
University of Wollongong University of Wollongong

Research Online Research Online

Department of Computing Science Working
Paper Series

Faculty of Engineering and Information
Sciences

1984

Modularization: a first draft Modularization: a first draft

Alfs T. Berztiss
University of Pittsburgh, uow@berztiss.edu.au

Follow this and additional works at: https://ro.uow.edu.au/compsciwp

Recommended Citation Recommended Citation
Berztiss, Alfs T., Modularization: a first draft, Department of Computing Science, University of Wollongong,
Working Paper 84-8, 1984, 43p.
https://ro.uow.edu.au/compsciwp/81

Research Online is the open access institutional repository for the University of Wollongong. For further information
contact the UOW Library: research-pubs@uow.edu.au

https://ro.uow.edu.au/
https://ro.uow.edu.au/compsciwp
https://ro.uow.edu.au/compsciwp
https://ro.uow.edu.au/eis
https://ro.uow.edu.au/eis
https://ro.uow.edu.au/compsciwp?utm_source=ro.uow.edu.au%2Fcompsciwp%2F81&utm_medium=PDF&utm_campaign=PDFCoverPages

MODULARIZATION: A FIRST DRAFT

Prof. A.T. Berztlss

Department of Computer Science
Universi1y of Pittsburgh

Preprlnt No. 84-8 May 29. 1984

P.O. Box 1144. WOLLONGONG N.S.W. 2500. AUSTRALIA
tel (042)-270-859

telex AA29022

MODULARIZATION: A FIRST DRAFT

1. Introduction 1
2. Principles of modularlzatlon 3

3. A case stUdy: file update 8
4. Specification 13

5. Iterators and their synchronization 19

6. Case study: two-way merge 25

7. Modules In Ada 36

8. Bibliography 39

1. Introduction

From the very beginning of electronic computation program size has
created problems. They have been both conceptual (How am I to under­

stand this fifty page listing1) and physical (Must r recompile 2500 lines of
code after every little change?). Software engineering has been our
response to these problems. Two primary tools of software engineering are

data abstraction and modularizatlon. and our purpose here Is to try and
make them consistent with each ottler.

Data abstraction encompasses three concepts: identification of data

structures with operations. data Independence. and encapsulation. The

essence of an algebra are Its operations. e.g.. union and complementation

for the algebra of sets. Similarly we now regard the essence of a data

structure to be the set of operations associated with It. e.g.. openstack,

push, pop. readtop. and empty in the case of a stack. The Interpretation

of data structures as algebraic systems can be carried as far as expressing

the meaning of the data structure operations in the form of axioms. This

format approach Is called algebraic specification.

There may be some doubts regarding the practicality and even practi­

cability of alget>ralc specification. but less formal approaches to specification

of data structures can certainly be made a permanent part of the

programmer's craft. and the practical utility of data Independence has been

well established. What the latter means Is that programs that make use of

data structures should be unaffected by changes in the implementation of

these data structures. In other words. a program should communicate with

its data structures only by means of procedure and function calls. This
enables the effects of any change In the Implementation of a data structure

to be confined to the Implementation alone; we do not have to examine all

programs that make use of our data structure for the effects the change

might have on these programs. This helps a lot because we would be

sure to forget to examine some such programs. we would be sure to miss

a place where a change is needed. we would be sure to make erroneous

changes.

Encapsulation carries data Independence one step further. Under

encapsulation the programmer Is forced to access all data structure imple­

mentations by means of function and procedure calls alone. No other

- 2 ..;.

means of access are provided. This approach is also called Information
hiding. The effect of encapsulation Is to make the Interface of the encap­

sulated unit with the rest of the program as· small as possible.

The term module has received many definitions. Here are a few of
the more common ones:

(1) A separately compilable unit.

(2) A separately compliable unit kept within certain size limits. e.g.. SO

lines of code.

(3) An encapsuled unit. i.e.. a unit that presents a small interface to the
rest of the program. but need not be Identified with a data type.

(4) An encapsuled unit representing the Implementation of a particular data
type. e.g.. of a symbol table.

Our purpose of wanting to combine data abstraction with modularlzatton

makes us pick (4) as our definition of a module. Moreover. because we

shall deal with both specifications and Implementations of modules. we must

arrive at an understanding of what Is meant by a specification. We adopt

the following definition:

A specification of a module is a description of the' Interface between

the module and a user program that Is sufficiently detailed and precise

to enable the user to design the program, that Is to use the module

without any knowledge of how the module Is Implemented. and to

enable the module to be Implemented without any knowledge of the

programs that are to use the module. The specification should also

enable us to establish separately the correctness of the module and of

the programs that are to use It.

Throughout we shall see the need for compromise. On the one hand.

for purposes of verification of the consistency of a module with its specifi­

cation. and for reusability of a module In a variety of settings. we would

prefer a module to be fairly small. On the other hand. we want to keep

down the traffic of data across a module Interface. and this obje'ctlve Is

easier to achieve with large modules.

- 3 -

2. Principles of modularization

Modules have been around almost as long as programming. but. to
begin with. their significance was seen exclusively In separable compilation.
The Idea that modules are not just subroutines found Its first significant

realization in the design of Simuia [6173]: the Simuia class is what we now
understand a module to be.

Simula Is an extension of Algol60. and. whereas Fortran provides com­

plex numbers as a built-In data type. Algol60 does not. Our example of a

Simuia class definition will be the class of complex:

class compJex(re./m); real re,lm;

begin

refCcomplex) procedure addCc); ref(complex> c;

If c=/=none then add:- new complexCre+c.re, im+c./m);

ref(complex) procedure subCc); ref(complex> c:

If c=/=none then sub:- new complexCre-c. reo 1m-c. 1m) ;

refCcomplex) procedure multCc); refCcomplex> c;
II c=/=none then mult:- new complexCre*c.re-im*c.im. re*c.im+im*c.re);

refCcomplex) -procedure conjugate;

con!ugate:- new complexCre.-im);
ref(complex) procedure stretch<K); real k;

stretch:- new complex<K*re,k*lm>;

real procedure modulus;

modulus:= sqrt<re*re+lm*lm);

refCcomplex) procedure dlv(c>; ",,(complex> c;

begin real m;

If c=/=none then

begin
m:= C.modulus;

if mo'O.O then
dlv:- mult(c.conJugate).stretchCl/m)

end
end dlv;

end complex;

- 4 -

Although the procedures of a class declaration were Intended to be the

only means of access to objects of a class. proper encapsulation did not
become a feature of Simuia Implementations until 1976 or so [Pa76]. How­

ever. already In 1972 Parnas had clarified the principles on which to base

encapsulation [Pa72aJ. and perform the decomposition of systems into

modules {Pa72bJ. These papers have dated remarkably little.

The first of Parnas' papers enunciates the principles of information hid­

ing. and gives five examples of specifications of modules. The first two

specify a stack and a binary tree. The other three specify modules of a

program for the construction of KWIC indexes. The second paper takes up
the KWIC index program. outlines two different modularlzatlons. and discusses

why one of the modularizations is preferable to the other. The task con­

sists of accepting a sequence of text flnes that are themselves sequences
of text words. The lines are to be subjected to circular shifting In which

the first word of each line Is repeatedly moved from the beginning to the
ond of the line. in the example below five circular shifts have been pro­

duced by this process:

software module specification with examples

module specificatIon with examples software

specification with examples software module

with examples software module specification

examples software module specification with

The output of the program Is to be an alphabetized list of ali circular shifts

of all input Jines.

Parnas starts out by defining what he calls a conventional program

decomposition into five modules: jnput. circular shifting. alphabetization. out­

put. and master control. Then he proposes a second decomposition: line

storage. input. circular shifting. alphabetization. output. master control. The

only obvious difference between them is the addition of the line storage

module to the second decqmposltlon. but this change brings about such

differences in the specifications of the other modules that In the end very

little besides their names remains unchanged.

Let us examine the first decomposition In detail. The Input module Is

to read data lines and store them In fast memory. Characters are to be

packed in machine words. and a special word terminating character Is to

be inserted after every text word. The output of this module Is to be the

stored text. and an index of line starting addresses. The circular shifting

module is to generate an Index that gives the address of the first character

of oach text word of each line paired to the number of the line In which
the word occurs. Entries In this Index follow the order In which the words

- 5 -

of the text are stored. and the purpose of the alphabetization module Is to
arrange these entries In alphabetical order of the words. The output
module is to use the alphabetical word Index and the line Index to generate

an alphabetical listing of all circular shifts. The master control module Is

to look after the sequencing among the other modules. produce error mes­

sages. etc. The essential feature of this decomposition Is its linearity: data

Gnter a pipeline. and the master control module pushes the data along this

pipeline.

Under the second decomposition each module typically consists 01

several procedures. The ensemble of procedures that make up the line
storage module could contain the following: (a) function getchsr that Is to

have for Its value a designated character In a designated word of a desig­

nated line. e.g.. getcharO.2.3) would return the third character of the
second word of the first line; Cb) procedure putchar that Is to insert a

given character in a designated position of a designated word In a desig­
nated line; Cc) function wordcount that Is to have the number 01 words In a
designated line for its value; Cd) function charcount that Is to return. the

number of characters in a particular word: and so forth. Here. whenever

we speak of a word. we mean a text word.

The Input module uses the procedures of the line storage module.

Parnas' circular shifting module consists of procedures that are analogous

to those of the line storage module. Their purpose Is to create an

impression that every line of n words has been replaced by n lines. which

are the circular shifts of the original line. For example. csgetcharO.2.3)

would return the third character of the second word of the first line of this

"expanded" table. Of course. the procedures of the circular shift module

could be defined in terms of the procedures of the line storage module.

Indeed. they should be so defined because then there would be no need

for a separate specification; the definition would be Its own specification.
The procedures of the alphabetization and output modules could similarly be

defined in terms of those of the line storage module. The second decom­
position is hierarchical in nature. with the line storage module Its founda­

tion.

The chief advantage of the second decomposition Is that only the line

storage module need be concerned with the physical storage of the text.

Suppose we were to change the line storage mode. packing a different

number of characters to a machine word. or doing without the text word

separator. Under the first decomposition such changes would affect every

module. Under the second. only the line storage module would have to be

changed. It seems that we stili have the pipeline aspect: input done before

circular shifting. circular shifting before alphabetization. and alphabetization

before output. However. now we can make changes among these modules.

for example intermeshlng alphabetization and output. without any effect on

- 6 -

the remaining modules.

Whereas the first decomposition was based on the notion of a
sequence of tasks. the basis for the second decomposition Is data. The
line storage module Is a data structure. composed of an object--the line

store--and a sat of operations. The Input module creates the object. cir­
cular shifting expands It. alphabetization rearranges It. Because we are

dealing with an abstract data structure. the expansion and rearrangement
may be actual. or. alternatively. the same effect may be achieved by means

of indexes. The output module merely demands output Jines In alphabetical

order of circular shifts. Whether there actually exists an expanded table of
circular shifts from which to pick up lines for output. or the text of the cir­

cular shifts is generated as and when required by means of Indexes is
immaterial as regards the output module.

Three Interesting features of modularlzatlon remain to be discussed.

The first relates to multiple representations. The Input text has to be
stored somewhere In its original form. but a circular shift may be merely

an index entry. Therefore the table of Inputs and the table of circular

shifts can differ In kind. This difference becomes largely Immaterial when

we make the line our primary data object. Then the tables are lists of

lines. and the Internal representation of a line should be Irrelevant. In

practice. however. this Is not quite so. For ,example. an equality test for

lines raises nontrivial conceptual problems. Modules provide a convenient

way of dealing with multiple representations. We stipulate: when a set of
modules subsumes a data type. the data type may have different represen­

tations from module to module. but not within a module.

This stipulation has a significant effect on modUle Interfaces. Suppose
a line Is handed from module to module. If representation of lines differs

in the two modules. then the Interface should take care of the mapping

between representations. The problem Is how to make this consistent with

data Independence as far as practicable. One solution Is to Introduce spe­

cial procedures that we call transformers. They would be Interposed

between modules. and their purpose would be to map the output of one

module into the form expected as Input by the other. Transformers would

be implementation dependent. i.e.. whenever the form of the output from the
implementation of a module would change. all transformers associated with

the module would have to be rewritten.

Next let us consider plpeJlnlng. We mentioned above that the pipeline

concept was the basis tor the first decomposition. We should note now

that a pipeline is more than just a bunch of modules set end to end. and

that there are two distinct kinds of modules. Modules of the first kind are

data types. modules of the second kind processes. One.way of looking at
a process is that It accepts an Input. and transforms It Into an output. In

other words. we are dealing with objects. A data type. on the other hand.

- 7 -

is a set of operations. Some appreciation of this distinction can be seen

in the second decomposition. but there has not been total separation. If a
total separation were to be made. then we would have a set of data types
consisting of operations. and a set of processes expressed In terms of

invocations of these operations. The processes would then form a pipeline
In which the output of one process becomes the Input of the next. and-­

and this is the important property of a plpellne--a receiving process could

start to receive and process data before the generating process had com­

pleted its work.

Finally. let us be aware of a certain arbitrariness In all of this. The

text line seems the most appropriate data type for our problem. However.

in deciding on the operations that will constitute this data type. we should
look beyond the Immediate problem. imagine other contexts in which the

data type might come to be used. and try to make the data type very gen­

eral. Obviously we cannot imagine all future uses of the data type. and the
data type will keep evolving. One way of decreasing the costs of this evo­

lutionary process Is to select a set of unchanging primitive operations. and

define all other operations in terms of these primitives or of operations pre­

viously defined In terms of these primitives. But does not then the distinc­

tion between operations and processes become somewhat blurred? More­

over. In a broader context. should not the enUre KWIC Index program be

regarded as a primitive operation? These are dIfficult questions. but we

hope that we shall be giving enough insight Into the problems associated

with modularizatlon to enable one to tackle such questions.

- 8 -

3. A case study: fife update

Consider the customer sales file of a company. We shall distinguish
between a master file. which constitutes a substantially complete source of

information regarding sales by the company. and a temporary transaction
"-

file. Each working day the company makes sales and receives payments.
Information regarding these transactions goes into the transaction file. each

new transaction record being simply appended to the end of the file. At
fixed Intervals of time. say at the end of each week. the transaction 1JIe Is

used to update the master file. It has then served Its purpose. but the

next transaction thereafter begins a new transaction file. This file Is built
up over the next week and used to update the master file again at the end

of that week.

Let us now consider the file update problem in completely general

terms. Given a master file ordered on unique keys. and a transaction file

ordered on the time of transaction. The temporal ordering of the transac­

tion file may be achieved explicitly by means of time stamps. or Implicitly

by the sequential order of the transactions In the file. For a record with

key K in the master file. there may be zero. one. or more than one record

with this key in the transaction file. The transaction file may also contain

unmatched records. I.e.. records whose keys do not occur In the master
file. Moreover. a key may temporarily disappear from the master file during

an update. Such would be the case with the sequence of transactions

Update 1 for record with key K

Update 2 for record with key K

Deletion of record with key K

Creation of (new) record with key K

Update 3 for record with key K

Note here that while Updates 1 and 2 relate to one entity. Update 3 Is
likely to relate to a totally different entity.

There may be more than one transaction file. Then it becomes essen­

tial to use time stamps. and a preliminary to the actual file update would

be the creation of a single transactIon file. either actually or as an abstract

- 9 -

object.

The file update problem has a fairly extensive literature. Clean
"modern" solutions have been advanced by Dljkstra (0176) (attributed to

W.H.J. Feljen>. and Barry Dwyer {Dwell. Dwyer points out that earlier solu­

tions put too much emphasis on unmatched records. with the result that
creation and deletion of records were regarded as essentially different from

regular updates. The complexity that this differentiation creates is avoided

by considering the entire space of possible key values rather than Just the
keys that have physical records associated with them. On a conceptual

level every member of the key space then has a record associated with It.
Some of the records will have physical existence. others will be degenerate.

A degenerate record consists of just a status marker. which indicates that
the record is degenerate. I.e.. that Its key has not been assigned to a phy­
sical record. Creation of a new physical record Is then just another

update, one that changes a key status from unassigned to assigned. and
vice versa for deletion.

So far the organization of the master file has been left undefined.

First note a few different ways of dealing with degenerate records. We

could have a separate file entry for every record. even a degenerate one.

An alternative Is to provide a bit map to Which the key space maps. Keys

of degenerate records would be represented by zeros in the bit map. keys
of nondegenerate records by ones. The actual file then consists 01 nonde­

generate records alone. The most common approach Is to store just the

file of nondegenerate records--the absence of a physical record for a given

key i5Suff/cient indication of Its degeneracy. Secondly. the file could be

random or sequential. and this makes a difference to what happens to
unchanged records. In a random fife they are strictly left alone; In a

sequential file -they have to be copied from the old to the new version of

the master file. (Note. though. that It Is foolhardy to start modifyIng a ran­

dom master file without having made a copy first.)

Our Objective Is to design a fife updating program that is as Indepen­

dent of the organization of the master file as we can possibly make It. Let

us start with an adaptation of Dwyer's description of the file update:

1. Sort transaction We on keys. and on transaction time for records hav­

ing the same key.

2. Open the files.

3. While there remaIn keys to process do:

3a. Get the next key.

3b. Get the master record for this key.

3c. While there remain transactions to process for this key. process

the transactions. updating the master record. (If the record Is

- 10 -

degenerate to begin with. the update creates a new physical

record: If a record Is nondegenerate. certain fields of It are
changed: deletion changes the status of the record to degenerate.>

3d. Insert the updated record In the new master file.

4. Close flies and halt.

Most of the activity Is In Step 3c. and Dwyer has ensured that this

step is Independent of the file organization. The file organization woUld
determine the form of Steps 3b and 3d. The form of Step 3a would also

be determined by the file organization. Conceptually the "next key" of this

step relates to the entire key space. but in practice we would adapt our
interpretation to the file organization actually in effect. For a random file

the key space would be restricted to the keys In the transaction file alone.
for a sequential file to the union of these keys and the keys of the nonde­
generate master records.

Levy (LeB2l takes this a step further by defining an abstract data object

for the problem. His object is an abstract file. which Is a collection of

grouped records. with one group for each key value. Records are typed:

oach group contains at most one record of type M (Master), and transaction

records of types I (Insert). D <Delete>. or C (Change>. Because the order

of transactlohs matters <e.g.. DCCI makes no sense. because an attempt Is

made to change a deleted record>' records In a group must be ordered.

Levy proposes two modules: an input module. corresponding more or less to

Steps 3a and 3b above. and an update module corresponding to Steps 3c

and 3d. The input module consists of the following operations:

input-open
new--group

get-record

input-close

initialize

predicate Indicating start of a new group

get next record

finalize

,
I he output module comprises:

update-open

start-group

insert

change

delete

update-close

Initialize

start a new group

add a record for the current group

change the record

delete the record

finalize

- 11 -

In terms of these operations the update program Is extremely simple:

program update:

Input-open;

update-open:

while not eof do

begin

get-record(rec):

if new-group then

start-group;

case rec. type of

M.I: Insert(rec>;

C: changeCrec);

0: deleteCrec);

end;

end;

Input-close;

update-close

end.

Coding of the procedures is to be found in [le82J. levy regards the

old master and the transaction file as a single composite object. and at

first this rather daring approach seems very promising. However. further

analysis shows that here we have a case of carrying abstraction both too

far and not far enough. On the one hand. because the abstractions are

problem-specific. nothing could be salvaged for a different file processing

application. On the other. the design embodies the assumption of a

sequential file organization. If the master file were In fact random. work

would have to be expended on modifications that could easily have been

avoided.

A similar approach Is taken by logrlppo and Skuce [L083J, They view

the fife update problem as two cooperating sequential processes. The first.

which they call merge. takes several Input flies <the old master file. and

one or more transaction flies), and merges them Into a single abstract file

that Is sorted by key. and for each key contains a sequence of zero or

one record of each of the types master. insert. change. delete (In this

order). It Is not at all clear Why there cannot be more than one record of

type change. or. Indeed. why a sequence such as master. change. change.

delete. insert. change. say. should not be permIssible. The second pro­

cess. called update. converts the sequence of records with the same key

into a single new master record. Our crIticIsm of levy's approach holds

here as well.

- 12 -

Let us now turn to a different aspect of the file update problem. This

is its potential for parallelism. Without attempting to develop a parallel

algorithm for the file update. we can stili exploit one obvious opportunity for

overlapping execution. This Is the sorting of the transaction file. It Is well
known that sorting of n records Is an 0 (n logn) process. but we also know
that some sorting algorithms can produce output well before the sorting

process has run to completion. Thus heapsort. after the initial heap crea­
tion phase. which Is an 0 (n) process. delivers sorted Items at 0 (Iogn)

intervals. Unfortunately heapsort Is not a stable sort. i.e.. it does not main­

tain the relative order of records sharing the same key. and thIs makes it

unsuitable for our application here. Note that the approaches In which the
old master and the transaction file are considered as a single abstract file
lend themselves very well to an overlap of the creation of this abstract file

and the transformation of the abstract file Into the new master file.

We shall see that the easiest approach to the file update program Is to
use three abstract data types. one each for the old master. the transac­

tions. and the new updated master. In Section 5 we shall present a pro­

gram based on these three types. which will be designed in such a way·

that the possible overlap of the sorting of the transaction file and the actual
file update will become a mere Implementation detaIl. First. however. we
should examine data abstraction In greater detail.

- 13 -

4. Specification

Let us again note that data abstraction Is concerned with identification
of data structures with operations. data Independence. and encapsulation.

We shall now look at different ways of specifying the operations that are the

essence of a data structure. We want formal specifications as a blueprint
for implementations. and as a device that permits us to reason about data

structures. Let us begin with the well known and often used examples of a

stack and a queue.

Our first exhibit Is an operational or abstract model specification of a

stack of Integers. taken from [Be83]. In which we have made use (hopefully

correct) Of the syntax of Alphard [Sh8ll:

ALPHARD SPECIFICATION OF A STACK

FOnD Istack(n:lnleger) =
Requires n > 0
Let Islack = (.. ,Xi"')
Invariant 0 S Length(lstack) S n
InitiaUy Istack = Nul/seq
FaudioR

Push(s:1slack ,;(:1nteger)
Pre 0 S Lengths(s') < /I Post s "" .v ' -x
Pop(s: Is tack)
Pre 0 < Lengrh(s') S n Post s "" Leader(s')
Read(s:lslack) Retul'DlJl (x:/nteger)
Pre 0 < Length(s') s n Post x = La51(s')
Empty(s:lstaclc) Returns (b:Boo{ean)
Post b c.. (s'=Nu/lseq)

(the implementation part follows)

EnMonu

This specification relies on an underlying domain of sequences: the

symbol <...x> stands for a prototypical sequence. and the functions Length.
I

Leader. Last. concatenation -. equality =. and the special function Nul/seq

that returns an empty sequence belong to the data type of sequence. The

semantics of the operations are expressed by the pre- and postcondltlons

that follow the domain specifications of the operations. In these conditions

- 14 -

the primed symbol x' stands for the value of the formal parameter x at the

beginning of the operation. and x for Its value at the end. Similar specifi­
cations have been proposed by Hoare (H0721 and King (KI78). The former

deals primarily with correctness. the latter with Implementation.

The specification of one data type (the stack) In terms of another (the

sequence) can be regarded as an encroachment on the freedom of action

of the implementor. The Implementor Is forced into using sequences. but
the limitations Imposed by this constraint are not as serious as they may at

first appear. After all. sequences can be Implemented In a variety of ways.

Nevertheless. a totally "neutral" approach has come to be advocated as an

alternative to operational specifications. This Is algebraic specification. in

which the set of axioms that provide the operations of a data type with
meaning is self contained.

Let us speCify an unbounded queue of Integers In algebraic terms.

again taking our example from (8e83];

ALGEBRAIC STACK SPECIFICATION

Type Is lack
Dedare

New: -+ Istack
Push: Istack)(Integer -+ Istack
Pop: Istack -+ Istack

Read: Istack -+ Integer U {error}
Empl)l : Istack -+ Boolean

For AD s E lstack. i E Integer Let
Empl)l(New) = True

Empl)I(Push(s,i)) = False
Pop(New) = New

Pop(Push(s,i)) = s
Read(New) = error

Read(Push(s,i)) = i
End Is lack

The advantage of algebraic specification derives from Its mathematical

origins. Mathematics is a truly hierarchical science In which new results

are derived from prevlousJy established knowledge by precisely prescribed

methods. Consequently questions of consistency <Is our set of axioms

without contradictions?) and completeness (Is there an Interpretation for

every syntactically legal composition of operations?) can be addressed with

comparative ease in the algebraic framework. On the other hand, algebraic

specification of some conceptually simple data types. e.g.. the traverslble

stack CMa77.Ka79J. turns out to be a very difficult task. it has been said.

see e.g. [FI79J. that algebraic specifications are well suited for program

- 15 -

verification, but that for the verification of Implementation correctness the

abstract model approach is better. Actually the Issue is not as clear cut.

Algebraic specification deals with values rather than obJects, For example.

the stack (4 3 7 2 Is not regarded as an object. but as the value of

the functional composition

Qpush <Qpush <Qpush <Qpush (Qnew ,4),3),7>.2)

An operation transforms one value Into another; It does not change the

state of an object. The Implications of this are far reaching. For example.

assignment. which associates names with objects. has no place In this
scheme of things. Even equality presents problems. Flon and Misra [F179J

consider two deques. one generated by additions at the head. the other by

additions at the tali. and In such a way that If these deques were regarded

as objects. they would be Indistinguishable. However. an otherwise adequate

algebraic specification (consisting of 15 axioms) Is incapable of dealing with

equality. and has to be augmented with an explicit definition of equality.

Bounds present another problem. How Is one to specify a bounded stack

or queue in terms of values? The concept of size makes sense only when

we consider an object as a composition of more basic objects (or we deal

with measurable physical objects). In light of this the usefulness of the

algebraic approach as regards correctness of programs appears to be lim­

ited to functional programming.

A number of attempts have therefore been made to divorce the abstract

model approach from excessive Implementation dependence. beginning with

the paper of Flon and Misra. and finding a particularly Interesting formula­

tion In Claybrook's work (CI79.CI82J. Claybrook recognizes a composite data

object as proclsely that. an aggregate of component objects. This aggre­

gate is viewed -as having a logical structure. which consists of relationships

between the components of an object of the type being defined. a descrip­

tion of the state o·f such an object. and Invariant assertions regarding the

above.

For example. in the case of the staCk. there Is Just one relationship.

ontopof, which Is binary and relates elements stored In the stack. Here

the state consists of the set S. which is the set of elements stored In the

stack, and a relation R. which is the Instance of relationship ontopof per­

taining to the elements in S. An Invariant assertion proclaims ontopof to

be a linear relationship. Operations push and pop are now defined as

state changes. Thus the value of push <s .8) 15 a new state of stack s. If

the stack was preViously empty. S now consists of the single element e.

but R still remains empty. If the stack was not empty. then S becomes

the union of the original S with e. and R the union of the original R with

the ordered pair <e ,readtop <S». where the value of readtop (s) Is the top­

most element of the original stack.

- 16 -

The language tor writing the data type specifications provides a rather

extensive collection of types of relationships for use In expressing Invariant
assertions (CI791. A sample: acyclic. reflexive. symmetric. partially ordered.

totally ordered. linear. tree. forest.

Once a data object Is regarded as a structured aggregate of data
objects of a lower type. the problem of accessing the elements of the lower
type in some specified order becomes a valid concern. To take an exam­
ple that could arise in practice. suppose we have a binary search tree of

integers. and all values In the tree are to be scaled by subtraction of the
smallest value from every other value. This makes every value non­
negative. with the smallest value becoming zero.

Under algebraic specification the standard approach to a traversal of a
binary tree Is to generate a queue of the Integers stored In the binary tree.

For our example one would generate a queue of the Integers corresponding

to a preorder traversal. and take the first element off the queue. One
would "unravel· the binary tree. make the necessary changes. and "splice"

the tree back together. A recursive appllcatlve program for this Is given

below. For a more detailed explanation of this program see [8e831.

Scale(b,T) is
If not Empty(b) then Make (Scale(Left(b),T),

Data(b) - Qread(Inord(T»,
Scale(Right(b),T»

else b;

Our concern is that we want to be able to combine a traversal with

other processing activities. This can be achieved In two ways. One Is to

have a single procedure for carrying out the entire traversal. and. on get­

ting to each node in turn in accordance with the traversal discipline. to call

a procedure that does the processing of the node. This does not work

when two traversals are to be carried out at the same time. One algorithm

for the strong components of a digraph Is based on intermeshed preorder

and postorder traversals of a tree (Be80a). One could define a composite
"prepost" traversal. but this would be problem specific. and one of the prin­

Ciples of modularlzatlon Is to avoid problem specific operations as far as

possible.

The other approach is to call a traversal procedure n times. where n

is the number of elements in the structure. Each time the procedure
returns either the element or a pointer to the element. and the elements

are processed in the calling program. This incremental mode presents

interesting Implementation problems. In essence. we want a procedure that

can· halt execution and return to the main program at an arbitrary point In

the procedure. and resume execution from this point on the next call. The

difficulty lies in having to preserve the state In which the procedure was

- 17 -

when the last return from it was made. In a language such as Pascal this

has to be achieved by means of global variables. and the procedure cannot

be recursIve. Here we have an excellent example of the usefulness of

coroutlnes. and of recursive coroutlnes at that.

Procedure preorder exemplifies this mode In Pascal terms. The first
call Is made with Index pointing to the root of the bInary tree to be

traversed. and the Boolean variable done having value true. The first exe­

cution of preorder leaves the value of index unchanged. but In subsequent
executions Its value Is changed from a poInter to a particular node to a

pointer to the node that follows thIs node under preorder. As part of the

nth execution of the procedure the value of done becomes true. This sig­

nals the completion of the traversal. No test Is made for the binary tree

being empty. Note that traversal Is driven by a staCk. Consequently a
stack has to be declared In the calling program. and this stack Is ferried

back and forth between the calling program and procedure preorder.

procedure preorder(var Index: ptype: var done: boolean;

var stack: stackhead):

begin

If done then

begin

openstack<Stack) ;

done:= false

end

else

begin

If indexf .rightonll then push Cstack,index f .rlght):

Index:= Indext .left:

if Undex=nlD and not empty<stack) then

Index:= popCstack)

end:

done:= Undext .Ieft=nlD and (/ndext .r;ght=nlD and emptyCstack)

end;

In terms of preorder and an analogous procedure Inorder our scaling

procedure becomes

procedure sca/eetree: ptype);

var stack: stackhead;

scaler: datatype;

begin

done:= true;

Inorder<tree, done. stack);

- 18 -

scaler:= tree f .datum;
done:= true;

repeat
preorder(tree.done,stack) ;

tree f .datum:= tree t .datum - scaler

until done
end;

Note here that the Inorder traversal Is broken off after reaching the· first

element In the sequence. at which point the stack Is unlikely to to be
empty. It Is Important that openstaclc be so designed that. on being called
from preorder. It could cope with this situation.

- 19 -

5. herators and their synchronization

Let us look at the strong component algorithm of the preceding section
In some detail. It Is based on a tree representation of a digraph. and

goes as follows. Traverse the tree under preorder until a terminal node Is

reached. Then switch to postorder and traverse the tree under postorder
while every node that Is reached has already been visited under preorder.

switch back Into preorder until aga'n a terminal node Is reached. switch to
postorder. and so forth until both traversals have been completed. In the
preorder phase an Action A Is performed at every node reached: In the
postorder phase an Action B Is performed at each node. Actually it Is

more convenient to use a Knuth transform of the tree. This Is a binary

tree. The preorder sequence of the general tree is given by preorder

traversal of the transform. but the postorder sequence by inorder traversal
of the transform. Criteria for switching from traversal to traversal: (1)

switch from preorder to inorder when the current node has no left child:

(2) ~ switch from Inorder to preorder when the current node has a right

child.

We propose that access to the different nodes In the order determined

hy the particular traversal discipline be provided by Iterators. An Iterator

delivers at every Invocation the next element of a traversal sequence.

Iterators are provided by a number of programming languages. such as
Alphard [Sh8ll and CLU (L181l. but there they are coupled to a for-loop.

This prevents Intermeshlng of traversals. A generalization of the for-loop by

means of a construct called controlled Iteration permits synchronization of
iterators (Be80bJ. but this construct Is Incompatible with the very Important

criterion of simplicity in the design of programming languages. Iterators are

also provided by Icon (Gr81l. where they are not tied to a for-loop. but the

synchronization issue has not been a concern In the design of Icon.

Our solution to the synchronization problem Is to associate a set of

states with an Iterator. State-transition as a programming tool has been

Investigated by a number of authors (see. e.g.. (At79.Ju80.He82J. but syn­

chronization based on states seems to be new. For our example we need

to define a set of states for the preorder and Inorder Iterators. Actually we

shall use the same set of states In both instances. namely T <terminal

node), B (internal node with both children). L {Internal node with Just a left

- 20 -

child>. R (Internal node with Just a right child). 0 (traversal completed. but

the Iterator continues to deliver the last item of the traversal sequence to
avoid problems with undefined values>' Note that we have tried to make

the state set Independent of the particular application. The fact that the

'terator remains active after a traversal has been completed requires explicit

opening and closing of Iterators.

We also need to allow for the possibility of a structure being subjected

simultaneously to several traversals of the same kind. Consequently the

definition of an iterator should be separated from declarations of particular

instances of this iterator. Further. the nature of the structures from which
Iterators deliver Inputs to a process should be no concern of this process.

Far example. If we are to merge two sorted Input streams to produce a

single sorted list. all that matters from the point of view of the merge pro­
cess is that elements are delivered from the source structures In ascending

order of their keys. It makes no difference whether the structures are
bInary trees. or linear arrays. or one Is a binary tree and the other a

linear linked list. An instance of an Iterator should be an Interface

between a data structure and a process that ensures total Independence Of

one from the other.

In this framework. assuming presequence and Insequence to have been

declared as instances of the Iterators preorder and Inorder. respectively. we
get the following schematic program for the strong components:

open presequence:
open Insequence;

repeat

repeat
presequence (T.Anode, prestate) :

Action A with Anode
until (prestate=R) or (prestate=n;

repeat

InsequenceCT, Bnode, Instate);

If Instate 00 then Action B with Bnode

until UnstateoTI and UnstateoU

until Instate=O;

close insequence;

close presequence;

Let us now define the Iterator preorder. In technical terms. an Iterator

Is a semlcoroutlne [Wa7l). We shall use a syntax that Is a slight extension

of Pascal. The Iterator Interrupts execution and returns to the calling pro­
gram on reaching the deliver-statement. On the next entry to the Iterator

- 21 -

execution resumes with the statement that follows the deliver-statement. The

deliver-statement also Indicates the value that the Iterator returns. Here the

Iterator returns a pointer to a node.

lterator preorder<binarytree: polntertype: var item: polntertype: var state: statetype):
var stack: stackrecord:

node: polntertype;

begin
If blnarytree=nll then

begin item:= nil;

state:= 0

end
else
begin

openstack£Stack) ;

push £Stack. binarytrea):

repeat
node:= popC.stack);

repeat

If node t .rightonll then
begin

push £Stack. node t .right>;

If node t .ieftonll then

state:= B

else
state:= A

end

else -If node t .Ieftonll then

state:= L
else

state:= T:
repeat (~ stay in this loop after state becomes 0 ~)

deliver Item:= node;

If (node T.Ieft=nlO and emptyC.stack) then

state:= 0

until state00;

nOde:= node T.Ieft;

until node=nll

until false (ft this Is a do-forever It)

end

end;

- 22 -

In terms of iterators procedure scale becomes

procedure sea/eUree: polntertype):
var Insequence: Inorder:

presequence: preorder:

instate,prestate: statetype:

node: polntertype:

scaler: datatype:

begin
open Insequence:

InsequenceCtree, node, Instate):

scaler:= node f .datum;
close Insequence:
open presequence:

presequenceClree. node,prestate) ;

While prestate <> 0 do
begin

node f .datum:= node f .datum - scaler;
presequenceCtree, node,prestate) ;

end:
~ presequence

end:

Let us now return to the tile update. We propose two Input Iterators,

one for the old master. the other for the transaction file (or flies). and

name the Instances of the Iterators to be used In our program nextmaster

and nexttrans. respectively. Both Iterators return records. There are two

state Indicators for the transaction Iterator: transtype. with values (I,C.Ol,

indicates whether the transaction Is an insertion (J). change (C). or deletion

CD): keytype. with values {F,N,o}, Indicates whether the transaction Is the

first of a set sharing the same key (F), or the last item of the Iteration

sequence has been delivered (D. In which case the Iterator continues

delivering this last item). or It' Is neither of the above (N).

The state set of the master fife Iterator Is (M.N,oL and these states

Indicate whether the key of the record being delivered matches the supplied

key (M). or does not match the supplied key eN). or all records of the

master file have already been delivered (D). The program as displayed

below has been designed tor a sequential master fl/e. If the master Is a

random file. then two groups of four lines of code have to be removed

<they are marked with asterisks). and the master file Iterator has to be

rewritten. The transaction Iterator generates a sorted Input stream (possibly

from more than one transaction fife). The generation of the Input stream

- 23 -

can well proceed In parallel with the actual update. but then we need a

mechanism for walts In case the Iterator cannot produce the Input stream

at as fast a rate as it Is consumed.

open nextmaster;

open nexttrans;

nexttrans (transaction, T, transtype, keyfype);

repeat
nextmasterCmaster,R, T.keY,state);

willie R.key<T.key do (Ult)

begin putrecordcnewmaster,R>; (ltUt)

nextmasterCmaster,R, T.keY,state) (Ult)

end: (ua)

" state=M then
newrecord:= R

else " transtype 0 I then
ERROR CONDITION;

transferswltch:= true;

repeat

case
I:

transtype of
begin newrecord:= T;

transferswitch := true

end;

C: make changes to newrecord;

D: begin do deletion bookkeeping:

transferswltch:= false

end
end;

nexttrans (transaction, T, transtype~ keytype);

until Uceytype=F> or Uceytype=D>;

" transferswitch then putrecordcnewmaster,newrecord)

until keytype=D;

while stateoD do (Ult)

begin nextmasterCrnaster,R, T.keY,state); (ua)

putrecordCnewmaster, R) (U It)

end;

close nexttrans;

close nextmaster;

We Indicated earlier that here we are dealing with three data types.

We could just as well decide to regard master. newmaster. and transaction

as three objects belonging to a single data type with which we would asso­

ciate our two iterators and the procedure putrecord. This. however. would

- 24 -

reduce flexibility. Whereas master and newmaster correspond to single phy­
sical files. transaction is an abstract object that could correspond to more

than one file.

Finally note that legal sequences of transactions can be described by a
state transition diagram:

Given a group of transaction records for the same key. If there exists a
master record with this key. then the first transaction has to be of type C
or 0; If no master record exists. the first transaction has to be of type I.

Our program above checks that we start off correctly. After that. oniy the
state transitions indicated by the diagram are valid. and a valldl~y check

would have to be built into the transaction iterator.

- 25 -

6. case study: two-way merge

Let us now consider another fairly complicated example of modularlza­
tion. Our context will be two-way merge as a basis of external sorting.
The primary activity In external sorting Is the merging of sorted flies to

produce larger sorted flies. We shall therefore first examine an Internal

sorting procedure based on merging. called merge sort. Merge sort relates
to efficient Implementation of set operations. which gives it additional

interest. Set operations. such as union and Intersection. take much longer
when the operations are carried out on sets with unordered elements than

when the elements are ordered. Assume that vector A contains the n ele­

ments of setA. and that ~ector B contains the m elements of setB. Algo­
rithm 1 is a procedure that merges elements of A and B Into C. We

shall use the ideas developed in Section 5. but programming will be In

conventional Pascal throughout.

ALGORITHM 1. A procedure for merging Integers stored In order of magni­

tude in A and B. Arrays A and B are assumed to be of the same type.

with SUbscript range n ..nJ, and all elements except the first Atop of A and

the first Stop of B assumed to contain the value -maxlnt (It is assumed

that setA and setB cannot legitimately contain an element having this value).

The result Is returned In array C. which Is of the same type as A andB.

In C all elements except the first Atop -tBtop are set to -maxlnt by the pro­

cedure. Availability Is assumed of errorprocedure. which handles the case

of Atop tStop exceeding n.

procedure merge(var A,B,C: setarray):

var i.J, k.Atop. Btop. Index: Integer;

funcllot1 s/ze(var sourceset: setarray): integer:

war top: Integer;

aI/done: boolean;

begin
top:= 0;

repeat

If top<n then
al/done:= sourceset£top+1J=-maxlnt

- 26 -

else

aJldone:= true;

if not alldone then top:= top+ 1

unU' alldone:

slze:= top

end:
begin

Atop:= size fA);

Btop:= s/ze(B):

If Atop+Btop>n then errorprocedure

else If Atop=n then C:= A
else If Btop=n then C:= 8

else
begin

1:= 1: 1:= 1; k:= 1;

repeat
If A(I)<BUJ then

begin CUd:= A[/}:

k:= k+l;

1:= 1+1

end
else

begin C[k):= BU);

k:= k+l;

J:= /+1:

end:
unlit (/>Atop) or (/>Btop);

If I>Atop then

for Index:= I to Btop do
begin C{k):= B(/ndex):

k:= k+1

end
else

for index:: I to Atop do

begin Clk]:= A£lndex]:

k:= k+l

end:
for Index:= k to n do

C[/ndex):= -maxlnt

end
end:

- 27 -

The double traversal of arrays A and B. first to count the elements In

the sets. then to do the actual merging. may seem a duplication of effort.

and hence a waste of program execution time. ThIs Is not so. In any
other design the equivalent of the test Atop +Btop) n of Algorith m 1 Is

spread throughput the procedure. and In fact takes more time. Moreover.

the procedure becomes more difficult to understand.

Suppose now that the input to the merge Is to be from magnetic tapes

(or magnetic disk). Suppose we have four tape drives at our disposal.

named A. B. C. D. and suppose further that the file to be sorted resides

on tape C. with keysc,. c2 C
k

. For example. the keys of the Input

file could be

C: 19 1 26 43 92 87 88 26 17 34 69

The first stage is to distribute the records to tapes A and B:

1:= 1;

outputswltch:= true:

while i <=k do

begin

if outputswitch then

output(cI .A)

else
output(cI .B):

1:= 1+1;

If I<=k then

if c1<cl _ 1 then
outputswltch:= not outputswitch

end:

At the end of the Initial distribution we have

A:
B:

19

1

87 88

26 43

17 34 69

92 26

If tape B were now empty. we would be ffnlshed. Note that we are taking

advantage of the natural order that may already exist In the input file. in

our case we can distinguish five runs. I.e. blocks of keys that are ,already

in order. namely Cl9>. Cl.26.43.92). (87.88>' (26). Cl7.34.69)' After the Initial

distribution there are two runs on A and two on B.

The next stage Is to merge records from tapes A and B onto tapes C

and D. The program for this task is too complicated to be written without

a thorough preliminary analysis. We shall regard this analysis as a case

study In program modularizatlon.

- 28 -

For generality we shall regard A and B as Input streams. which could
be tape flies. arrays holding a known number of elements. or arrays In
which the convention of Algorithm 1 Is followed. We propose that at any

one time the Input stream will be in one of a small number of states.

Four states are sufficient: FClnlshed>. Least>. H(old). and N(ormal). The Input

stream Is In state F when all records from It have been used up. or It was

empty to begin with. It Is In state L when the last record of a run Is

being looked at. State H is rather special. Suppose an output run is

being generated by merging Input runs from the two Input streams. that all

records from the first input stream have already been transferred Into the

output. but that transfer of the run from the other Input stream has not yet

been completed. The first Input stream is then In state H. An input

stream Is In state N when It is not In one of the other states.

Table 1 shows all combinations of states In which the pair of Input

streams. A and B. can be found. and the action that Is to be followed In

each Instance. If the state pair is LL. LN. NL. or NN. the transfer Into the

output stream can be from either Input stream. depending on which stream

holds the record with the smallest key value. When the state pair Is LH.

LF. HL. or Flo then the record that Is now transferred Into the output

stream closes off an output run. and the next run will be built up as part

of the other output stream. We can now build up a gigantic case state­

ment to parallel the actions of Table 1. This. we enclose In a procedure

moverecord :

procedure moverecord;

var r: mergerecord;

begin
case steteA of

L: case ststeB of
L: .. K<A) <K (B> then

begin getrecord<A,r,stateA);

If stateAoF then stateA:= H

end

else
begin getrecord(B, r ,stateB);

If stateBoF then stateB:= H

end;

H: begin getrecord<A,r,stateA);

ststeB:= N;
outawltch:= true

end:

- 29 -

TA8l£ 1
STATE-ACTiON TABLE FOR A TWO-WAY MERGE

AB Action

LL If input from A. change Its state to H or F: If Input from B. change
Its state to H or F

LH Input from A: change Its state to N. F. or L (arises If next run con­
sists of just one record): change state of B to N; switch to other out­
put stream

LN If Input from A. change Its state to H or F: If Input from B. keep Its
state unchanged. or change It to L

LF Input from A: change Its state to N. F. or L: switch to other output
stream

HL Input from B: change its state to N. F. or L: change state of A to N:
switch to other output stream

HH Cannot arise

HN Input from B: keep Its state unchanged. or change It to l

HF Cannot arise

NL If input from A. keep Its state unchanged. or change It to l: If Input
from B. Change Its state to H or F

NH Input from A: keep its state unchanged. or change It to L

NN If Input from A. keep Its state unchanged or change It to l; If input
from B. keep Its state unchanged or· change It to L

NF Input from A: keep Its state unchanged. or change U to L

FL Input from· B: change Its state to N. F. or L: switch to other output
stream

FH Cannot arise

FN Input from B: keep Its state unchanged. or Change It to L

FF HALT

- 30 -

N: If KCA)<KCB) then
begin getrecordCA,r,stateA);

If stateAoF then stateA:= H

end

else
getrecordCB,r,stateB) ;

F: begin getrecordCA,r,stateA);

outswitch := true

end
end;

H; case stateB 01
L: begin getrecordCB,r,stateB);

stateA:= N;

outswltch:= true
end;

N:getrecordCB, r, stateB)

end;

N: case stateS 01
L: If KCA) <K CB) then

getrecordCA, r, stateA)

else

begin getrecordCB,r,stateB);

II stateBoF then stateB:= H
end;

H: getrecordCA,r,stateA);

N: II KCA)<KCB) then

getrecordCA, r, stateA)

else
getrecordCB, r. stateB) ;

F: getrecordCA,r,stateA)

end;

F: case stateB Of

l: begin getrecordCB,r,stateB);

outswitch := true

end;

N: getrecordCB,r,stateB)

end
end;

If outC then
putrecordCC, r)

else
putrecordCD, r);

If outswitch then

- 31 -

begin outC:= not outC:

outswitch:= false

end
end;

Procedure moverecord Is completely Independent of the form of the flies

that are to be processed. The Interface to the flies consists of procedures
getrecord and putrecord. and function K. These routines provide access to
the files. are therefore dependent on the actual form of the flies. and a
new set has to be written each time the representation of the flies is
changed.

To provide an example. we shall consider a file In which the main field

is stream. an array of m records. This Is the actual fife. In addition to
the array. the record holds fields size. which teils how many of the m ele­

ments of stream are actually occupied by the file. and index. which Indi­
cates the record of the file that Is currently being accessed. An appropri­

ate set of declarations:

canst m = :
type keytype = integer:

mergerecord = record
key: Integer

end:

mergestream = record
size,

Index: 'nteger:
stream: array[l ..ml of mergerecord

end:
statetype = (LH.N.F);

Procedure moverecord calfs procedures getrecord and putrecord. and

function K. Procedure getrecord returns the record to which index points.

and Increments index. It also sets the state Indicator of the file to F. L

or N. We have made s/m and Index part of our fife representation. but

not the state Indicator. This Is so because its setting does not depend

entirely on the file by Itself. The indicator can have the fourth value H.

and this setting depends in part on the current state of the other fife.

Procedure putrecord Increments the value of size. and assigns the record

that Is one of Its arguments to the location In stream defined by the value

of size. Function K returns the key of the record Indicated by Index. In

our example a record consists of just the one field key.

In addition to these routines we need procedure open. which Initializes

Index of a non-empty file to 1. and also Initializes the state Indicator.

- 32 -

procedure ready. which sets size to zero. i.e.. turns a file Into an empty

file. and procedure close. which does some final processing after a file has

received all Its data. In our example close Is a vacuous procedure. but

not in general. For example. under the convention of Algorithm 1 It would

fill In the unused part of the array with -maxint. Procedures open and

ready correspond to the Pascal file procedures reset and rewrite. Indeed.
if our streams were Pascal files. then procedure ready would consist of just

a call to rewrite.

Routines getrecord and K Invoke procedure errorprocedure when the

value of Index exceeds that of size. This procedure has been left unde-

fined.

procedure getrecord(var a: mergestream; war item: mergerecord: var state: statetype);

begin
if a./ndex>a.s/ze then

errorprocedure

else with a do

begin Item:= stream[index);

Index:= Index+1;

If index)slze IIIen
state:= F

else· If Index=slze then

state:= L
else If stream[/ndex).key>stream[/ndex+1l.key then

state:= L
else

state:= N

end
end;

procedure putrecord(var a: mergestream; var Item: mergerecord):

begin
..... a do

begin slze:= slze+ 1;

stream[slze):= Item

end

end;

- 33 -

function K(vay a: mergestream): keytype;

begin
with a do
begin if Index>slze then

errorprocedure

else
K:= stream[/ndex).key

end
end:

procedUN open(vay a: mergestream; var state: statetype);
begin

with a do
begin If sJze=O lhen

state:= F

else
begin if slze=l 1II8n

state:= L

else if stream(1).key>stream(2).key tllen
state:= l

else
state:= N:

Index:= 1

end

end
end;

procedure ready(var a: mergestream>:

begin
a.slze:= 0

end;

procedUN close(var a: mergestream):

begin

end:

We are now ready to put the bits and pieces together Into the pro­

cedure twowaymerge:

- 34 -

procedure twowaymerge(var A, B, C,0: mergestream);
var outC,outswitch: boolean;

stateA,stat~8: statetype;

procedure getrecord

procedure putrecord

function K .

procedure open .

procedure ready

procedure close

procedure moverecord

uegln
open <A,stateA); open <a,stateB); rsady(C): ready (0) ;

outswltch:= false;

outC:= true:
while CstateAoF) or CstateBOF) do

moverecord;

closeCC); closeeD)

end;

Returning to the sorting example we started with. recall that the Initial

distribution stage has distributed records to streams A and B. The next

stage Is to merge records from A and Bonta C and D. If now 0 Is

empty. we have finished. Otherwise records are merged from C and 0
back onto A and B. If B Is now empty. we have finished; otherwise the

next merge is again from A and 8 onto C and D. and so forth.

Procedure twowaymerge can be used for the initial distribution as well.

In terms of this procedure a compiete merging program takes the following
form:·

- 35 -

D.size:= 0:

twowaymerge (C. D.A. B):

directionswitch:= true:
repeat

if directiom,wltch then
begin twowaymergeCA,B,C,D);

done:= CD.s/ze=O>;

end

else
begin twowaymerge(C,D,A,B);

done:= CB.slze=O);

end
directlonswltch:= not directionswitch

until done;

- 36 -

7. Modules In Ada

Let us express the type complex of Section 2 as an Ada (US83] pack­

age. Packages can provide true encapsulation. and In our example we
shall completely separate use from Implementation by making the latter
-prlvate-. This Is not just of academic Interest. A complex number can be

implemented as a record of two reals. but It can just as easily be Imple­
mented as a two-element array of reals. Programs that make use of type
complex should be unaffected by the substitution of one Implementation for
another. This Is achieved by hiding everything regarding the Implementation

from the view of the user. Such Implementation Independence does. how­

ever. mean that we require to augment the set of operations defined in
Section 2. In particular. we need a constructor function that builds a com­

plex number from two reals. and two extractors. for the real and Imaginary
parts. respectively.

package camp/ex_numbers Is

type complex is prIvaIe;

function -+- (s,b: complex> return complex;
function R__ <B,b: complex> relUr'n complex;

function -.- <S,b: complex> return complex;
function conjugate <B: complex> return complex;

function stretch (c: real; a: complex> return complex;
function modulus (a: complex> I'8IUm real;

funcdon -r Ca,b: complex> return complex;
funCtIon build (c, d: real) I'8Ium complex;
function re.,.part Ca: complex> return real;
function /m.,.part Ca: complex> return real;

privaIB

type complex Is

record
re,lm: real;

end record;

end;

pacIIage body complex_numbers Is

- 37 -

function "+" Ca. b: complex> return complex Is
begin

r8lOm CB.re+b.re. a.Jm+b.lm);

funcUon bulldCc,d: real) return complex Is

begin
return Cc,d);

end build;

end compJex-ftumbers;

The first part of this program text Is the package "specification". which
Is the interface between the package and the program that uses It. This Is

the visible component. It differs from the specifications we discussed In

Section 4 in a significant way--ft specifies the types of the arguments and

the results of the operations. but does not define their meaning. The

second component. the package body. provides the operations with meaning.

but. since this Is an Implementation. It Is not an Independent specification

in the sense of Section 4 either.

For another example of an Ada package let us take the stack. Again

we shall make sure that the only access to the data Is by the stack opera­

tions. and. to ensure this. shall make the stack a private type. We shall

go even further. For unqualified private types assignment and equality tests

are still available: for limited private types even these faclfitles are left to

the devices of the Implementor.

package stacks Is

type stack Is limited private

procedure openstack Cs: In out stack);

procedure push Cs: In out stack; x: item);

procedure pop Cs: In out stack);

function readtop Cs: stack) return Item;

funcUon empty Cs: stack) return boolean;

private
bound: constant= 100;

type stack Is
r8COld

s: arrayC1 ..bound) Of Item;

top: Integer range O..bound;

- 38 -

end reconl:
end:

package body stacks Is
procedure openstack <.s: In out stack) Is
begin

s.top:= 0:

end openstack:
procedure push <5: In out stack; x: Item) Is
begin

s. top:= s. top+ 1;
s.sCtop):= x;

end push:

end stacks:

One of the problems with a language such as Pascal Is that If we

wished to use the same stack module for storing data of d.lfferent types. we

would have to make a separate copy of the text of the module for each
data type. Ada has a generic definition mechanism that avoids this diffi­

culty. We would start the package specification with

generic
bound: poslnteger:
type item Is private

package stacks Is

and remove the statement

bound: constant= 1DO:

Then. to create a stack of integers of size 150. say. we Instantiate the

generic package as follows:

declare
package InCstack Is stackCl50.lnteger);

use InCstack;

s: stack:

- 39 -

8. BIbliography

At79 Atkinson. LV.. Pascai scalars as state indicators. Software--Practlce
and Experience 9. 427-431 (1979).

BeBOa Berztlss. A.T.. Depth-first K-trees and critical path anaiysls. Acta
Int.. 13. 325-346 <1980>.

Be80b Berztiss. A.T.• Data abstraction. controlled iteration. and communicat­
ing processes. Proc. ACM Annual Conf. 1980. ACM. New York. 1980.
pp.197-203.

Be83 Berztlss. A.T.. and Thatte. S.. Specification and Implementation of

abstract data types. Advances in Comput. 22. 295-353 (1983).

Bi73 Birtwlstle. G.M.. Dahl. O.-J.. Myhrhaug. B.. and Nygaard. K.. Simuia

Begin. Studentlitteratur. Lund. 1973.

CI79 Claybrook. 8.G.. Cleaveland. J.C.. and Criscione. 0.. Logical structure

specification and data type definition. Proc. ACM Annual Cant. 1979.

ACM. New York.· 1979. pp.203-211.

CI82 Claybrook. B.G.. A specification method for specifying data and pro-

cedural abstractions. IEEE Trans. Sofware Eng. SE-8. 449-459 (1982).

Da68 Dahl. O.-J.. Myhrhaug. B.. and Nygaard. K.. The Simuia67 common

base language. Norwegian Computing Centre Report. Oslo. 1968.

0176 Oljkstra. E.W.. A Discipline of Programming. Prentice-Hail. Engle-

wood Cliffs. New. Jersey. 1976.

Ow81 Dwyer. B.• One more tlme--how to update a master file. CACM

24. 3-8 <1981>.

- 40 -

FI79 Flon. L. and Misra. J.. A unified approach to the specification and

verification of abstract data types. Proc. Conf. Spec. Reliable Software

1979. IEEE Computer Society. New York. 1979.

Gr81 GriswOld. R.E.. Hanson. O.R.. and Korb. J.T.. Generators In Icon.
ACM Trans. Program. Lang. Syst. 3. 144-161 <1981>.

He82 HeX!. J.. and Hirst. S.. The formal treatment of state transition
tables--a tutorial. Austral. Computer J. 14. 1-6 (1982).

H072 Hoare. C.A.R.. Proof of correctness of data representations. Acta

In'.. 1. 271-281 (1972).

Ju80 Jullff. P.. Program control by state transition tables. Austral. Com-

puter J. 12. 146-152 <1980>.

Ka79 Kapur. D.. Specifications of Majster's traversable stack and Veloso's

traversable stack. SIGPLAN Notices 14. no.5. 46-53 (May 1979).

KI78 King. P.R.. On the specification and design of abstract data types.

In Constructing Quality Software (P.G. Hibbard and S.A. Schuman, eds.>.

North-Holland. Amsterdam. 1978. pp.449-470.

Le82 Levy. M.A.. Modularity and the sequential file update problem.

CACM 25. 362-367 (1982).

lI81 L1skov. B.. et al.. CLU Reference Manual. lect. Notes Comput.
ScI. No. 114. Springer-Verlag. Berlin. 1981.

l083 logrlppo. l.. and Skuce. D.R.. File structures. program structures.

and attributed grammars. IEEE Trans. Sofware Eng. SE-9. 260-266
(1983).

Ma77 Majster, M.. Limits on algebraic specification of abstract data types.

SIGPLAN Notices 12. no.l0. 37-42 COct.1977).

Pa72a Parnas. D.L.. A technique for software module specJflcatlon with
examples. CACM 15. 330-336 (1972).

Pa72b Parnas. D.l.. On the criteria to be used In decomposing systems

Into modules. CACM 15. 1053-1058 (1972).

- 41 -

Pa76 Palme. J.. New feature for module protection in Simula. S/GPLAN

Notices 11. no.5. 59-62 (May 1976).

Sh81 Shaw. M.. ed.• Alphard: Form and Content. Springer-Verlag. New

York. 1981.

US83 U.S. Department of Defense. Reference Manua/ for the Ada Program-

ming Language. Springer-Verlag. New York. 1983.

Wa71 Wang. A.. and Dahl. O.-J.• Coroutine sequencing ina block struc-
tured environment. BIT 11. 425-449 <1971>.

	Modularization: a first draft
	Recommended Citation

	tmp.1284333754.pdf.RgSql

