View metadata, citation and similar papers at core.ac.uk brought to you by fCORE

provided by Research Online

University of Wollongong
Research Online

Department of Computing Science Working Faculty of Engineering and Information
Paper Series Sciences
1983

Program development by inductive step wise refinement

R. Geoff Dromey
University of Wollongong

Follow this and additional works at: https://ro.uow.edu.au/compsciwp

Recommended Citation

Dromey, R. Geoff, Program development by inductive step wise refinement, Department of Computing
Science, University of Wollongong, Working Paper 83-11, 1983, 30p.
https://ro.uow.edu.au/compsciwp/78

Research Online is the open access institutional repository for the University of Wollongong. For further information
contact the UOW Library: research-pubs@uow.edu.au

https://core.ac.uk/display/36990696?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://ro.uow.edu.au/
https://ro.uow.edu.au/compsciwp
https://ro.uow.edu.au/compsciwp
https://ro.uow.edu.au/eis
https://ro.uow.edu.au/eis
https://ro.uow.edu.au/compsciwp?utm_source=ro.uow.edu.au%2Fcompsciwp%2F78&utm_medium=PDF&utm_campaign=PDFCoverPages

Program Development by Inductive Stepwise Refinement
R. Geoff Dromey

Department of Computing Science
.University of Wollongong

Preprint No. 83-11 December 16, 1983

P.O. Box 1144, WOLLONGONG N.S.W. 2500, AUSTRALIA
tel (042)-270-859
telex AA29022

Program Development by Inductive
Stepwise Refinement

R. Geoff Dromey

Department of Computing Science,
University of Wollongong,
P.O. Box 1144,
Wollongong N.S.W. 2500
Australia.

ABSTRACT

A constructive method of program development is presented. It seeks to
unify two important ideas about program development. Namely that program-
ming is a goal-oriented activity and that there should be a correspondence
between data and program structures. The latter concept is seen to be exten-
sible beyond the data processing context in which it was originally proposed.
Induction provides the wvehicle for program development by stepwise
refinement, with the final program being constructed by application of a
sequence of progressively more powerful generalizations. The design process
employed guarantees the correctness of the final program provided each of the
refinement steps have been correctly taken. The method is illustrated by a
number of examples.

Key Words:

program development, inductive stepwise refinement, structure clashes, induction,
orienting mechanism, postcondition, syntax diagrams, programming methodology.

Program Development by Inductive
Stepwise Refinement

R. Geoff Dromey

Department of Computing Science,
University of Wollongong,
P.O. Box 1144,
Wollongong N.S.W. 2500
Australia.

ABSTRACT

A constructive method of program development is presented. It seeks to
unify two important ideas about program development. Namely that program-
ming is a goal-oriented activity and that there should be a correspondence
between data and program structures. The latter concept is seen to be exten-
sible beyond the data processing context in which it was originally proposed.
Induction provides the vehicle for program development by stepwise
refinement, with the final program being constructed by application of a
sequence of progressively more powerful generalizations. The design process
employed guarantees the correctness of the final program provided each of the
refinement steps have been correctly taken. The method is illustrated by a
number of examples.

1. INTRODUCTION

There have been two far-reaching contributions to our understanding of program development
over the past decade, one concerning the nature of programming, and the other concerning
the structure of programs. Dijkstra {1], and more recently Gries [2] have demonstrated the
importance of treating program development as a goal-oriented activity. On the other hand,
Jackson [3] has shown the advantages of matching the program structure with the structure
of the data. We shall present a method of program development that seeks to unify these two
important ideas.

Inductive stepwise refinement is a constructive method of program development. It is based
on a partitioning rule which requires that the simplest aspects of the final solution are always
dealt with first. The final program is constructed in a stepwise fashion by applying a sequence
of progressively more powerful generalizations - a systematic application of induction. This
strategy for development has two advantages. Firstly the correctness of a given refinement
step can be judged without reference to parts of the mechanism that have yet to be developed.
Secondly the correciness of the final program can be guaranteed provided each of the
refinement steps has been carried out correctly.

Programs developed using inductive stepwise refinement possess a structure that conforms to
the structure of the data. Where the structure of the data is unimportant in influencing the
structure of the program it is found that programs assume a structure consistent with the pro-
perties of the transformations that are applied to the data. Common modularity is identified
and exploited in both the development and structure of programs produced by this method.

2. INDUCTION AND PROGRAM DEVELOPMENT

Induction is variously defined as “a beginning, commencement, the process of reasoning or
drawing a conclusion from particular facts or individual cases” [4].

In the deductive sciences the usefulness of induction is recognized. For example Polya in his
classic works on mathematical problem-solving gives an excellent account of the importance

.92.

and constructive role of induction (as distinct from mathematical induction) in the solution of
problems [5, 6, 7].

In program development, induction has usually been equated with bottom-up design. This has
meant that it has gained the reputation of being useful in identifying specific components of a
solution to a problem but of lacking a systematic procedure for controlling how these com-
ponents should be organized [8]. Clearly, if induction is to have any credibility in program
development, it will need to be applied in a way that transcends the difficulties associated with
traditional bottom-up design - a systematic procedure is essential.

There are two central concerns in program development, what must be accomplished, and
how it is to be accomplished. The postcondition gives a specification for what is to be accom-
plished while iteration provides a primary means for establishing the goal. The role that
induction can play in program development is to provide a vehicle for systemati-
cally linking iteration (or recursion) to the postcondition. This idea forms the basis of
program development by inductive stepwise refinement.

3. INDUCTIVE STEPWISE REFINEMENT

The application of induction in program development proceeds in two stages. Firstly an
appropriate starting point must be chosen then a succession of generalizing steps are applied.
Guidelines are needed to assist both stages of development.

3.1. The Orienting Mechanism

An appropriate starting point for the development of a program is the identification and imple-
mentation of the most elementary iterative (or recursive) mechanism that can establish the
postcondition under the most restrictive conditions, This mechanism is the orienting
mechanism. Its role is to provide a suitable reference point for the subsequent development
of the program. The orienting mechanism establishes the postcondition by changing the least
number of variables with the least computational effort.

There are several reasons for choosing a starting point with these properties:

® it can help to ensure that the degree of complexity that must be dealt with initially and
subsequently is kept as small as possible

® it is necessary to ensure that data-structure and problem-structure dependencies are
recognized and exploited in the design

® it gives the opportunity for subsequent detection and exploitation of common modularity.

To identify the orienting mechanism for a particular problem both the data structure
specifications and the postcondition need to be carefully examined. What must be sought in
these specifications is a component that requires the simplest repetitive action to establish the
postcondition under the most restrictive conditions - this usually means changing only a single
variable.

For example, if the postcondition specifies that a set of data is to be sorted, then the simplest
iterative mechanism that can establish the postcondition is one which merely confirms that
the data is already sorted. Obviously this mechanism can only establish the postcondition in
a very restricted case. It does however provide the basis for the subsequent development of
an insertion sort.

-3-

Some criteria that can assist in the identification of the orienting mechanism are:

® establishment of the postcondition by an iterative mechanism without the need to pro-
duce output has precedence over a mechanism that must produce ouiput (e.g. text for-
matting a file of blanks)

® establishment of the postcondition by an iterative mechanism which produces output for
only a single class has precedence over a mechanism that produces output for more
than one class.

@ establishment of the postcondition by an iterative mechanism without conditional testing
has precedence over a mechanism that applies conditional testing (e.g. in a sequential
file update under special conditions (an empty transactions file) it is possible to establish
the postcondition by simply copying from the old master to the new master file. This
avoids conditional testing whereas processing a set of. transactions involves conditional
testing to identify the category of the transaction).

These criteria are fairly widely applicable. However, in dealing with a particular problem the
specifications and the model for the problem will play the most significant role in identifying
what should be the orienting step.

It is useful to identify some of the roles that the orienting mechanism may assume in the
overall development of the program. These roles can provide a basis for the formulation of a
set of composition rules that may be used in development of the programs. Some of the more
prominent roles of the orienting mechanism are:

® it may describe an iterative mechanism which can confirm the postcondition (e.g. sort-
ing)

® it may describe an iterative mechanism which in turn can be iteratively applied to estab-
lish the postcondition.

® it may describe an initializing or finalizing step for a more general iterative mechanism.

® it may set up a configuration which can either subsequently be confirmed to establish
the postcondition or which must be changed to establish the postcondition.

® it may provide one of a number of independent alternative means for establishing the
postcondition. :

Having identified the orienting mechanism in terms of the postcondition R that it establishes
there are two other tasks that must be undertaken. Firstly it is necessary to implement the
orienting mechanism according to the specifications required by Ry. In taking this step it fre-
quently found that the subgoal R itself consists of a composite (compound) iterative mechan-
ism. Should this be the case then development proceeds by first identifying the more primi-
tive orienting mechanism Ry, needed as part of the mechanism to establish the sub-goal R,
This sirategy for decomposition may be thought of as resembling the in-order traversal of a
tree-structure.

The actual development to establish Ry can proceed in a formal manner by first weakening
the predicate R, to obtain a loop invariant and then constructing the loop accordingly. This
implementation strategy should be used if a rigorous constructive proof is sought.

3.2. Generalization by Inductive Stepwise Refinement

With respect to the postcondition R the orienting mechanism can have two possible states of
termination

(i) one where R is established
(ii) a second where Ry is established but the more general R is not satisfied.

If the possibility for this second state of termination exists then a more general mechanism
needs to be built into the program structure to accommodate it. To proceed with the develop-
ment of this additional mechanism an analysis must first be made of what R, accomplishes
when it terminates without having established R. This analysis of Ry must be made in rela-
tion to what is required to establish R. The development step which must follow this analysis
will represent a generalization of the existing mechanism. . It should be the most elemen-
tary mechanism (usually iterative) that can be added to the existing mechanism to
establish the postcondition when the existing mechanism fails to establish the

-4 -

general postcondition R. To identify the additional mechanism the same criteria can be
applied as were used to identify the orienting mechanism.

When this second generalizing step has been completed, it too, like the orienting mechanism,
may have two possible states of termination:

(i) one where R is established

(ii) a second where R; is established (R being more general than R,) but where the
more general R is not satisfied.

If the possibility for the second possible state of termination exists then a further generaliza-
tion of the program will be needed to accommodate it. The strategy for the development of
this generalization, and any other subsequent generalizations needed to establish the general
postcondition R, is the same as that for the first generalization.

This suggests a way of systematically using the postcondition to guide the stepwise develop-
ment of the program.
4. COMPOSITION RULES FOR GENERALIZATION

The commonly employed composition rules needed for inductive stepwise refinement follow
directly from the roles that have been ascribed to the orienting mechanism. It can also hap-
pen that a mechanism existing at a later stage development fulfills a role that the orienting
mechanism may assume. It follows that the composition rules (with respect to L1) that are
outlined below may be applied not only to the orienting mechanism but also to constructs
existing at other stages in the development.

In the rule definitions to be given, I will be used to denote an initialization mechanism, F a
finalization mechanism, B a guard, and § a block of one or more statements. A loop L has
the following definition:

L2 doB — Sod; F

Numerical suffixes are added to distinguish different components. With these conventions the
most common composition rules are:

C1. Straight Sequential Composition

C1: L1;S2

C2. lterative Sequential Composition

C2: L1L1;12; do B2 — S2 od; F2

C3. Hierarchical Composition

v

C3: 12; do B2 — L1 od; F2

C4. Initialized Iterative Sequential Composition

C4: L1;12; do B2 — S2; L1 od; F2

In applying these rules for generalization the conventions of structured programming are fol-
lowed. The steps in program development by inductive stepwise refinement can be summar-
ized as follows:

.5 .

(i) Data analysis, precondition QQ, and postcondition R specification

(ii) ldentification of the orienting mechanism and its associated postcondition R, by
use of the information in (i)

(iii) Development of the orienting mechanism to establish Ry,. For more complex prob-
lems this may involve a recursive application of the method. When the point is
reached where a recursive strategy is not required, the most efficacious way to
proceed is by weakening the predicate R, to obtain a loop invariant Py and then
developing the iterative mechanism accordingly using the strategy originally pro-
posed by Dijkstra [1] and advocated by Gries [2]).

(iv) Application of inductive stepwise refinement. This involves analysis of the postcon-
dition R in relation to R in order to identify the most elementary mechanism (usu-
ally iterative) that can be added to the mechanism which is capable of establishing
the postcondition R under restricted conditions. In general this mechanism will
guarantee only the more restrictive postcondition R;. Again the development of
the mechanism to satisfy R; may involve a recursive application of the method.

(v) Inductive stepwise refinement is repeated by reapplication of step (iv) for the most
recently established postcondition Ri until a mechanism has been developed that
will establish the general postcondition R for the given precondition.

Sufficient background has now been presented to consider application of the method to a
number of examples.

5. PROGRAM DEVELOPMENT EXAMPLES

To illustrate the development of programs by inductive stepwise refinement examples have
been chosen which have been discussed elsewhere in the literature.

5.1. Text Formatting

The first problem we will consider was mentioned by Floyd in his 1978 Turing award lecture
[9]. The problem may be stated as follows:

Read lines of text until either a completely blank line is found or an end-of-file is encoun-
tered. Eliminate redundant blanks between words. Print the text with a maximum of
limit characters to a line without breaking words between lines.

The description can be clarified by adding that there should be no leading or trailing blanks
on a line. The end-of-file requirement has been added to Floyd’s original problem description.
This in no way simplifies the problem.

Floyd makes the remark that “the problem is surprisingly hard to program in most program-
ming languages”. It should therefore provide something of a test for our proposed method of
program development.

Data Analysis:

There are four definitions relevant to this problem, a raw text input line and a formatted text
output line, and the corresponding text files. Syntax diagrams have been used for these

definitions after a suggestion made by Barter {10]. The inverted defined symbol “=V” has been
included to indicate definition. (see fig. 1)

A WORD is defined as a consecutive sequence of one or more non-blank characters on a sin-
gle line.

Precondition:

No single word is more than limit characters long where limit is the maximum length of the
formatted line.

(a}

INPUT LINE:

T

N

INPUT LINE

{cy FORMATTED LINE:

N

FORMATTED LINE

FIGURE %

(b) INPUT FILE:

o
~

V INPUT LINE

I

- (eoF)

INPUT FILE

{d) OUTPUT FILE:

?

FORMATTED

Y LINE

EOF

qI

OUTPUT FILE

Postcondition:
An informal description of the postcondition is:

R: All lines of text have been read and formatted with only single blanks separating words
and a maximum of limit characters on a line with no words broken and the maximum
number of words on each formatted line and either a blank line or an end-of-file has
been encountered.

Ry. Zero Words - Orienting Step:

The first step in the development is to identify the most elementary iterative mechanism that
can establish the postcondition. The simplest way to establish the postcondition for a non-
empty file would be to encounter and process a line of blanks. It requires no formatted output.
In constructing a mechanism to establish the postcondition under these conditions it is neces-
sary to take into account that this mechanism may not always be able to establish the
postcondition. To read multiple spaces the procedure getspaces can be used (essentially
Dijkstra’s guarded commands augmented with Pascal I/O have been used throughout for
implementations):

procedure getspaces (data:textfile; var j:boolean; N:boolean);
const SPACE = ’;
var j, n:boolean;
n:= N;
doj#n—
if datat = SPACE — get(data); j : = eoln(data)
[j datat # SPACE — n:= j
fi

od

end

This mechanism has two possible states of termination:
(i) End-of-line is true (i.e. j = N) and R is established
(ii) End-of-line is not true (i.e. j # N) and R is not established.

The second possible state of termination will need to be accommodated in any general solu-
tion to the problem. Therefore we have:

ZERO WORDS:

const EOLN = true;

var data:textfile; j, N:boolean;
N := EOLN; j : = eoln(data);
getspaces (data, j, N);
ifj # N — “further processing”
i = N — skip {R established}
fi

{Ro}

This mechanism will establish the postcondition R for all configurations of zero words. In the
more general case it terminates with R specifying that all leading blanks (if any) on the first
line have been read.

R,. One Word at Most - First Generalization:

Termination of the orienting mechanism with j # N implies that there must be at least one
word to be formatted and printed. The most elementary generalization that can establish R
will therefore be one that handles the case of a single word. The associated postcondition is
R;. As part of this mechanism a procedure getword may be defined:

procedure getword (data: textfile; var word:charray; var w:integer; var j, N:boolean);
const SPACE = ’’;
var n:boolean;
n:=N;w:=0;
doj#n—
if datat # SPACE — word[w + 1] : = datal; w:= w+ 1; get(data); j : = eoln(data)
| datat = SPACE — n:=j
fi
od
end

To complete the task a procedure writeword(word, 1) is needed. Its implementation is omit-
ted.

The procedure getword has two possible states of termination:
(i) End-of-line true (i.e. j = N)
(ii) End-of-line not true (i.e.j # N)

The second possible termination state signals that there are still characters on the line to be
processed, the first of which must be a space. The procedure getspaces may therefore be
applied. From the INPUT LINE specification it is apparent that the inclusion of getspaces
handles the most general case of a single input word. Therefore we have:

ONE WORD AT MOST:

const EOLN = true; LIMIT = 60;
var data:textfile; j, N:boolean; s:integer; word:array[1..LIMIT] of char;
N := EOLN; j : = eoln{data);
getspaces(data, j, N);
ifj # N —
getword(data, word, s, j, N);
writeword (word, s);
getspaces(data, j, N);
ifj # N — “further processing”
i = N — skip {R established if EOF after readin}
fis
writeln
0i=N — skip
fi

{R1}

This mechanism will establish the postcondition R for all configurations of at most a single
input word. In the more general case it terminates with R, specifying that at most a single
input word (possibly with leading and trailing blanks) has been read and formatted. The part
of the mechanism in bold indicates what has been added to accommodate a single input
word. Throughout bold type has been used to identify the most recent development step at
each stage of development. '

R,. One Input Line at Most - Second Generalization:

If the “one-word” mechanism terminates without having reached the end of the input line (i.e.
j # N) it implies that there is more than one input word to be processed on the first input
line. In providing a mechanism to establish R, this case will need to be accommodated.

The first question that may be asked at this point is whether the mechanism developed for a
single word can be applied iteratively to handle more than one word on the first input line?
The answer is no because it is necessary to ensure that the output line length LIMIT is not
exceeded. Consideration of the FORMATTED LINE specifications indicates that all words on
the formatted line, apart from the first, must be preceded by a single space. Taking these
conditions into account and using a line of reasoning similar to that employed for the single-
word case the getline procedure is proposed.

procedure getline (data:textfile; var j,N:boolean; var s:integer);
const LIMIT = 60; SPACE = ’’;
var n:boolean; w:integer;
n:= N;
doj#n—
getword(data, word, w, j, N);
ifs+w+1 < LIMIT — write(SPACE); writeword(word, w); s : = s+w+1
fls+w+1 > LIMIT — writeln; writeword(word, w); s := w
fi;
getspaces(data, j, N)
od
end

After a single input line has been read and processed it is appropriate to do a readIn to re-
establish the end-of-line and end-of-file status. The general mechanism to handle at most one
input line therefore becomes:

ONE INPUT LINE AT MOST:

const EOLN = true; EOF = true; LIMIT = 60;
var data:textfile; k,j,M,N:boolean; s:integer; word:array{1..LIMIT] of char;
N := EOLN; M : = EOF; j : = eoln{data);
getspaces(data, j, N);
ifj # N—
getword(data, word, s, j, N);
writeword{word, s);
getspaces(data, j, N);
getline(data, j, N, s);
readln(data); j : = eoln(data); i : = eof(data);
ifi # M — “Further processing”
1i = M — skip {R established by a writeln}
fi;
writeln
Iji= N — skip
fi

{R2}

This mechanism will establish the postcondition for all configurations of at most a single input
line {i.e. Ry, Ry, Ry}. In the more general case it terminates with R, specifying that at most
a single input line has been read and one or more lines satisfying the FORMATTED LINE
specifications have been produced. Notice that the writeln is still needed for this more gen-
eral case.

R. One or More Input Lines - Third Generalization:

A further generalization of the mechanism described in the preceding section is needed to
accommodate the case where more than one input line has to be processed.

A mechanism already exists for processing the first line of the input text. To handle subse-
quent input lines it may be expected that either this mechanism, or a slightly modified version
could be applied iteratively.

Analyzing R, indicates that the most elementary iterative mechanism that can establish R
after having read a single input line is:

getspaces (data, j, N)
This mechanism can terminate in one of two states:

(i) either with j = N and R established
(ii) or with j # N and R not established.

.9.

In the second case the getline procedure can be applied. Therefore to process the second
line the following mechanism may be used.

getspaces (data, j, N);

ifj # N — getline(data, j, N, s); readln(data); i : = eof(data); j : = eoln(data)
i = N — skip {R established by a writeln}

fi

This mechanism can be applied iteratively until either a blank line is read or until an end-of-
file is reached. The complete mechanism therefore takes the form:

ONE OR MORE INPUT LINES:

const EOLN = true; EOF = true; LIMIT=60;
var data:textfile; i, j, M, N:boolean; s:integer; word:array[1..LIMIT] of char;
N := EOLN; M := EOF; j : = eoln(data);
getspaces(data, j, N);
ifj +# N —
getword(data, word, s, j, N);
writeword (word, s);
getspaces(data, j, N);
getline(data, j, N, s);
readln(data); j : = eoln(data); i : = eof(data);
m:= M;
doi#m —
getspaces(data, j, N);
if j # N — getline(data, j, N, s); readIn(data); j : = eoln(data); i := eof(data)
§j=N—m:=
fi
od;
writeln
1j= N — skip
fi
{R}
The most recent generalization leads to a mechanism that will establish the postcondition R in
the general case for one or more input lines. The logical structure for dealing with the first
line and the loop body for dealing with subsequent lines is essentially the same. The only
differences are that the first word on subsequent lines is no longer special (hence the steps for
it are deleted from the loop body implementation) and there must be provision to force termi-

nation of the loop (by m : = i) if a blank line is encountered(a discipline for forced termination
is described elsewhere [11]).

Recapping the development, the orienting mechanism and three stages of refinement are:

(i) Zerowords AND EOLN = R

(ii) One input word AND EOLN AND EOF = R

(iii) One input line AND EQOF = R

(iv) Many input lines AND EOF OR BLANKLINE = R
These steps represent the special conditions under which successively more general mechan-
isms are able to establish the postcondition. The logical structure reflected in the develop-

ment is also clearly visible in the final program implementation. More will be said about the
structure of this algorithm after the next problem has been considered.

5.2. Telegrams Analysis Problem

The telegrams analysis problem has been used by several authors [3,10,12,13] in the discus-
sion of program development methods. For this problem a program is required to process a
stream of telegrams each terminated by the word “ZZZZ”. The data is stored in blocks of size
M. Words are separated by one or more spaces and they do not extend across block boun-
daries. It is required to count the words in each telegram (excluding “ZZZZ") and print each
telegram with a single space between words and no leading or trailing blanks.¥

.10 -

Data Analysis:

There are seven main input and output data definitions relevant for the specification of this
problem. They are included below:

Precondition:
At least the NULL TELEGRAM is present in the INPUTFILE.

Postcondition:
An informal description of the postcondition is

R: The INPUT FILE has been read including the terminating NULL TELEGRAM and a
corresponding OUTPUT TELEGRAM FILE has been produced according to the data
specification supplied.

Ry. Null Telegram - Orienting Step:

As with the previous problem the first step in the development is to identify the most elemen-
tary iterative mechanism that can establish the postcondition. Reference to the data
specifications suggests that the simplest way to establish the postcondition would be to
encounter and process the NULL TELEGRAM. No output is required to establish the postcon-
dition R in these circumstances. A procedure fillbuffer that reads data from a file and fills a
buffer buff with M characters, and a second procedure getspaces that consumes the leading
spaces in the buffer are assumed. The consecutive application of fillbuffer and getspaces
cannot guarantee to consume all leading spaces preceding the first word (postcondition R).
It is therefore necessary to first complete a mechanism to establish R, before considering in
detail the mechanism for R,. The consecutive application of fillbuffer and getspaces has
two possible states of termination as indicated below:

const M = buffsize;
var data: textfile; buff: array[1..M] of char; j : integer; -
filibuffer(data, buff, M); j : = 0;
getspaces(buff, j, M);
ifj = M — “further processing”
i+ M — skip {R(established}
fi

To guarantee Ry, fillbuffer and getspaces need to be iteratively applied. With this
refinement the procedure prefirstword can be defined:

procedure prefirstword(var data: textfile; var buff: array[1..M] of char; var j:integer);
repeat
fillbuffer(data, buff, M); j : = 0;
getspaces(buff, j, M)
untilj # M
end

{Roo}

The procedure prefirstword terminates with j # M implying that a word in buff is available
for access. Assuming a procedure getword that moves the next available word from buff to
the array word, the mechanism that can establish R for the NULL TELEGRAM may be
defined.

NULL TELEGRAM ¢t

t In Henderson’s original specification [12] there were also STOP words which were not to be counted and
oversize words which were to be specially noted. These considerations do not influence the structure of the
problem and so have been omitted from the present discussion.

t The variable “j” is passed to getword as a value parameter and therefore is not changed by getword.

{e) INPUT BUFFER:

-

o]

7

INPUT BUFFER

idi INPUT e (Bulteny;

(-3
<
-
-
-
T

l NULL TELEGRAM

INPUT FILE
1dullers)

{f} OUTPUT TELEGHAM:

L

HEADER

i

OuUTPUT
TELEGRAM

FIGUKE 2

ib) NULL TELEGHAM:

(o'

g
lc re

ORI

an D

NULL TELEGRAM

{6} INPUT FILE (Telegamn):

INPUT
TELEGHAM

l NULL TELEGHAM

;‘

INPUT FILE
{Velayruin)

(o)

(ch INPUT TELEGHAM (Rual).

&

2dae

INPUT TELEGRAM

I

OQUTPUT TELEGRAM FILE:

D

aAuTPUT
TELEGRAM

<

OUTPUY
TELEGRAM FILE

-11-

const M = buffsize;
var data:textfile; var buff, word: array [1..M] of char; j, w:integer
prefirstword(data, buff, j, M);
getword(buff, word, w, j, M);
if word # 'ZZZZ' — “further processing”
[word = ZZZZ' — skip {R established}
fi

{Ro}

where w is the length of the word most recently consumed. It is assumed that the language
can string-match the word array with 'ZZZ7’. This mechanism will establish R for all
configurations of the NULL TELEGRAM. In the more general case it terminates with R,
specifying only that the first word in the first telegram has been read and stored in word.

R,{. One Telegram with One Word - First Generalization:

There are two possible states of termination for the NULL TELEGRAM mechanism. Termina-
tion with word * 'ZZZZ’ implies that there is at least one telegram with one countable word
to be processed. It also implies that at least one more word will need to be processed to com-
plete the current telegram.

The word that has just been read can be written by the following mechanism:

writeheader; writeword (word, w); we : = 1;j:= j+w;
ifj # M — “further processing - current buffer”
i = M — “further processing - next buffer”

fi

Development can continue by adding an iterative mechanism to find the next word (if any) in
the current buffer or beyond (postcondition R{). The stages in this phase of the development
follow closely those employed in dealing with the NULL TELEGRAM. The outcome of this
phase of development is the definition of a procedure preword:

procedure preword(var data: textfile; var buff: array[1..M] of char; var j, M: integer);
getspaces(buff, j, M);
doj=M—
filbuffer(data, buff, M); j : = 0;
getspaces(buff, j, M)
od
end

-12 .

The mechanism for one telegram with one countable word can then be defined:
ONE TELEGRAM WITH ONE WORD:

const M = buffsize; SPACE = " ’;)
var data: textfile; buff, word: array{1..M] of char; j, w,wc: integer;
prefirstword(data, buff, j, M);
getword(buff, word, w, j, M);
if word # 'Z2Z2’ —
writeheader; writeword(word, w); wc:= 1;j:= j+w;
ifj#M —
preword(data, buff, j, M);
getword(buff, word, w, j, M);
if word # 'ZZZZ’ — “‘further processing - current telegram”
[l word = '2ZZZ' — skip {“finished-current telegram”}
fi
13 = M — “Further processing-next buffer”
ﬁ.

w,rite (wc); writetail
[word = 'ZZ2ZZ’ — skip
fi
{ Ry}

where wc is the word count for the current telegram.

R;. One Telegram with One or More Words - Second Generalization

The most elementary generalization that can be applied to the mechanism in the preceding
section is one that allows it to handle a single telegram with one or more words. For this pur-
pose the mechanism in the segment guarded by if j # M — ... can be iteratively applied
until either the current buffer is exhausted (i.e. j = M) or an end-of-telegram word “ZZZZ” is
encountered (postcondition R).

ONE TELEGRAM, ONE BUFFER:

const M = buffsize; SPACE = ' ;
var data:textfile; buff,word:array{1..M] of char; j,w,wc,m,M:integer;
prefirstword(data, buff,j,M);
getword(buff,word,w,j, M);
if word # 'ZZZ7 —
writeheader; writeword(word,w); wec:= 1, j:= j+w;
m:= M;
doj+m—
preword(data,buff,j,M);
getword(buff,word,w,j,M);
if word # 'ZZZZ’ — write(SPACE);writeword(word,w);
we:= we+l, j:= j+w
I word = '2ZZ7' — m:= j
fi
od;
if j = M — “further processing-current telegram”
i # M — skip {R,, established}
fi;
write(wc); writetail;
“further processing - to establish R ,”
[l word = *2ZZZZ’ — skip
fi

Termination of the most recently added loop with the condition “j = M” implies that the sin-
gle telegram extends across more than one buffer. The next most elementary generalization

-13 -

will therefore be one that accommodates this case (posicondition Rj;). Again this is a
subgoal of R,.

The most recent refinement has provided a mechanism to handle all the words of a single
telegram in a single buffer. This mechanism can be iteratively applied to handle more than
one buffer. Making this refinement gives:

ONE TELEGRAM, MORE THAN ONE BUFFER:

const M = buffsize; SPACE = ’’;
var data:textfile; buff,word:array[1..M] of char; j,w,wc,m,M:integer;
prefirstword(data,word,w,j,M);
if word # 2227’ —
writeheader;writeword(word,w); we := 1;j:= j+ w;
repeat
m:= M;
doj+m —
preword(data,buff,j,M);
getword(buff,word,w,M);
if word # 'ZZZZ’ — write(SPACE);writeword(word,w);
wc:z wc+l;ji= j+w
| word = "Z2ZZ° — m:=j
fi
od;
ifj = M — fillbuffer(data,buff M); j:= 0
0j+ M — skip
fi
until j = m;
write(wc); writetail; j := j+w;
{R 4, established}
“further processing to establish R,”
l word = ’22Z7’
fi

A mechanism has now been established which will read, reformat, and write out a single
telegram in the general case. However, to establish the postcondition for a single real
telegram it is necessary to subsequently detect a NULL TELEGRAM (see specification for
INPUT FILE (Telegrams)).

The most elementary iterative mechanism that can be applied after termination of the
mechanism for processing a single telegram is getspaces. We will not pursue this refinement
further other than to comment that it follows closely the development for R;. With this stage
of development complete, the following mechanism is obtained.

-14 -

ONE TELEGRAM WITH ONE OR MORE WORDS:

const M = bulffsize; SPACE = ’’;
var data:textfile; buff,word:array[1..M] of char; j,w,wc,m,M:integer;
prefirstword(data,buff,j,M);
getword(buff,word,w,j,M);
if word # '2227° —
writeheader;writeword(word,w); wc : = 1;j:= j+ w;
repeat
m:= M;
doj+ m —
preword(data,buff,j,M);
getword(buff, word,w,M);
if word # '22Z2° — write(SPACE); writeword(word,w);
wc:=zwc+l;j:=j+w
l word = ’ZZZ7 — m :=j
fi
od;
ifj = M — fillbuffer(data,buff,M; j:= 0
i =M — skip
fi
until j = m;
write(wc); writetail; j : = j+w;
preword(data,buff,j,M);
getword(buff,word,w,M);
if word + '2ZZZ' — “further processing-next telegram”
[l word = 'ZZZZ' — skip {R established}
fi
Il word = *ZZZ2Z’ — skip
fi

{ Ro}

The most recent generalization leads to a mechanism that will establish the postcondition in
the general case for at most a single real telegram.

R. More than One Telegram - Third Generalization

If the mechanism developed for a single real telegram terminates with “word # °ZZZZ’ ” it
implies that there is at least one more telegram to be processed. A mechanism has already
been developed for a single telegram and so it is appropriate to consider whether a segment of
this mechanism can be iteratively applied to handle more than one telegram. In pursuing this
next generalization it should be noted that the steps

;;etword(buff,word,w,M); .

if word * 'ZZZZ’ — “further processing - next telegram”
i word = 'ZZZZ’ — skip

fi

at the end of the mechanism duplicate the same structure at the beginning of the program
text. Taking this into account the mechanism to handle more than one telegram takes the
form:

.15 -

MORE THAN ONE TELEGRAM:

const M = buffsize; SPACE = ' ’;
var data:textfile; buff,word:Array(1..M] of char; j,w,wc,m,M:integer;
prefirstword(data, buff,j,M);
repeat
getword(buff,word,w,j,¥};
if word # "ZZ727’ —
writeheader;writeword(word,w); wec := 1;j:= j+w;
repeat
m:= M;
doj#m —
preword(data,buff,j, M);
getword(buff,word,w,M);
if word # 'ZZZZ’ — write(SPACE); writeword(word,w); wc : = wc+1;j:= j+w
[word = °2Z2ZZ" — m := j
fi
od;
if j = M— fillbuffer(data,buff,M); j : = 0;
0j+M — skip
fi
until j = m;
write(wc); writetail; j : = j+w;
preword(data,buff,j,M)
[word = "ZZZZ' — m := j
fi
until j = m

{R}

The most recent generalization yields a mechanism that will establish the postcondition R in
the general case for a file of one or more telegrams. The development strategy and the result-
ing control structure employed for this example differs from that of the previous example. In
the previous example the loops employed in the development are over defined input structures
with no development steps being over defined output structures. Using Jackson’s metaphor
“inversion” has been applied with respect to the output. In contrast to this, in the telegrams’
problem, loops employed in the development have been over both defined input and output
structures (i.e. there are loops over the input buffer and over telegrams). Several conse-
quences follow from adopting the development strategy employed for the telegrams’ analysis
problem. Such programs usually contain additional loops. This apparent increase in com-
plexity is offset by there being no bias against making either input or output-dependent pro-
gram changes (a problem that can arise with programs that have been inverted either with
respect to their input or their output). In short this development sirategy represents a flexible
and robust alternative to program inversion [3] for the resolution of boundary structure
clashes.

5.3. Sequential File Update

The variation of the sequential file update problem which allows for the possibility of more
than one transaction on a single key is often regarded as a non-trivial problem [1]. The
problem involves a specialized file merge.

Data Analysis:

Three files are involved, a file of transactions records trans which specifies amendments to be
made to an old master file old to produce a new master file new. Successive records in the
old and new files have monotonically increasing values of their keys. Each transaction
record includes a sub-field which identifies whether the transaction for that particular key is to
be an insert, update or delete. Records in the old master file not involved in transactions
should be copied to the new master file in a way that maintains the order of the new file.

- 16 -

Keys in the new master file should be unique. Relevant specifications are given in fig. 3:

Precondition:

There may be zero or more transaction records and zero or more old master file records.

Postcondition:
The postcondition for this problem can be stated informally as follows:

R: All transactions and all records in the old master
file have been read and processed to produce the new
ordered master file.

R,. Zero Transactions - Orienting Step:

The first development step involves the identification and implementation of the most elemen-
tary iterative mechanism that can establish the postcondition. The precondition suggests that
either of the files - might be empty. To decide upon the orienting mechanism a choice must be
made between a mechanism that establishes the postcendition for zero transactions and one
that establishes the postcondition for zero old master records. The data analysis indicates
that the zero-transactions case is simpler as it requires no identification of the type of the tran-
saction. The corresponding postcondition R, characterizes the situation where the general
postcondition R is not established for the precondition of an empty transaction file. To estab-
lish the postcondition in the case of zero transactions in general will require an iterative
mechanism to copy records from the old master file to the new master file. For this purpose
the procedure copyold may be used:

procedure copyold(var old,new:master; j,N:boolean);

doj#N —
new! : = oldf; put(new);
get(old); j : = eof(old)
od
end;

Using this procedure the orienting mechanism may take the form

ZERO TRANSACTIONS:

const EOF = true;

var k,j,M,N:boolean;

M := EOF; N : = EOF; i : = eof(trans); j : = eof(old);
ifi # M — “further processing”

i = M — skip {R established by copy below}

fi;

copyold(old,new,j,N)

{ Ro}

R;. One Transaction at Most - First Generalization:

It is necessary, in the general case, to handle the precondition where the transaction file is not
empty (i.e. i # M). This condition implies that one or more transactions must be processed.
Consider first a single transaction. The corresponding postcondition R, characterizes the
situation where the general postcondition R is not established for a single transaction. To
establish the postcondition R for a single transaction an additional iterative mechanism is
required. It must search the old master file to locate the“transaction position”. In the pro-
cess records in the old file need to be copied to the new master file. Once the transaction
position has been located the transaction may be performed. Treating these two components
separately we get:

(a)

OLD MASTER FiLE:

?

Y

OLD MASTER
RECORD

FILE

OLD MASTER

(c)

FIGURE 3

(b} TRANSACTION FILE:

.

—

KEY; / DATA

fEOF?
<

TRANSACTION
FILE

NEW MASTER FILE:

OLD MASTER
RECORD

Y
1

dl

T

TRANSACTION FILE
RECORD

NEW MASTER
FILE

17 -

Search and Copy:

procedure searchcopy(old,new:master; trans:transaction; var j, N:boolean);
var n:boolean;
n:= N;
doj#n —
if oldt.key < transt.key — newt : = old!; put(new); get(old); j : = eof(old)
{] oldi.key = transt.key — n:= j
fi
. od
end

Transaction:

The transaction mechanism can be appended to the search mechanism as a finalization
mechanism. Three possible actions insert(ins), delete(del), and update(upd) must be accom-
modated. The transaction can therefore take the following general structure:

if trans!.action = ins — firstinsert(...,valid)
[] transt.action = upd — firstupdate(...,valid)
[transt.action = del — firstdelete(...,valid)
fi;

get(trans); i : = eof(trans);

if valid — put(new)

[—valid — skip

fi

Details are needed for each of the three possible transactions.

firstinsert:
The sequential search terminates in one of two states.
(i) with eof(old) true (i.e. j = N)
(ii) with eof(old) false (i.e. j # N)
If the old master file is not exhausted then the condition transt.key < old!.key must also

hold for it to be possible to make a valid insertion. With both these conditions true the follow-
ing actions are appropriate.

new ! .key : = transt.key; new!.data : = transt.data; valid : = true;

The same steps are appropriate if the old master file is exhausted. However, if the condition
trans!.key = old!.key applies an invalid transaction is being attempted. To ensure that the
corresponding old master record is not lost due to an invalid transaction the following steps
are needed.

new! := old!; get(old); j:= eof(old); wvalid : = true;
writeln(’Insertion error’, transt .key)

Details of firstinsert are therefore:

procedure firstinsert(old,new:master; trans:transaction; var j,N, valid:boolean);
ifj# N —
if trans!.key < old1.key — new!.key : = trans!.key; new!.data : = trans!.data
[} transt .key = old!.key — new! := oldt; get(old); j : = eof(old);
writeln ('Insertion error’, transt .key)

fi
j = N — newt.key : = transt.key; new!.data : = transt.data
fi;
valid : = true

end

-18 -

The structure of firstupdate and firstdelete follow a similar pattern, except that valid will
be false after a deletion. A mechanism that will establish the postcondition R in the general
case for a single transaction may take the form:

ONE TRANSACTION:

var i,j,M,N:boolean;

M : = true; N : = true; i : = eof(trans); j : = eof(old);

ifi#M —
searchcopy(old,new,trans,j,N);
if trans!.action = ins — firstinsert(old,new,trans,j,N,valid)
[] trans!.action = upd — firstupdate(old,new,trans,j,N,valid)
fl transi.action = del — firstdelete(old,new,trans,j,N,valid)
fi;
get(trans); i := eof(trans);
ifi # M — “further processing - same key”
i = M — skip {R established by put, and copy}
fi; ’
if valid — put{new)
I —valid — skip
fi

i=M— skip

ﬁ.

cc’)pyold(old,new,j,N)
{R1}

R,. More than One transaction for single key - Second Generalization
To accommodate more than one transaction there are two possible generalizations to con-
sider:

(i) a number of transactions for a single key

(ii) transactions for more than one key

The first of these cases is more elementary because it does not involve a change in the key
variable. It is therefore the next generalization step.

In the first generalization a mechanism was developed to handle the first transaction for a
given key. It is therefore necessary to decide whether

(a) it can be applied iteratively to handle many transactions for a single key

(b) or whether it may serve as the initializing step for handling many transactions for a
single key.

Investigation reveals that situation (b) applies because no sequential search of the old master
file is required. The validity of the next transaction for the same key will depend only on the
most recent valid transaction and not on whether the old master fiie is exhausted.

The following rules summarize valid(,~) and invalid(X) transactions.

Transaction Currently Possible transaction

in Buffer . Insert Delete Update
valid X v v
not valid v X X

Subsequent insertions for a particular key after the first transaction for that key may be han-
dled by the following procedure:

.19.

procedure insert(new:master; trans:transaction; var valid:boolean);
if valid — writeln (’Insertion error’, trans!.key)
I —valid — newt.key : = transt.key; new!.data : = transt.data; valid : = true
fi

end

The delete and update procedures are similar to insert. They can be derived from the
table of rules. The complete mechanism to establish R for a single key may therefore take

the form:
MORE THAN ONE TRANSACTION FOR A SINGLE KEY:

var i,j,M,N:boolean; ckey:name;
M : = true; N : = true; i : = eof(trans); j : = eof(old);
ifi#M —
searchcopy(old,new,trans,j,N);
if trans!.action = ins — firstinsert(old,new,trans,j,N,valid)
[] transt.action = upd — first update(old,new,trans,j,N,valid)
f} transt.action = del — firstdelete(old,new,trans,j,N,valid)
fi;
get(trans); i : = eof(true);
:= M; ckey : = new!.key;
doi # m —
if trans! .key = ckey —
if transt.action = ins — insert(new,trans,valid)
[} transt.action = upd — update(new,trans,valid)
[] trans!.action = del — delete(new,trans,valid)
fi;
get(trans); i := eof(trans)
[] transi.key # ckey — m := i
fi
od;
if valid — put(new)
[} ~valid — skip
fi;
ifi # M — “further processing-other keys”
i = M — skip {R established by copyold}
fi
Ii=M — skip
fi; -
copyold(old,new,j,N)
{R2}

R;. Many Transactions for One or More keys - Third Generalization

The mechanism for more than one transaction for a single key can terminate in a state where
R has not been established (i.e. i # M). This implies that more than one key must be accom-
modated in the general case. In the preceding section a mechanism was developed which
would handle a single key in the general case. Examination of this mechanism reveals that it
can be applied iteratively to handle more than one key. Making this refinement gives:

-20 -

MANY TRANSACTIONS FOR ONE OR MORE KEYS

var i,j,M,N:boolean; ckey:name;
M : = true; N : = true; i : = eof(trans); j : = eof(old);
doi#M —
searchcopy(old,new,trans,j,N);
if trans!.action = ins — firstinsert(old,new,trans,j,N,valid)
[| transt.action = upd — firstupdate(old,new,trans,j,N,valid)
{l transt.action = del — firstdelete(old,new,trans,j,N,valid)
fi;
get(trans); i : = eof(trans);
m := M; ckey : = new'.key;
doi # m —
if transt.key = ckey —
if transt.action = ins — insert(new,trans,valid)
[l transt.action = upd — update(new,trans,valid)
[} trans!.action = del — delete(new,trans,valid)
fi;
get(trans); i : = eof(trans)
[transt.key # ckey — m:= i
fi
od;
if valid — put(new)
| —valid — skip
fi;
od;
copyold(old,new,j,N)
{R}

Several comments about this implementation are in order. The logical structure reflected in
the development of this algorithm is clearly visible in the final implementation. With succes-
sive generalizations the guards for a previous development step do not change. What may
change is whether the guard protects a mechanism that is applied iteratively or a mechanism
that is part of an alternative construct. This is important for constructive proof development.
The choice of orienting mechanism for this problem may have seemed unusual. If instead, a
single transaction for a single key had been chosen as the focus the same algorithm structure
would have resulted, only the original development step would have been a compound and
more complex step. Therefore while identifying the orienting mechanism is important, other
choices for the original development step can be acceptable provided that they are able to
establish the postcondition at least under restricted conditions.

5.4. Fermat's Factoring Algorithm

In the previous three problems the structure of the data had a strong influence on the develop-
ment and structure of the final program. With Fermat’s factoring problem [14] it is not possi-
ble to rely on the structure of the data for guidance in the development of the program.

Fermat provided a set of relations that may be used to find the largest factor u of an odd
integer n that is less than or equal to the square root of n [15]. For such an n the following
relations hold:

n=uxv whereu<v 1)
n=x2-y?2 where 0<y<x =<n (2)
x =(u +v)div2 (3)
vy =(v - u)div2 (4)
u=x-y (5)

v=Xx+y (6)

-21 -

To find the largest factor of n less than or equal to Jn it is necessary to find values of x, y and
u that satisfy relations (2) through (5). More formally,

Postcondition R:

E(x,yi0=<y=x=< LJn_l :n=x2-y2Au=x —yAv =x +yAn =u xv)

R;. Square Root - Orienting Step

In solving the factoring problem it is first necessary to find values of x and y that satisfy:

n=x?-y?

(2)
From these values, u and v values may be obtained using (5) and (6).

There are two variables in the relation (2). In searching for an orienting mechanism it is
necessary to consider whether or not it is possible to establish R by changing a single vari-
able. The only way to do this is to hold y at zero and try to find an x to satisfy (2) (i.e. if n is
a perfect square). The obvious way to do this is to generate successive squares of x. Sum-
ming the odd sequence is sufficient for this purpose. Defining the odd sequence relations

xx=2x +1

yw=2y+1

yields
u =(xx -yy)div2
v =(xx +yy)div2

The orienting mechanism can therefore be simply implemented as follows.
SQUARE ROOT {n = x¢}

var r,xx,yy:integer;
r:=0;xx:=1;yy:=1;
dor+xx < n —
T:i= F+XX;
XX 1= XX+ 2
od;
if r < n — “further processing”
fr = n — skip {R established by assignment below}
fi; _
u = (xx-yy) div 2
R}

This mechanism can only establish R if n is a perfect square. It therefore has two possible
states of termination.

R,. Composite Relation {n =x? - y? } - First Generalization

The situation where the orienting mechanism terminates with r < n will need to be accommo-
dated in a general solution to the factoring problem. This implies that a non-zero value of y is
needed to satisfy the relation (2) - that is the second variable must be introduced into the
computation to establish R.

To do this successive squares for y can be generated again using the odd sequence sum.

.92.

COMPOSITE RELATION

var r,xx,yy:integer;
r:=0x:=1; yy:= 1;
dor+xx < n —
r:i= r+xx;
XX := XX+2
od;
ifr<n—
Y= r+xx;
XX := xx+2;
repeat
r:=r—vyy;
y:= yy+2
untilr < n;
if r < n — “further processing”
[l *r = n — skip {R established by assignment below}
fi
r = n — skip

:,_.?:

u:= (xx-yy) div 2
1}

Again this mechanism cannot guarantee to establish R in the general case. It will only estab-
lishRifn = ([Jn | +1)*-y

R,. Composite Relation {n =x? -y? } - Second Generalization

If the mechanism developed in the previous refinement step terminates with r < n further pro-
cessing is required. Examination of the R; mechanism reveals that there is already a
mechanism that can be applied when the condition r < n exists. The mechanism created in
the most recent development step can therefore be iteratively applied to establish R.

COMPOSITE RELATION

var r,xx,yy:integer;
=0;xx:=1;yy:= 1;
dor+xx < n —
r:= r+Xx;
XX := xx+2
od;
dor<n —
r:= r+XXx;
XX '= XX +2;
repeat
r:= r-yy;
Wiz yy+2
untilr < n
od;
= (xx-yy) div 2

It is interesting to compare this solution with an alternative implementation given below:

= (xx -yy) div 2

.923.

What a comparison between the two solutions brings out very clearly is the influence of pro-
gram control structure on efficiency. With the second implementation two tests r # n and
either r < n or r > n are made with each iteration. The structure of the first implementation
avoids this. The first solution recognizes two other things that are ignored by second solution.
Firstly that x must initially be increased until it at least reaches a value equal to the integer
square root of n. Only then is it necessary to give consideration to the introduction of y into
the computation. Secondly after the square root magnitude for x is reached subsequent unit
increases in x will almost invariably be accompanied by multiple increments in y. Recognition
of these factors ensures that the first solution is the more efficient solution. This example
serves to underline that textual simplicity should not be confused with mechanistic simplicity.
It is suggested that the program structure of the first solution matches the transformations
that are applied to the data. This is not the case with the second implmentation. The first
solution may be described as a fully iteratively resolved solution to the problem in the same
way as the solutions to earlier problems described have been iteratively resolved. What is
interesting to observe here is that the method of inductive stepwise refinement can provide
iteratively resolved solutions to problems where there are no data ‘structure queues to guide
the development.

6. EVALUATION

Broadly there are two main schools of program development, those dependent on top-down
functional decomposition and those based on data structure dependence [16]. The method of
program development described here is goal-directed. At the same time it attempts to con-
structively exploit functional dependencies that are either explicit or implicit in data and data
relationships. As such the method has a leg in both of the main schools of program develop-
ment.

For all the examples presented the steps in the development have not been formal. Instead
we have relied heavily on the choice of the stages of development rather than formal proofs to
provide a correctness argument for the final program. A structure has however been
preserved in the development and the implementation which makes it straightforward to
attach constructive formal proofs should that be necessary.

Programs developed by inductive stepwise refinement exhibit, in Jackson’s terms [3], a struc-
ture consistent with structure in the data imposed either by the preconditions or the postcondi-
tions. Structure at the module level is constructive in that modules designed at one level of
refinement frequently find direct application at subsequent higher levels of refinement. While
the method of development proposed exploits structural dependencies in the data it does not
rely on them. It therefore has application beyond the domain of serial data processing includ-
ing instances where recursion may be relevant (e.g. in the solution of the eight-queens prob-
lem [17] the initial step focusses on placing a single queen in the general case on the board -
the incorporation of recursion follows directly).

To try to assess the emphasis that the method places on both design and program efficiency it
is useful to refer to a principle put forward by Zipf [18]. In Zipf's terms the constructive princi-
ple attempts to ensure that progress towards the final solution is made by, at each stage,
always applying the principle of least effort. Resulting programs appear to achieve their goal
by the least mechanistic effort for a given algorithmic strategy. This should however not be
interpreted as suggesting that the method will necessarily always produce the most efficient
program although this is frequently the case.

One of the best measures of how systematic and effective a given method of program develop-
ment is, is whether consistent designs are obtained when it is applied by different people [19].
Limited experience suggests that consistent designs are usually obtained with the proposed
method.

.24 .

In trying to assess the weaknesses of the method probably the most crucial one is that the set
of rules for deciding whether one mechanism is more elementary than another is not
comprehensive enough. This problem can usually be partly alleviated by detailed accurate
data analysis and modelling. In some problem domains, different or additional rules would
obviously be needed to guide the development process. This deficiency does not necessarily
impede the application of the method but rather it may influence the structure of the result.
The more powerful and comprehensive the rule set available, the better should be the struc-
tural integrity of the resulting programs.

7. CONCLUSIONS

Methods for program development, including the present one, are only useful while they are
applied with a critical eye. Methods and methodologies by their very nature are always
developed within a limited context and with limited experience and we must always be wary
about the thought of their mechanical application.

Much of what has been discussed in this paper is concerned with program quality. The over-
riding intent has been to explore the use of tools and strategies which may be helpful in
improving the quality of both the design process and the designed product. In this pursuit a
method has been sought that consistently partitions both the design process and the finished
product. The measures of quality in the finished product have been structural and semantic
clarity, generality, and mechanistic (as distinct from textual) simplicity.

-25 -

References

1.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

Dijkstra, E.W., “A Discipline of Programming”, Prentice-Hall, Englewood Cliffs N.J.
(1976)

Gries, D., “The Science of Programming”, Springer-Verlag, N.Y. (1981)
dackson, M.A., “Principles of Program Design”, Academic Press, London (1975)
Websters Twentieth Century Dictionary, 2nd Ed. World Publishing Co. N.Y. (1960)
Polya, G., “How to Solve It”, Princeton University Press, Princeton, N.J. (1971)

Polya, G., “Induction and Analogy in Mathematics”, Princeton University Press, Prince-
ton, N.J. (1954)

Polya, G., “Patterns of Plausible Inference”, Princeton University Press, Princeton, N.J.
(1954)

Turski, W.M., “Computer Programming Methodology”, Heyden, London (1978)

Floyd, R.W., “Paradigms of Programs”, ACM Turing Award Lecture - 1978, Comm.
ACM, 22, 455-460 (1979)

Barter, C.J., “Data Transformations and Program Transformations” in “Programming
Language Systems”, M.C. Newey, R.B. Stanton, G.L. Wolfendal (Eds), Australian
National University Press, Canberra (1978)

Dromey, R.G., “Forced Termination of Loops”, Software Practice and Experience (sub-
mitted)

Henderson, P., and Snowden, R., “An Experiment in Structured Programming”, BIT, 12,
38 (1972)

Jones, C.B., “Software Development - A Rigorous Approach”, Prentice-Hall, London
(1980)

Knuth, D.E., “The Art of Computer Programming Vol [I: Seminumerical
Algorithms”,Addison-Wesley, Reading, Mass. (1969)

Dickson, L.E., “History of the Theory of Numbers”, Chelsea, N.Y. (1952)

Griffiths, S.N., “Design Methodologies - A Comparison” in “Structured Analysis and
Design”, Infotech International Ltd., Maidenhead, England

Naur, P., “An Experiment in Program Development”, BIT, 12, 347 (1972)
Zipf, G.K., “Human Behaviour and the Principle of Least-Effort”, Hafner, N.Y. (1965)

Berglund, G.D., “A Guided Tour of Program Design Methodologies”, Computer, 14, No.
10, 13 (1981)

	Program development by inductive step wise refinement
	Recommended Citation

	tmp.1284101451.pdf.vOcHU

