file. each
new transaction record being simply appended to the end of the file. At
fixed intervals of time. say at the end of each week, the transaction file Is
used to update'the master file. It has then served Iits purpose, but the
next transaction thereafter begins a new transaction file. This file Is built
up over the next week and used to update the master file again at the end
of that week.

Let us now consider the file update- problem in completely general
terms. Given a master file ordered on unique keys. and a transaction file
ordered on the time of transaction. The temporal ordering of the transac-
tion file may be achieved explicitly by means of time stamps. or implicitly
by the sequential order of the transactions in the file. For a record with
key K in the master file. there may be zero. one, or more than one record
with this key in the transaction file. The transaction file may also contain
unmatched records. l.e., records whose keys do not occur In the master
file. Moreover., a key may temporarily disappear from the master file during
an update. Such would be the case with the sequence of transactions

Update 1 for record with key K
Update 2 for record with key K
Deletion of record with key K
Creation of (new) record with key K
Update 3 for record with key K

Note here that while Updates 1 and 2 relate to one entity, Update 3 s
likely to relate to a totally different entity.

There may be more than one transaction file. Then it becomes essen-
tial to use time stamps., and a preliminary to the actual file update would
be the creation of a single transaction file, either actually or as an abstract

object.

The file update problem has a fairly extensive literature. Clean
“modern” solutions have been advanced by Dijkstra [DI76] (attributed to
W.H.J. Feijen), and Barry Dwyer [(DwB1]l. Dwyer points out that earller solu-
tions put too much emphasis on unmatched records. with the resuit that
creation and deletion of records were regarded as essentially different from
regular updates. The complexity that this differentiation creates Iis avoided
by considering the entire space of possible key values rather than just the
keys that have physical records associated with them. On a conceptual
level every member of the key space then has a record assoclated with it
Some of the records will have physical existence, others will be degenerate.
A degenerate record consists of just a status marker. which indicates that
the record is degenerate. i.e.. that its key has not been assigned to a phy-
sical record. Creation of a new physical record is then just another
update, one that changes a key status from unassigned to assigned. and
vice versa for deletion.

So far the organization of the master file has been left undefined.
First note a few different ways of dealing with degenerate records. We
could have a separate file entry for every record. even a degenerate one.
An alternative is to provide a bit map to which the key space maps. Keys
of degenerate records would be represented by zeros in the bit map. keys
of nondegenerate records by ones. The actual file then consists of nonde-
generate records alone. The most common approach Is to store just the
fiie of nondegenerate records——the absence of a physical record for a given
key is sufficient indication of its degeneracy. Secondly, the file could be
random or sequential. and this makes a difference to what happens to
unchanged records. In a random file they are strictly left alone: In a
sequential file they have to be copied from the old to the new version of
the master file. (Note, though. that it is foolhardy to start modifying a ran-
dom master file without having made a copy first)

Our objective is to design a file updating program that is as indepen-
dent of the organization of the master file as we can possibly make it. Let
us start with an adaptation of Dwyer’s description of the file update:

1. Sort transaction file on keys. and on . transaction time for records hav-
ing the same key.

Open the files.

3. While there remain keys to process do:
3a. Get the next key.
3b. Get the master record for this key.

3c. While there remain transactions to process for this key. process
the transactions, updating the master record. (f the record is

..‘lo_

degenerate to begin with. the wupdate creates a new physical
record: if a record is nondegenerate, certain fields of It are
changed: deletion changes the status of the record to degenerate.)

3d. Insert the updated record in the new master file.
4, Close flles and halit.

Most of the activity is in Step 3c. and Dwyer has ensured that this
step is Independent of the file organization. The flie organization would
determine the form of Steps 3b and 3d. The form of Step 3a would also
be determined by the file organization. Conceptuaily the “next key" of this
step relates to the entire key space, but in practice we would adapt our
interpretation to the file organization actually in effect. For a random file
the key space would be restricted to the keys in the transaction file alone.
for a sequential flle to the union of these keys and the keys of the nonde-
generate master records.

Levy [LeB2) takes this a step further by defining an abstract data object
for the problem. His object is an abstract file, which is a collection of
grouped records. with one group for each key value. Records are typed:
each group contains at most one record of type M (Master), and transaction
records of types | (insert), D (Delete), or C (Change). Because the order
of transactions matters (e.g.. DCCi makes no sense. because an attempt is
made to change a deleted record). records in a group must be ordered.
Levy proposes two modules: an input moduile, corresponding more or less to
Steps 3a and 3b above, and an update module corresponding to Steps 3c
and 3d. The input moduie consists of the following operations:

input-open initialize

new—group predicate indicating start of a new group
get-record get next record

input-close finalize

The output module comprises:

update-open initialize

start-group start a new group

insert add a record for the current group
change ~ change the record

delete delete the record

update—close finalize

-]] -
in terms of these operations the update program is extremely simpie:

program update;
~ input-open;
update-open;
while not sof do
begin
get-record(rec).
new-group then
start—group:
case rec.type of

M.I: insert(rec):
C: change(rec).
D: delete(rec);
end;

end;

input-close:

update-close

end.

Cading of the procedures is to be found in {LeB2). Levy regards the
old master and the transaction file as a single composite object. and at
first this rather daring approach seems very promising. However, further
analysis shows that here we have a case of carrying abstraction both too
far and not far enough. On the one hand, because the abstractions are
probiem-specific, nothing could be saivaged for a different file processing
application. On the other, the design embodies the assumpilon of a
sequential file organization. If the master file were in fact random, work
would have to be expended on modifications that could easily have been
avoided.

A simillar approach is taken by Logrippo and Skuce [Lo83). They view
the file update problem as two cooperating sequential processes. The first,
which they cali merge. takes several input files (the old master file, and
one or more transaction files). and merges them into a single abstract file
that is sorted by key. and for each key contains a sequence of zero or
one record of each of the types master. insert, change. delete (in this
order). It is not at ail clear why there cannot be more than one record of
type change. or. indeed. why a sequence such as master. change. change,
delete. insert, change. say., shouid not be permissibie. The second pro-
cess, calted update. converts the sequence of records with the same key
into a single new master record. Our criticism of Levy's approach holds
here as welil.

- 12 -~

Let us now turn to a different aspect of the file update problem. This
is its potential for paralielism. Without attempting to develop a paraliel
algorithm for the file update, we can stili exploit one obvious opportunity for
overiapping execution. This is the sorting of the transaction file. [t is well
known that sorting of n records is an O{nlogn) process. but we aiso know
that some sorting aigorithms can produce output well before the sorting
process has run to compietion. Thus heapsort, after the initial heap crea-
tion phase, which is an O(n) process, delivers sorted items at O (logn)
intervals. Unfortunately heapsort is not a stable sort, ie.. it does not main-
tain the relative order of records sharing the same key, and this makes it
unsuitabie for our application here. Note that the approaches in which the
old master and the transaction file are considered as a 'slngle abstract file
iend themseives very well to an overlap of the creation of this abstract flle
and the transformation of the abstract file into the new master file.

We shail see that the easiest approach to the file update program is to
use three abstract data types. one each for the old master, the transac-
tions, and the new updated master. In Section 5 we shall present a pro—
gram based on these three types, which will be designed in such a Way'
that the possible overlap of the sorting of the transaction file and the actual
file update will become a mere Iimplementation detall. First, however, we
shouid examine data abstraction in greater detail.

4. Specification

Let us again note that data abstraction is concerned with identification
of data structures with operations, data independence. and encapsulation.
We shall now ook at different ways of specifying the operations that are the
essence of a data structure. We want formal specifications as a biueprint
for implementations, and as a device that permits us to reason about data
structures. Let us begin with the well known and often used examples of a
stack and a queue.

Our first exhibit is an operational or abstract model! specification of a
stack of integers. taken from ([Be83). in which we have made use (hopefully
carrect) of the syntax of Alphard {Sh81l:

ALPHARD SPECIFICATION OF A STACK

Form Istack(n:Integer) =

Requires n > 0

Let Istack = {...x;...)

Invariant 0 < Length(Istack) < n

Initially Iszack = Nullseq

Function
Push(s:Istack x:Integer)
Pre 0 < Lengths(s'y < n Posts = 5" ~x
Pop(s:Istack)
Pre 0 < Length(s') < n Post s = Leader(s")
Read(s:Istack) Returns (x:Integer)
Pre 0 < Length(s') < n Post x = Las(s’)
Empty(s:Istack) Retums (b:Boolean)
Post b = (s'=Nuliseq)

(the implementation part follows)

Endform

This specification relies on an underlying domain of sequences: the
symbol <...x’....> stands for a prototypical sequence, and the functions Length.
Leader. Last, concatenation “, equality =, and the special function Nullseq
that returns an empty sequence belong to the data type of sequence. The
semantics of the operations are expressed by the pre—~ and postconditions
that foilow the domain specifications of the operations. In these conditions

]4

the primed symbol x’ stands for the value of the formal parameter x at the
beginning of the operation, and x for its value at the end. Similar specifi-
cations have been proposed by Hoare [H072] and King [KIi78). The former
deals primarily with correctness. the latter with impiementation.

The specitication of one data type (the stack) in terms of another (the
sequence) can be regarded as an encroachment on the freedom of action
of the implementor. The implementor is forced into using sequences. but
the limitations Imposed by this constraint are not as serious as they may at
first appear. After all. sequences can be implemented Iin a variety of ways.
Nevertheless. a totally "neutrai” approach has come to be advocated as an
aiternative to operational specifications, This is algebraic specification, in
which the set of axioms that provide the operations of a data type with
meaning is seif contained.

Let us specify an unbounded queue of integers in algebraic terms,
again taking our example from [Be83l:

ALGEBRAIC STACK SPECIFICATION

Type Istack
Declare
New : — Istack
Push : Istack X Integer — Istack
Pop : Istack — Istack
Read : Istack — Integer U lerror}
Empty : Istack — Boolean

For All s € Istack, i € Integer Let
Empty(New) = True
Empty(Push(s.i)) = False
Pop(New) = New

Pop(Push(s.i)) = s
Read(New) = error

Read(Push(s,i)) = i

End Istack

The advantage of aigebraic specification derives from its mathematical
origins. Mathematics is a truly hierarchical science iIn which new results
are derived from previously established knowiedge by precisely prescribed
methods. Consequently questions of consistency (s our set of axioms
without contradictions?) and compileteness (s there an Interpretation for
every syntactically legal composition of operations?) can be addressed with
comparative ease in the aigebraic framework. On the other hand., algebraic
speclfication of some conceptually simple data types. e.g.. the traversible
stack [Ma77.Ka79). turns out to be a very difficuit task. It has been said,
see e.g. [FI79]. that algebraic specifications are well suited for program

- 15 -

verification. but that for the verification of implementation correctness the
abstract model approach is better. Actually the issue is not as clear cut.
Algebraic specification deals with values rather than objects. For exampie.
the stack 1[4 3 7 2 is not regarded as an object. but as the value of
the functional composition

Qpush (Qpush (Qpush (Qpush (Qnew .4).3),7).2)

An operation transforms one value into another; it does not change the
state of an object. The implications of this are far reaching. For example,
assignment, which associates names with objects, has no place in this
scheme of things. Even equality presents probiems. Flon and Misra [FI79]
consider two deques, one generated by additions at the head, the other by
additions at the tail. and in such a way that if these deques were regarded
as objects, Athey would be Indistinguishable. However. an otherwise adequate
algebraic specification (consisting of 15 axioms) is incapable of dealing with
equality, and has to be augmented with an explicit definition of equality.
Bounds present another problem. How is one to specily a bounded stack
or queue in terms of values? The concept of size makes sense only when
we consider an object as a composition of more basic objects (or we deal
with measurable physical objects). In light of this the usefulness of the
algebraic approach as regards correctness of programs appears to be lim-
ited to functional programming. '

A number of attempts have therefore been made to divorce the abstract
mode!l approach from excessive implementation dependence, beginning with
the paper of Flon and Misra, and finding a particularly iInteresting formula-
tion in Claybrook's work {Ct79.Ci82). Claybrook recognizes a composite data
object as precisely that, an aggregate of component objects. This aggre-
gate is viewed -as having a logical structure. which consists of relationships
between the components of an object of the type being defined, a descrip-
tion of the state of such an object. and invariant assertions regarding the
above.

For example. in the case of the stack, there is just one relationship,
ontopof . which |Is binary and relates elements stored in the stack. Here
the state consists of the set S. which is the set of elements stored In the
stack. and a relation R, which is the instance of relationship ontopof per-
taining to the elements in S§. An invariant assertion proclaims ontopof to
be a linear relationship. Operations push and pop are now defined as
state changes. Thus the vailue of push(s.e) is a new state of stack s. |If
the stack was previously empty, S now consists of the single element e,
but A still remains empty. If the stack was not empty, then S becomes
the union of the original S with e, and R the union of the original A with
the ordered pair <e.readtop(s)>, where the vailue of readtop(s) is the top-
most element of the original stack.

- 16 -

The language for writing the data type specifications provides a rather
extensive collection of types of relationships for use in expressing Invariant
assertions (CI79). A sample: acyclic, reflexive, symmetric, partially ordered.
totaily ordered. iinear, tree. forest.

Once a data object is regarded as a structured aggregate of data
objects of a lower type. the problem of accessing the elements of the lower
type in some specified order becomes a valid concern. To take an exam-
ple that could arise in practice, suppose we have a Dbinary search tres of
integers, and alli values in the tree are to be scaled by subtraction of the
smallest value from every other value. This makes every value non-
negative, with the smallest vaiue becoming zero.

Under aigebraic specification the standard approach to a traversal of a
binary tree is to generate a queue of the integers stored In the binary tree.
For . our example one would generate a queue of the integers correspondln'g
to a preorder traversal., and take the first element off the queue. One
would "unravel” the binary tree. make the necessary changes. and "splice”
the tree back together. A recursive appilicative program for this is given
below. For a more detailed explanation of this program see [Be83]. -

Scale(b,T) is
if not Empry(b) then Make (Scale(Left(b),T),

Data(b) ~ Qread(Inord(T)),

Scale(Right(b),T))

else b; :

Our concern is that we want to be able to combine a traversal with
other processing activities. This can be achieved in two ways. One Is to
have a single procedure for carrying out the entire traversal. and, on get-
ting to each node in turn in accordance with the traversal discipline, to call
a procedure that does the processing of the node. This does not work
when two traversals are 1o be carried out at the same time. One algorithm
for the strong components of a digraph is based on intermeshed preorder
and postorder traversais of a tree [BeB80al. One could define a composite
"prepost” traversal. but this wouid be problem specific, and one of the prin-
cipies of modularization is to avoid problem specific operations as far as
possible.

The other approach is to call a traversal procedure n times. where n
is the number of elements in the structure. Each time the procedure
returns either the element or a pointer to the element. and the elements
are processed In the calling program. This incrementai mode presents
interesting impiementation problems. in essence. we want a procedure that
can halt execution and return to the main program at an arbitrary point in
the procedure. and resume execution from this point on the next call. The
difficulty lies in having to preserve the state in which the procedure was

- 17 -

when the last return from it was made. In a language such as Pascal this
has to be achieved by means of global variables., and the procedure cannot
be recursive. Here we have an excellent example of the usefulness of
coroutines. and of recursive coroutines at that.

Procedure preorder exemplifies this mode in Pascal terms. The first
call s made with fndex pointing to the root of the .binary tree to be
traversed, and the Boolean variabie done having value true. The first exe-
cution of preorder leaves the vaiue of index unchanged, but in subsequent
executions Its vailue is changed from a pointer to a particular node to a
pointer to the node that foliows this node under preorder. As part of the
nth execution of the procedure the vaiue of done becomes true. This sig-
nals the compietion of the traversal. No test is made for the binary tree
being empty. Note that tiraversal is driven by a stack. Consequently a
stack has to be declared in the calling program, and this stack Is ferried
back and forth between the calling program and procedure preorder.

procedure preorder(var index: ptype: var done. boolean:;
var stack: stackhead):
begin
H done then
begin
openstack(stack):
done:= faise
end
else
begin
i indext.rightonil then push(stack,index1t.right);
index:= indext.left;
if (Undex=niDd and not emply(stack) then
index:= pop(stack)
end: '
done:= (indext.eft=nlD and (indext.right=niD and empty(stack)
end:

In terms of preorder and an analogous procedure inorder our scaling
procedure becomes

procedure scaleltree: ptype):
var stack: stackhead:
scaler. datatype;
begin
done:= true;
inorder(tree,done,stack);

- 18 -

scaler:= treet.datum;
done:= true:
repeat
preorder(tree,done, stack);
treet.datum:= treet.datum - scaler
until done
end.

Note here that the inorder traversal is broken off after reaching the first
element in the sequence. at which point the stack Is unlikely to to be
empty. It Is important that openstack be so designed that. on being called
trom preorder. it couid cope with this situation.

5. herators and their synchronization

Let us ook at the strong component algorithm of the preceding section
in some detall. It is based on a tree representation of a digraph, and
goes as foliows. Traverse the tree under preorder until a terminal node Is
reached. Then switch to postorder and traverse the tree under postorder
while every node that is reached has aiready been visited under preorder,
switch back Into preorder until agaln a terminal node is reached. switch to
postorder, and so forth untii both traversals have been completed. In the
preorder phase an Action A is performed at every node reached. in the
postorder phase an Action B is performed at each node. Actually it is
more convenient to use a Knuth transform of the tree. This is a binary
tree. The preorder sequence of the general tree is given by preorder
traversal of the transform. but the postorder sequence by inorder traversal
of the transform. Criteria for switching from traversal to traversal: (1)
switch from preorder to inorder when the current node has no left child;
(2) "switch from inorder 10 preorder when the current node has a right
child. ‘

We propose that access to the different nodes in the order determined
by the particular traversal discipline be provided by iterators. An lterator
delivers at e&ery invocation the next elememt of a traversal sequence.
iterators are provided by a number of programming languages. such as
Alphard ([Sh81]1 and CLU [Li81), but there they are coupled to a for-ioop.
This prevents intermeshing of traversals. A generalization of the for-loop by
means of a construct calied controlled Iteration permits synchronization of
iterators [BeB80Ob), but this construct is incompatibie with the very important
criterion of simplicity in the design of programming languages. Iterators are
also provided by Icon (Gr81)., where they are not tied to a for-loop. but the
synchronization issue has not been a concern in the design of Icon.

Our solution to the synchronization problem is to associate a set of
states with an iterator. State-transition as a programming tool has been
investigated by a number of authors (see, e.g.. [At79.4uB0.He82], but syn-—
chronization based on states seems to be new. For our example we need
to define a set of states for the preorder and inorder iterators. - Actually we
shall use the same set of states in both instances. namely T (terminai
node), B (internal node with both children), L (internal node with just a feft

_20...

chiid), R (internal node with just a right child), D (raversal completed. but
the iterator continues to deliver the last item of the traversal sequence to
avoid probiems with undefined vaiues). Note that we have tried to make
the state set Independent of the particular application. The fact that the
lterator remains active after a traversal has been completed requires explicit
opening and ciosing of iterators.

We aiso need to allow for the possibility of a structure being subjected
simultaneously to several traversais of the same kind. Consequently the
definition of an iterator should be separated from declarations of particuiar
Instances of this iterator. Further, the nature of the structures from which
iterators deliver inpuis to a process should be no concern of this process.
For example, if we are to merge two sorted input streams to produce a
single sorted list, all that matters from the point of view of the merge pro-
cess is that elements are delivered from the source. structures in ascending
order of their keys. It makes no difference whether the structures are
binary trees, or linear arrays., or one is a binary tree and the other a
linear linked list. An instance of an iterator should be an interface
between a data structure and a process that ensures total independence of
one from the other.

in this framework, assuming presequence and insequence t0 have been
declared as instances of the iterators preorder and /norder. respectively. we
get the following schematic program for the strong components:

open presequence.
open insequence.
repeat
repeat
presequence(T,Anode, prestate):
Action A with Anode
untit (prestate=R) or (prestate=T);
repeat
insequence(T,Bnode,instate):;
if instate oD then Action B with Bnode
until (instateoT) and (instatecoD)
untll instate=D:
close insequence;
close presequence:

Let us now define the iterator preorder. In technical terms., an iterator
is a semicoroutine [Wa71l. We shall use a syntax that Is a slight extension
of Pascal. The iterator interrupts execution and returns to the cailing pro-
gram on reaching the deliver-statement. On the next entry to the iterator

—2]_

execution resumes with the statement that foliows the deliver-statement. The
deliver-statement aiso Iindicates the value that the iterator returns. Here the
iterator returns a pointer to a node.

terator preorder(binarytree: pointertype. var item: pointertype. var state: statetype):
var stack:. stackrecord:
node: pointertype:
begin
if binarytree=nii then
begin item:= nil.
state:= D
end
else
begin
openstack(stack);
push(stack,binarytree):
repeat
node:= pop(stack).
repeat
i nodet.rightonil then
begin
push(stack,node t.right);
nodet.leftonil then
state:= B
eise
State:= R_
end
eise nodet.leftonil then
state:= L
eise
state:= T,
repeat (* stay in this loop after state becomes D *)
deliver item:= node;
H (nodet.left=niD and empty(stack) then
state:= D
until stateoD;
node.= node? .left;
until pode=nll
untll failse (* this is a do-forever *)
end
end:

- 22 -
in terms of iterators procedure scale becomes

procedure scaleltree: pointeriype);
var insequence: Inorder;

presequence:. preorder:;
instate,prestate. statetype.
node. pointertypei
scaler: datatype:
begin
open insequence:
insequenceltree,node, instate);
scaler'= nodet.datum;
close [nsequence;
open presequence:
pfasequence (tree, node, prestate) .
while prestate<D do
begin
nodet .datum:= nodet.datum - scaler;
presequence(tree,node, prestate) ;
end:;
close presequence
end;

Let us now return to the flle update. We proposé two Iinput lterators,
one for the old master, the other for the transaction file (or files), and
name the instances of the iterators to be used in our program nextmaster
and nexttrans , respectlvely. Both iterators return records. There are two
state indicators for the transaction iterator: transtype. with vaiues ({I.C.D}.
indicates whether the transaction is an insertion (D, change (C). or deletion
(D): keytype. with values (F.N,D), indicates whether the transaction Is the
first of a set sharing the same key (F), or the last item of the iteration
sequence has been delivered (D, in which case the iterator continues
delivering this last item), or it is neither of the above (N).

The state set of the master file iterator is {(M.N.D}. and these states
indicate whether the key of the record being delivered matches the supplied
key (M), or does not match the supplied key (N), or ail records of the
master file have already been delivered (D). The program as displayed
below has been designed for a sequential master file. If the master Iis a
random file, then two groups of four fines of code have to be removed
(they are marked with asterisks), and the master file iterator has to be
rewritten. The transaction iterator generates a sorted input stream (possibly
from more than one transaction fite). The generation of the input stream

23

can well proceed in paraliel with the actual update. but then we need a
mechanism for waits in case the iterator cannot produce the input stream
at as fast a rate as it is consumed. -

open nextmaster:
open nexttrans:
nexttrans(ransaction, T,transtype, keytype):

repeat
nextmaster(master,R, T.key,state);)
while A.key<T.key do (%x%)
begin putrecord(newmaster,R); (**x)
nextmaster(master, R, T. key, state) (xx%)
end; (*%%)

if state=M then
newrecord:= R
eolse if transtype<l| then
ERROR CONDITION;
transferswitch:= true:
repeat
case transtype of
N begin newrecord:= T
transferswitch:= true
end:
C: make changes to newrecord:
D: begin do deletion bookkeeping:
transferswitch:= faise
~ end
end:
nexttrans{transaction, T,transtype, keyltype).
untll (keytype=F) or (keytype=D): '
K transferswitch then putrecord(newmaster,newrecord)
until keytype=D:; ,
while stateoD do - (x2%)

begin nextmaster(master,R, T.key,state). (x*%)
putrecord(newmaster, R) (2**)
end; C(xE%)

close nexttrans:
close nextmaster:

We Indicated earlier that here we are dealing with three data types.
We could just as well decide to regard master. newmaster, and transaction
as three objects belonging to a single data type with which we would asso-
ciate our two iterators and the procedure putrecord. This, however, wouid

24

reduce fiexibility. Whereas master and newmaster correspond to single phy-
sical files, transaction is an abstract object that couid correspond to more
than one file.

Finally note that iegal sequences of transactions can be described by a
state transition diagram: ‘

Given a group of transaction records for the same key. |If there exists a
master record with this key. then the first transaction has to be of type C
or D: if no master record exists. the first transaction has to be of type I
Our program above checks that we start off correctly. After that, only the
state transitions indicated by the dlagram are valid. and a validity check
would have to be built into the transaction iterator.

25

6. Case study: two-way merge

lLet us now consider another fairly complicated example of modulariza-
tion. Our context wili be two-way merge as a basis of external sorting.
The primary activity in external sorting fs the merging of sorted files to
produce f{arger sorted files. We shail therefore first examine an Iinternal
sorting procedure based on merging. calied merge sort. Merge sort relates
to efficient implementation of set operations, which gives it additional
interest. Set operations. such as union and intersection. take much longer
when the operations are carried out on sets with unordered elements than
when the elements are ordered. Assume that vector A contains the n ele-
ments of setA. and that vector B contains the m eilements of setB. Algo~
rithm 1 is a procedure that merges elements of A and B into C. We
shall use the ideas devetoped in Section 5, but programming will be In
conventional Pascal throughout.

ALGORITHM 1. A procedure for merging Integers stored in order of magni-
tude in A and B. Arrays A and B are assumed to be of the same type.
with subscript range [1..n]. and all elements except the first Atop of A and
the first Btop of B assumed to contain the value -maxint (it is assumed
that setA and setB cannot legitimately contain an element having this vaiue).
The result is returned in array C. which is of the same type as A and B.
in C ali elements except the first Atop +Btop are set to -maxint by the pro-
cedure. Availability is assumed of errorprocedure., which handies the case
of Atop +Btop exceeding n.

procedure merge(var A,B,C: setarray):
var i,j,k,Altop,Btop,index. Integer:
function size(var sourceset. setarray). integer:
var top: integer:
alidone: boolean:
begin
top:= 0:
repeat |
if top«n then
alldone:= sourcesetitop+1]=—-maxint

26.

olse
alldone:= true;
if not alldone thea top:= top+1
until aiidone:
size:= top
end;
begin
 Atop:= size(A);
Btop:= size(B).
if Atop+Btop>n then errorprocedure
else K Atop=n then C:= A
else Iif Btop=n then C:= B
eise
begin
P= 1 fi= 1 k=
repeat
if Al/]1<B{j] then
begin Clkl:= Alil.

k= k+1;
I= 11
end
else
begin Clkl:= 8.
k= k+1;
= 1
end;
until (>Atop) or (}>Btop):;
if PAtop then

for index:= | to Btop do
begin Cikl:= B{indexl:
k= k+1
end
else
for index= | 0 Atop do
begin Clkl:= Alindex];
k= k1
end;
for iIndex:= k to n do
Clindex]:= -maxint
end
end;

27

The double traversal ol arrays A and 8., first to count the elements in
the sets. then to do the actual merging. may seem a duplication of effort,
and hence a waste of program execution time. This is not so. In any
other design the equivalent of the test Atop+Btop>n of Algorithm 1 s
spread throughput the procedure. and in fact takes more time. Moreover,
the procedure becomes more difficuit t0 understand.

Suppose now that the input 10 the merge is 10 be from magnetic tapes
(or magnetic disk). Suppose we have four tape drives at our disposal,
named A, B, C. D, and suppose further that the file to be sorted resides

on tape C. with keys €y. Cp. o Cp. For example. the keys of the input
tile could be '

c: 19 1 26 43 92 87 88 26 17 34 69

The first stage is to distribute the records to tapes A and B:

f=1;
outputswitch:= true;
while i<=k do
begin
if outputswitch then
outputlc ; A)
else
output(c ; B):
f:= i+1;
if <=k then
if c,<ci_.' then
outputswitch:= not outputswitch
end;

At the end of the initial distribution we have

A: 19 87 88 17 34 69
B: 1 26 43 92 26

If tape B were now empty, we wouid be finished. Note that we are taking
advantage of the natural order that may already exist in the input file. In
our case we can distinguish five runs. i.e. blocks of keys that are already -
in order, namely (19), (1,26.43,92), (87.88), (26), (17.34.69). After thé initial
distribution there are two runs on A and two on 8.

The next stage is to merge records from tapes A and B onto tapes C
and D. The program for this task is too complicated to be written without
a thorough preliminary analysis. We shall regard this analysis as a case
study in program modularization.

28

For generality we shall regard A and B as /nput streams. which could
be tape flles, arrays hoiding a known number of elements, or arrays in
which the convention of Algorithm 1 is followed. We propose that at any
one time the input stream will be in one of a smail number of states.
Four states are sufficient: F{inished), L(ast), H(old), and N(ormal). The input
stream is In state F when all records from it have been used up. or it was
empty to begin with. It is in state L when the iast record of a run is
being looked at. State H is rather special. Suppose an output run is
being generated by merging Input runs from the two Input streams. that all
records from the first input stream have aiready been transferred into the
output, but that transfer of the run from the other input stream has not yet
been completed. The first input stream is then In state H. An input
stream is in state N when it is not in one of the other states.

Table 1 shows all combinations of states in which the pair of Input
stteams, A and B, can be found, and the action that Is to be followed In
each instance. If the state pair is LL. LN, NL. or NN, the transfer Into the
output stream can be from either input stream., depending on which stream
holds the record with the smallest key value. When the state pair is LH,
LF. HL or FL., then the record that Is now transferred into the output
stream closes off an output run, and the next run will be bulit up as part
of the other output stream. We can now buiild up a gigantic case state—
ment to parallel the actions of Tabie 1. This we enciose in a procedure
moverecord:

procedure moverecord:
var r. mergerecord;
begin
case stateA of
L: case stateB of
L: # KAY<«K(B) then
begin getrecord(A,r,stateAl;
K stateAoF then stateA:= H
end
oise
begin getrecord(B,r,stateB);
if stateBoF then stateB:= H
end;
H: begin getrecord(A,r,stateA);
stateB:= N;
outswitch:= true
end;

29

TABLE 1
STATE-ACTION TABLE FOR A TWO-WAY MERGE

AB Action

LL if input from A, change its state to H or F: if input from B. change
its state to H or F ’

LH input from A: change its state to N, F. or L (arises if next run con-
sists of just one record). change state of B to N. swiich to other out-
put stream

LN If input from A, change its state to H or F: if input from B. keep its
state unchanged. or change it to L

LF input from A: change its state to N. F, or L: switch to other output
stream '

HL Input from B: change its state to N. F, or L. change state of A to N:
switch to other output stream

HH Cannot arise

HN Input from B: keep its state unchanged. or change it to L

HF Cannot arise

NL if input from A. keep its state unchanged. or change it to L: if input
from B, change its state to H or F

NH Input from A: keep its state unchanged, or change it to L

NN If input from A, keep its state unchanged or change it to L: If input
from B. keep its state unchanged or change it to L

NF Input from A: keep its state unchanged. or change it to L

FL Input from B: change its state to N. F, or L. switch to other output
stream

FH Cannot arise

FN

FF

input from B: keep its state unchanged. or change it to L

HALT

- 30 -

N: if KA)<K(B) then
begin getrecord(A,r,stateA);
it stateAoF then stateA:= H
end
eise
getrecord(B,r,stateB);

f: begin getrecord(A,r,stateA);
outswitch:= true

end

end:

H: case stateB of .

L. begin getrecord(B,r,stateB);
stateA:= N
outswitch:= true

end;

N: getrecord(B,r,stateB)

end.

N: case stateB of
L: if KAXK(B) then
getrecord{A,r, stateA)
olzo /
begin getrecord(B,r, stateB);
if stateBOF then stateB:= H
end.
H: getrecord(A,r,stateA);
- N: i KAY<K(B) then
- getrecord(A,r,stateA)
eise
getrecord(B,r,stateB);
F: getrecord(A,r,stateA)
end:
F. case stateB of
L: begin getlrecord(B,r,stateB);
" outswitch:= true
end;

N: getrecord(B,r,stateB)

end

end:

if outC then
putrecord(C,n)

else
putrecord(D,r);

if outswitch then

3]

begin outC:= not outC;
outswitch:= false
end
end:

Procedure moverecord is completely independent of the form of the files
that are to be processed. The interface to the files consists of procedures
getrecard and putrecord, and function K. These routines provide access to
the files. are therefore dependent on the actuali form of the flies. and a
new set has to be written each time the representation of the files is
changed.

To provide an exampie. we shall consider a file in which the main field
is stream., an array of m records. This is the actual file. In addition to
the array. the record hoids fields size. which tells how many of the m ele-
ments of stream are actually occupied by the file, and index, which indi-
cates the record of the file that is currently being accessed. An appropri~
ate set of declarations:

const m = ...
type keytype = integer:
mergerecord = record
key: integer
end:
mergestream = record
size, _
index: integer;
stream: arrayll..m} of mergerecord
end; |
statetype = (L.H.N.F):

Procedure moverecord calfs procedures getrecord and putrecord, and
function K. Procedure getrecord returns the record to which index points.
and incremems index. It also sets the state indicator of the file to F. L.
or N. We have made size and Index part of our file representation, but
not the state Iindicator. This is so because its setting does not depend
entirely on the flie by itself. The indicator can have the fourth value H,
and this setting depends in part on the current state of the other file.
Procedure putrecord increments the vailue of size. and assigns the record
that is one of its arguments to the location in stream defined by the value
of size. Function K returns the key of the record indicated by /ndex. In
our example a record consists of just the one field key.

In addition to these routines we need procedure open. which initializes
index of a non-empty file to 1. and aisoc initializes the state - indicator,

- 32 -

procedure ready. which sets size to zero, i.e.. turns a file into an empty
file. and procedure close., which does some final processing after a file has
received all its data. In our example close is a vacuous procedure. but
not in general. For exampie. under the convention of Algorithm 1 it would
fill in the unused part of the array with -maxint. Procedures open and
ready correspond to the Pascal file procedures reset and rewrite. [ndeed,
if our streams were Pascal files. then procedure ready would consist of just
a call to rewrite. '

Routines getrecord and K invoke procedure errorprocedure when the
value of index exceeds that of size. This procedure has been left unde-
fined. '

procedure getreéord(var a. mergestream; var item: mergerecord; var state: statetype);
begin
if a.index>a.size then
errorprocedure
else with a do
begin /tem:= streamlindex):
Index:= index+1;
if index>size then

state:= F

eise if index=size then
state’= L

eise Iif streamiindex].key>streamiindex+1].key then
state:= L

else
state:= N

end
end;

procedure putrecord(var a: mergestream: var item: mergerecord);
begin
with a do
begin size:= size+}1:
streamisizel:= item
end
end;

- 33 -

function K(var a: mergestream): keytype:
begin
with a do
begin if index>size then
errorprocedure
eise
K:= streamliindex).key
end
end:

procedure open(var a: mergestream: var state: statetype):

begin
with a do
begin if size=0 then
' state:= F
else
begin if size=1 then
State:= L _
else i streamill.key>stream(2l.key then
state:= L
sise
state:= N:
Index:= 1
end
end
end:

procedure ready(var a.: mergestream);
begin

" a.size= 0

end:

procedure cilose(var a: mergestream);

begin
end;

We are now ready to put the bits and pieces together into the pro-
cedure twowaymerge:

...34_

procedure twowaymerge(var A,B,C,D: mergestream);
var outC,outswitch: boolean:
stateA,stateB: statetype:

procedure getrecord

procedure putrecord

procedure open

procedure ready

vegin
o open(A,stateA). open(B,stateB). ready(C): ready(D).

‘outswitch:= faise;

outC:= true;

while (stateAoF) or (stateBoF) do

moverecord,

close(C). close(D)

end.

Returning to the sorting exampie we started with, recall that the Initial
distribution stage has distributed records to streams A and B. The next
stage is to merge records from A and 8 onto C and D. If now D s
empty. we have finished. Otherwise records are merged from C and D
back onto A and B. {f B is now empty, we have finished. otherwise the
next merge is again from A and 8 onto C and O. and so forth.

Procedure twowaymerge can be used for the initial distribution as well.
in terms of this procedure a complete merging program takes the following
form:

35

D.size:= 0;
twowaymerge(C,D,A,B).
directionswitch:= true.
repeat

it directionswitch then
begin twowaymerge(A,B,C,D);
done:= (D.size=0):
end
eise
begin twowaymerge(C,D,A,B):
done:= (B.size=0);
end
directionswitch:= not directionswitch
until done:

36

7. Modules In Ada

Let us express the type compiex of Section 2 as an Ada [US83] pack-
age. Packages can provide true encapsulation, and in our example we
shail completely separate use from impiementation by making the Ilatter
"private”. This is not just of academic interest. A compliex number can be
implemented as a record of two reals. but it can just as easily be imple-
mented as a two-element array of reais. Programs that make use of type
complex should be unaffected by the substitution of one implementation for
another. This Is achieved by hiding everything regarding the implementation
from the view of the user. Such implementation independence does, how— .
ever. mean -that we require to augment the set of operations defined in
Section 2. In particular. we need a constructor function that builds a com-
plex number from two reals. and two extractors, for the real and imaginary
parts, respectively. ‘

package complex_numbers is
type complex is private;
function "+" (a,b: complex) return compiex:
function "-" (a,b: complex) return complex:
function "*" (a,b: compiex) return compiex:
function conjugate (a: complex) return complex;
function strelch (c: real: a: complex) return compiex:
function modulus (a: compiex) return real;
function °/° (g,b: compiex) return compiex:
function build (c,d: real returm compiex:
tunction re_part (a: complex) return real:
function im_part (a: compiex) return real;
private
type complex Is
record
re,im: real:
end record;
end;

package body complex_numbers is

._37_

function "+° (g,b: compiex) return complex is
begin

return (a.re+b.re, a.lm+b.im);
end °+°;

function bulid(c,d: reald return complex Is
begin

return (c,d):
end build;

end complex_numbers:

The first part of this program text is the package “specification”, which
is the interface between the package and the program that uses it. This s
the visibie component. It ditfers from the specifications we discussed in
Section 4 in a significant way—-it specifies the types of the arguments and
the resuits of the operations, but does not define their meaning. The
second component. the package body. provides the operations with meaning.
but, since this is an implementation. it is not an /ndependent specification
in the sense of Section 4 either. '

For another example of an Ada package let us take the stack. Again
we shail make sure that the only access to the data is by the stack opera-
tions, and, to ensure this, shall make the stack a private type. We shall
go even further. For unqualified private types assignment and equality tests
are still available; for limited private types even these facilities are left to
the devices of the implementor.

package stacks Is :
type stack iIs limited private
procedure openstack (s: in out stack;

procedure push (s: in out stack: x: item);
procedure pop (s: in out stack;
function readtop (s: stack) return item;
function empty (s: stack) return boolean:
private '
bound: constant= 100;
type stack Is
record
s: array(1..bound) of item;
top: integer range 0..bound:

38

end record.
end;

package body stacks is
procedure openstack (s: in out stack) is

begin
S.top:= O;
end openstack:
procedure push (s: in out stack: x: item) is

begin
s.top:= s.top+1;
s.sf{top):= x:
end push;
end sitacks:

One of the problems with a language such as Pascal Is that if we
wished to use the same stack module for storing data of different types. we
wouid have to make a separate copy of the text of the module for each
data type. Ada has a generic definition mechanism that avoids this dliffi-
cuity., We would start the package specification with

generic

bound: posinteger:
type item is private
package stacks iIs

and remove the statement

bound: constant= 100,

Then, to create a stack of integers of size 150. say, we instantiate the
generic package as foliows:

declare
package Int_stack Is new stack(150.integer);
use Inl_stack;
s: stack.

39.

8. Bibliography

At79 Atkinson, L.V., Pascai scalars as state indicators. Software--Practice
and Experience 9, 427-431 (1979).

Be80a Berztiss, A.T.. Depth-first K-trees and critical path analysis. Acta
inf., 13, 325-346 (1980).

Be80b Berztiss. A.T.. Data abstraction, controiied iteration. and communicat~
ing processes. Proc. ACM Annuai Conf. 1980. ACM. New York, 1980,
pp.197-203.

BeB3 Berztiss, A.T.. and Thatte. S.. Specification and implementation of
abstract data types. Advances in Comput. 22, 295-353 (1983).

Bi73 Birtwistie. G.M., Dahi. O.-J.. Myhrhaug. B.. and Nygaard. K., Simula
Begin. Studentiitteratur, Lund. 1973.

Ci79 Claybrook. B.G., Cleaveland. J.C.. and Criscione., D.. Logical structure
specification and data type definition. Proc. ACM Annual Conf. 1979.
ACM, New York. 1979. pp.203-211.

cig2 'Claybrook.. B.G.. A specification method for specifying data and pro-
cedural abstractions. [EEE Trans. Sofware Eng. SE-8, 449-459 (1982).

Da68 Dahi. O0.-J.. Myhrhaug. B.. and Nygaard. K.. The Simula67 common
base language. Norwegian Computing Centre Report, Osio, 1968.

Di76 Dijkstra. E.W.. A Discipline of Programming. Prentice—-Hall, Engle-
wood Cliffs, New Jersey, 1976.

Dw81 Dwyer. B. One more time-—how to update a master file. CACM
24, 3-8 (1981).

.40

FI79 Flon. L.. and Misra. J.. A unified approach to the specification and
verification of abstract data types. Proc. Conf. Spec. Reliable Software
1979. IEEE Computer Society. New York, 1979.

Gr81 Criswold, R.E.., Hanson, D.R. and Korb. J.T.. Generators in lIcon.
ACM Trans. Program. Lang. Syst. 3. 144-161 (1981),

He82 Hext, J.. and Hirst. S.. The formal treatment of state transition
tables——a tutorial. Austral. Computer J. 14, 1-6 (1982).

Ho72 Hoare. C.A.R.. Proof of correctness of data representations. Acta
int., 1, 271-281 (1972). '

JuBCG Juliff, P.. Program control by state transition tables. Austral. Com-
puter J. 12. 146-152 (1980).

Ka79 Kapur, D.. Specifications of Majster's traversable stack and Veloso's
traversabie stack. SIGPLAN Notices 14. no.5. 46-53 (May 1979).

Ki78 King, P.R.. On the specification and design of abstract data types.
in Constructing Quality Software (P.G. Hibbard and S.A. Schuman, eds.).
North-Holland. Amsterdam. 1978, pp.449-470. '

Le82 Levy. M.R., Modularity and the‘ sequential file update problem.
CACM 25, 362-367 (1982). '

Ligl Liskov. B.. et al., CLU Reference Manual. Lect. Notes Comput.
Sci. No. 114, Springer-Verlag. Berlin. 1981.

Lo83 togrippo. L.. and Skuce, D.R., File structures, program structures,
and attributed grammars. IEEE Trans. Sofware Eng. SE-9, 260-266
(1983).) '

Ma77 Majster, M., Limits on algebraic specification of abstract data types.
SIGPLAN Notices 12, no.10. 37-42 (Oct.1977).

Pa72a Parnas. D.L., A technique for sofiware module specification with
examples. CACM 15, 330-336 (1972).

Pa72b Parnas, D.L.. On the criteria to be used Vin decomposing systems
into moduies. CACM 15. 1053-1058 (1972).

4]

Pa76 Paime. J.. New feature for module protection in Simutla. S/GPLAN
Notices 11, no.5. 59-62 (May 1976).

Sh81 Shaw. M.. ed.. Alphard: Form and Content. Springer-Veriag. New
York, 1981.

usse3 U.S. Department of Defense., Reference Manual for the Ada Program-
ming lLanguage. Springer-Verlag. New York, 1983. '

Wa71 Wang. A.. and Dahil, O.-J.. Coroutine sequencing in a block struc-
tured environment. BIT 11, 425-449 (1971).

	Modularization: a first draft
	Recommended Citation

	tmp.1284333754.pdf.RgSql

