University of Wollongong

Research Online

Department of Computing Science Working Faculty of Engineering and Information
Paper Series Sciences
1983

A screen oriented simulator for a DEC PDP-8 computer

Neil Gray
University of Wollongong, nabg@uow.edu.au

Follow this and additional works at: https://ro.uow.edu.au/compsciwp

Recommended Citation

Gray, Neil, A screen oriented simulator for a DEC PDP-8 computer, Department of Computing Science,
University of Wollongong, Working Paper 83-2, 1983, 65p.

https://ro.uow.edu.au/compsciwp/69

Research Online is the open access institutional repository for the University of Wollongong. For further information
contact the UOW Library: research-pubs@uow.edu.au

https://ro.uow.edu.au/
https://ro.uow.edu.au/compsciwp
https://ro.uow.edu.au/compsciwp
https://ro.uow.edu.au/eis
https://ro.uow.edu.au/eis
https://ro.uow.edu.au/compsciwp?utm_source=ro.uow.edu.au%2Fcompsciwp%2F69&utm_medium=PDF&utm_campaign=PDFCoverPages

THE UNIVERSITY OF WOLLONGONG

DEPARTMENT OF COMPUTING SCIENCE

A SCREEN ORIENTED SIMULATOR FOR A DEC PDP-8 COMPUTER

RN

N.A.B. Gray

Department of Computing Science

University of Wollongong

i

Preprint No 83-2 January 25, 1983

P.O. Box 1144, WOLLONGONG. N.S.W. AUSTRAUIA
telephone (042)-282-981
telex AA29022

A Screen Oriented Simulator for a DEC PDP-8 Computer.

N.A.B. Gray.

Department of Computing Science, University of Wollongong. PO Box 1144,
Woilongong NSW 2500, Australia.

ABSTRACT

This note describes a simulator for the DEC PDP-8 computer. The
simulator is intended as an aid for students starting to fearn assembly
language programming. It utilises the simple graphics capabilities of
the terminals in the department’s laboratories to present, on the termi—
nai screen, a view of the operations of the simulated computer.

The complete system comprises two versions of the program for
simuiating a PDP-8 computer and a simplified "assembler” for prepar-
ing students’ programs for execution. There are also a number of
example PDP-8 programs illustrating particular aspects of that com-
puter.

The first version of the simulator is intended to help illustrate a
conventional computer’'s fetch—decode—execute cycle. {n this version,
. there is a three part display. The three parts represent (i) the centrai
processing unit ("cpu”), (ii) the communicattons path joining the cpu
and main memory ("bus" and (i) a window into main memory. These
displays allow a detailed presentation of how a program s actually exe—
cuted on a computer. Data. both instructions and program data. can be
seen being read out from memory and being transferreg over the bus to
registers in the cpu. There instructions are decoded and program data
mantpulated. Resuits from computations can be seen being transferrea
back out of the cpu registers. over the bus, t0 memory where they
overwrite previous values. The simulation may De run continuously, at a
user selectable speed, or may be set to pause, and await user
response, between each of the stages of the machine’'s instruction
cycie.

A second., more elaborate version of the sumuiator program, pro—
vides an environment for introducing basic concepts of assemoly
language "debugging”. This version aiso provides displays of the simu-
iated machine’s cpu and memory. The level of detail of these displays s
user selectable. it incorporates a fairly conventional "debugging” func-
tion that allows users to run their programs in a controllead manner.
Users may, for example, specify “breakpoints® in the PDP-8 programs
that they have prepared for simulated execution. On reaching such a
breakpoint, execution of a program is suspended temporarily to aliow
inspection of the contents of the cpu registers and of the memory of the
simuiated machine.

-2 -

This more advanced version of the simulator program provides a
reasonably realistic model of how input ana output ("I/0") are per-
formed on small mini— and micro—computers. The simulated machine 1s
equipped with some standard peripherals such as a clock and analog-
digital converter. These simulated peripherals can be operated using
either “flag—driven” I/0 or through an “interrupt’ mechanism.

1. introduction

in their second year of Computing Science, students at the University of Wol-
longong are required to take a course introducing machine organization and assembly
language programming. Prior to taking this course. students’ sole computing experi—
ence 1s a one year introductory course on programming. using the PASCAL language
on a time—shared system. For students continuing in computing science. the “assem-
bly language” course provides a grounding for subsequent studies on compiiers,
operating systems and more advanced courses on micro-computers ("micros”). The
major benefit for general students is a wider perspective on computers. A basic unger-
standing of how computers work. and how they may communicate with peripherat dev-
ices, is particufarly advantageous o students in the physicai sciences who may later
need to intertace computers with their experiments.

Such an introductory course on machine organization and assembly ianguage
invoives first some general overview of the organization of conventional computers ang
then some revision of various number representations and logical operations (so that
stugents will not experience any difficulties due to unfamiliarity with binary, octal or
hexadecimal representations of data in a computer). After completing this introductory
part of the course. students will proceed to programming in the "assembly language"
of some particular computer. This involves tearning new programming constructs. The
nigh—tevel PASCAL constructs for procedure calls and conditional statement execution
are considerably removed from the detailed operations that can be performed directiy
by a computer. Consequently. students must change their programming styles from
PASCAL to the regime of the new machine’s assembly language. Furthermore, stu-
dents must iearn totally different methods for localizing and identifying errors in their
programs.

Such an introductory course on assembly language programming couid pe
developed around the use of small micro-computers by the students. It is quite possi-
ble to use a time-shared computer to prepare programs for micros. and to transfer
these programs to connected micros for trial execution. This is indeed the scheme
employed in the more agvanced third year "Microcomputers® course as taught in the
department. Aithough such "hands—-on" experience might well be advantageous to stu-
dents. departmental resources preciude this approach being used with the targe
second year ciasses. Instead. the introductory course 1n machine organization ang
assembly programming must rely on the resources of the depantment's ime-shared
Perkin-Elmer computers running under the UNIX operating system.

in previous years, the course has emphasized the use of the Perkin-Eimer
machines and has. in large part. been an exposition on how to write large assembiy
language programs for a compiex machine with a sophisticated operating sysiem.
There are a number of disadvantages relating to the use of the Perkin-Eimer
machines when first introducing assembly anguage programming. These machines
are complex, (baroque?), in their architecture. Students are immediately confronted
with a plethora of instructions. data formats and programming conventions. The UNIX
system does provide some aids for debugging assembiy language programs, specifi~
cally the adb interactive debugging program. but these aids are themseives complex

3

ana difficult to learn. Of course. becausse the stugents’ programs must be run unaer
ine generatl time—-sharing regime. all input and output must be performed through
*magicai’ calls to the operating system. If all i/O tasks are thus delegated to the
operating system then it becomes more difficult for students to gain any apprectation
of how input and output are actually performed. such an apprectation i1s an essentai
prerequisite to subsequent studies of operating systems.

in 1982, an attempt was made to find a simpier environment tn which the basic
concepts of assembly tanguage programming might be introduced. Mr. R. Neaion, the
software Professionai Officer in the department, haa {reviously developed a simple
screen—oriented simulator for a hypothetical machine, the "r80". This simulator runs
on the deparntment’'s time—sharing system angd utilizes the limited graphics capabilities
of the standard terminals. The simulator system aliows for programs to be written in
the assemply tanguage of the r80 and then “visibly executed”. The r80 has a relativety
small memory ang only a coupie of registers in its cpu. Ali elements of the machine.
poth cpu registers and memory, can be simultaneously displayed on the terminai
screen. This display can show now the execution of each instruction changes the
siate of the simulated machine. The r80 simuiator aliows programs to be executed
normally or. in "single-step“ mode, one instruction at a time. This r80 simulator was
agopted and used in both the lecture course and in the first two assembiy language
assignments. Most students found the display of the r80 executing theiwr programs ta
pe of considerable assistance in obtaining some understanding of how a computer
operates. Oniy after these initial assignments had been completed did students move
on to the greater complexities of assembly fanguage programming ior the Perkin-
Eimer machines.

The r80 is a "hybrid" combining features present in many current micros. its
mechanismis for addressing memory, for calling subroutines ang for manipulating dif-
ferent sized data elements are, nowever, somewhat unconventional. The r80 design
aoes not attempt to represent any realistic /O mechanism. Apart from the singie- -
stepping facility, the simulator does not provige any debugging atds akin to tnose that
students must empioy in more advanced exercises. Althgugh of consigerable value in
tnittat exercises, the overall applications for the r80 were limited by these features and
by the small size of memory available for programs. (The r80 has oniy four hundred
oytes of memory and each instruction requires four bytes).

It was decided 0 try to gevise a more elaborate computer simulator starting from
the concepts Nealon had deveioped and expressed in the r80. The abjectives of the
new simulator included (i) provision of more memory to aliow for larger programs, (ii)
incorporation of some conventional debugging mechanisms that could be useg in
association with visual displays of the simulated machine, (iii) implementation of some
schemae for illustrating program execution at varying tevels of detait down to the ingivi—-
gual micro—~program steps of the computers instruction cycle, and (iv) realistic simuta-
ton of 1/0. Hopefully. this more elaborate simulator will aliow students to learn more
aspects of assembly language programming within a controtled and heliptul environ—
ment and may possibly allow students to write simple 1/0 programs without in anyway
agversely impacting the real computer’s time—share system.

Given the decision to implement a simulator, one can then of course choose any
real or hypothetical computer 10 simulate. The new simulator that has been geveloped
s based closely upon the Digital Equipment Corporation’s (DEC’s}) PDP-8 computer,
possibly the first widely used mini-computer. This almost archaic machine s of
course extremely limited in capacity and unrepresentative of modern mini- and
micro-computers. However, the limitations of the PDP-8 are of little consequence for
this initial teaching application.

The PDP-8‘s instruction set 1s very sparse. frequently many PDP-8 instructions
are necessary 10 realize the same effect as can be obtained by a singie instruction on

a more sophisticated machine. The available instructions are however quite sufficient
for the assignments attempted by students. Larger instruction repertoires tend to con-
fuse by offering many alternative mechanisms for attaining the same objective.

On the PDP-8 ail data elements, program gata and instructions, are constant in
size. Much greater flexibility can be attained on more modern machines with bit, byte.
half-word, fuli-word and doubie-word data elements; however, this very flexibility
entails artificial probiems of data—-alignment that are frequently difficuit to comprehend
when first beginning assembly programming. The subroutine call mechamsm, and
interrupt handling mechanism. on the PDP-8 are both rclatively simple. This very sim-
plicity is inconvenient in sophisticated applications but. until students are familiar witn
the simpie approaches (and their limitations), more elaborate mechanisms frequently
seem both arbitrary and over compiex.

The Digital Equipment Corporation manufactured several variants on the basic
PDP-8 machine. These differed not only in their actual hardware realization but also.
to minor degrees, in their instruction repertoire. Later modeis tended to have rather
more instructions and some had an extra register in their cpus. The simulator goes not
attempt to capture any specific model of the PDP-8. It is closest 10 one of the earlier
variants.

Both the simulator programs and the assembler are written in standard PASCAL.
The sources for these programs are available to students. angd components of the
coge are usead in illustrative examples auring the course.

The rest of this document consists of notes for studems Topics covered inciuge
the following:

a) An overview of the PDP-8. (This is a somewhat cursory review of conventicnai
computer organizations. using the PDP-8 as a specific example. This materiai
shouid have been covered, in both greater breadth and detail, (n lectures prior tQ
students starting to use the simulators).

b} An introduction to the basic simulator. (This section explains the form of the
display in that version of the simulator used to illustrate the “fetch—decoge~
execute’ cycie of the machine. The concept of an "object” file containing a
machine compatible representation of a program is introguced, as are assump-
tions about where programs are placed in the memory of the machine).

¢) Preparation of programs for the simulator. (A simple assembler program (s intro-
duced. This 1s a standard two—pass assembler producing apbsolute code. The
basic instruction set of the PDP-8 is presented and a simpie example program,
such as students might be expected to write, is given).

d)} Addressing mechanisms of the PDP-8 ana subroutine calls. The “paged”
addressing mechanism of the PDP-8 is covered in a little more getail. the earty
program gxamples avoid the addressing problems by using only page 0 ana page
1. The subroutine call mechanism is illustrated.

e) Debugging . assembly language programs —-—— the advanced simulator. (The
agvanceqg version of the simulator is introduced together with its “debugging”
functions. These tunctions implement anotnher vanant on DDT. adb or other simi—-
lar debugging systems. The various display options of the agvanced simulator are
covereq).

f Flag-driven I/0. Both the sections on I/0 are considerably abbreviatea versions of
material covered in the lecture course. input ang output are presented here first
in terms of “flag-driven" I/0 methods. The advanceo simulator has a "pseudo-
keyboard” and a "pseudo-teietype” which are in reality standard files on the UNIX
system. Data can be read from ang written 0 these pseudo-devices by standara
I/0 instructions of the PDP-8. The simulation s realistic save that, for obvious
reasons. the speed of these siow peripheral devices has been increased by

g)

n}

-5 -

somewhnat more than three orders of magnituge.

interrupts. interrupt driven 1/0 is introduced using an example program that
"acguires and processes” data from a pseudo—-anaiog/digital converter. The gata
acquisiton rate is constant, being clock driven. the processing time necessary for
each data eiement varies (data are random numbers, the processing really con—
sists of counting the number of binary 1s ete). In the iong run the acquisition and
processing rates are approximately balanced but there are short term fluctuations
making it necessary to buffer data petween acquisition and processing.

Limitations of the PDP-8 architecture. A few of the limitations ot this computer are
priefly noted.

2. The DEC PDP-8 Computer.

The PDP-8, circa 1965, is an early modef taboratory computer. Typically, it is
used for tasks such as monitoring simpie laboratory experiments or running remaote—
job—entry stations tor larger computers. The processor is still manufactured and used
as the basis of certain rather restricted worg~processing systems. it 1s also used in
cne of DEC’s less sophisticated "personal” computers.

A considerably simplified represemation of the machine is shown below. We can
describe the machine in terms of four main components,

First, there is the computer’'s main memory where both program and data are
stored. '

Second there is the central processing unit. The cpu contains three subsystems
-~— a controi unit which effects the execution of the program, an arithmetic 10giC unit
which modifies data and a set of registers. The cpu registers hold data currently being
used such as. for example. the last character read in from a terminai or the current
temporary resuit of some computation.

The third main component. the "bus”, joins the cpu 10 memory (and to peripherai
devices). The bus can be viewed as a communications highway consisting of many
signal wiregs. Some of these signal wires carry control signais. others convey ingivi—-
dual bits of data and still others specify the destination of the data being transferread
on the bus.

(data highway)

‘bus” Peripheral
Device—"A"
e.g. a
Controlier clouio
for
device
IAU

MAIN c ,
MEMORY

Controlier Peripheral
for ‘T¥V Device-"B*
dasvice
‘8- L (0.Q. an
- anaiog-aigital
Controt 9-99
unit convener)
Arithmetlc-t Controller
Logic Unit tor
device
Registers “c* ’L\\
: Pearipheral

- Device-"C*
CENTRAL PROCESSING
UNIT te.g.a “1elerype’

1.0. PINUNG tarminai)

s

The fourtn and finai component 01 our system (s comprised of the various per—
pheral gevices ana their controllers. Data can be sent to or receivad trom peripheral
aevices. For each such device there will be a controtier. A controlier mediates beween
the device itselt and the computer's bus; each controller will have specially gesigned
circuitry to convert gata from thair external form (e.g. a siow sequence o! electrical
puises fram somatiung (ke a keyboard or a particular transient voitage on an analog
1o digital converter ("a/d")) in1o the conventional signais used within thé computer.

It1s necessary to know somethung of the internal structure ot main memory and of
the cpu: aetails of the bus ang device controliers are 1@ss important.

2.1. The Main Memory.

The main memory of a PDP-8 computer comprises 4096 “words®. (Our stmutated
machine has tess, real PDP-8s could be extended 10 have more memory through vari-
Qus nargware “kludges’). (tis convenient 0 regard memaory as being a vecior, .e.
one—-dimensional array, so a PASCAL data structure geclaration for the memaory wouid
read something like “const coresize = 4085; var store . arrayl0..coresizel of
word”. The index number of each word in thus memc-y i1s referreg to as its “address”
or “locatton”.

000000000000 <~ aadress 0
110110110110
010101010101
101010101010 Memory.
4096 "words® of
12 bits sach
000111000111
101010011101
001010011100 - address 4095
MAIN MEMORY

On the PDP-8. memories were usually constructéd Out Of magneuc cores:
mogern variants of the machine use semi—conductor memaories. it takes a finite hme to
write data into a worg of memory or to read data out ot a word. Typically, the "memory
cycle time” s about one micro-secong (.e. one one-millionth ot a second) with
semi—conductor memornes being somewhat faster. This memory cycle ume was the
major factor 1n determining the speeqd of execulion of programs. As will be explainegd in
more detall tater, the execution of any individual instruction on a PDP-8 invoived from
one to three memory accesses. Consequently, with a one micro-second store, the
machine could execute something around 300,000-500.000 instructions per seconag.

Each word in a PDP-8's memory heid 12 bits. A word could be regarded as noia—
iNg an instruction, an unsigned numbar in tha range 0~4095, an address (which was of
course just an unsigned number in the range 0-4095), a signed number in the range
-2048..+2047, one eight bit characier (with four bits unused) or two six bit characters
packed together. The data in any word are of course just some particuiar patterns of
twelve s or 0s. The interpretation of these binary patterns dependas solely on now they

are useqa by the program. The following are examples of different binary patterns ang
their alternative interpretations:

2.1.1. Instructions)

0/234567'8910//

{ opcoge l interpretation ot rest of word
depends on opcode

e.g.

o|o0(l | 0ol0o|O|0O|})|0{0|0 |O

I opcoae ‘ agdressing mode and location

binary vaiue 001000010000

octal value 1 0 2 0

interpretation as an instruction: TAD 20
meaning add the contents of iocation 20 1o
tne accumuilator register.

lJ1J[0lojo|0 o)/l |O

1 opcoge l device igentificaton function
binary value 110000011110
octal value 6 0 3 6
interpretation as an instruction: KRB
meaning read the contents of the keyboard
buffer into the accumulator and '
clear keyboard flag.

2.1.2. Characters)

0 ¢t 2 > 4 5 (7T &9 10 4

l 18t six Dit character: 2nd six bit character

e.g.

olol/lolololol/|ololo|e

pinary vaiue 001000010000
octal value 1 0 2 0
interpretation as characters: HP

1710l ololol o/ Ti]i o

pbinary vaiue 110000011110
octal vatue 6 0 3 6
interpretaton as characters: 0°

- 1] -
2.1.3. Unsigned Numbers)

8.g.

o 2 3 4 s

7 &8 9 10 u
/

6
olol/]olololol/]lololo]o

pinary vatue 001000010000

octat value 1 0 2 O

interpretation as a numoer: octal 1020
Ix512 + Ox64 + 2x8 + Ox]
512 + 16
=528 decimai

/| /|lololojotol1i1]))})1}0

pinary vaiue 110000011110

octal value 6 0 3 6

interpretation as a numper: octat 6036
6x512 + 0 x64 + 3x8 + 6x1
3072 + 24 +6
=3102 gecimal

2.1.4. Two’s complement signed numbers)

(As will be discussed in lectures, there are several gifferent conventions regaraging
how negative numbers should De represented in a computer. The PDP-8 uses two's
compitement notation as Ao most. but by no means atl other modern computers).

e.g.

¢

3 4 3 10
O1010|0

I 2
o/

<o
~ [
o
Q0

binary value 001000010000
octal value 1 0 2 0
interpretation as a number 528 decimal

J{11o0jojo0loiot){)1)1t 0O

binary value 110000011110
octai vaiue 6 0 3 6
interpretation as a number 6036octal
13 2’s complament of 17420ctai
.8 —(1x512 + 7x64 + 4x8 + 2x1)
~(512 +448 + 32+ 2)
-(994)

]3

2.2. The Central Processing Unit (CPW).

As noted eariier. there are three subsystems within the centrai processing unit.
These three subsystems being the control unit. the arithmetic togic unit and the
registers. The simpiest of these subsystems is the “registers” subunit.

CENTRAL PROCESSING UNIT

controi unit

pc 000010000011 .
(flags 000000)

1ir 001010001000 .

mar 000010001000

mor 000000000011

arithmetic logic
unit

registers.
acc 000000000001
link 0
(really part of
“flags”)

2.2.1. The registers.

Data being manipulated by a program are heid in the registers. Some, or all. of
the inputs to and outputs from the arithmetic logiC unit must be routed via registers. A
computer's “registers® constitute a kingd of smaller but much faster version of main
memory. The time needed to access data in a register will typicaily be g@ss than a
tenth of the time needed to access data in main memory. Most machines have severail
registers, anything from four to sixteen. Registars are usea to hotad those gata that are
of greatest /mpon at any one stage in a program. Typically, they are used 10 hoig
counters for “for-loops”. temporary results from computations, ingdices (subscripts) for
arrays.

Some machines bulld restrichons into register usage so that, for exampie. partic—
ular registers can only be used as array ingices. The task of the assembly language
programmaer. or of the compiler processing a high ieval language program, s 10 pro-
auce codge such that efficient use 1s made of the available registers. Life 18 simpier on
the PDP-8, there 1s only one data register ———~ the accumuilator tacc). (The "link* can
be regaraed variously as an extra 1-bit register, or as an extension of the accumulawor
or as one Dit of the “flags” register in the control unit (see below)).

The PDP-8’s Registers:

0 !/ 2L v 4 5 £ 7 & 9 40 N

o]

"

link

The PDP-8's one twelve~bit “acc” register has to be used for all aspects of a
computation. For example, in a simple program toop summing the eiements of an
array the “acc” is employed as follows. First, the ioop index is loaded into the acc ang
‘compared*” with the loop limit. (Since there is NO “compare” instruction, this operaton
in fact entails a sequence of instructions to compute the gifference beiween current
and limit values for the (00p index. This difference is left in the acc. the gitference wili
be negative if the I0op has not terminated). If the loop has not terminated (as deter-
minea by testing for a positive or negative value in the acc), then the i00p Index 1s
again loaged 1into the acc and combined with the address of the start of the array to
derive the address of the particular element required. This computed aoaress is then
stored in some temporary location in memory. Then, making use of the aadress just
caiculateg and stored. the required data element 1s loaded into the accumuiator. The
running total is added in and the result stored back into memory. Finally, the program
would have a loop back to the point where the acc was again loadedg with the 1oop
ingex for the termination test. Obviously. when only a singie register 1s available (0
perform each and every one of these tasks, much of the program witi comprise coge to
loag and store values from that raegister.

2.2.2. The Arithmetic Logic Unit (ALU).

Data are only manipulated in the arithmetc logic unit. This unit contain many
specialized circuits. There wiil for exampie be an “agder” circuit that can aaad togetner
two Dinary numbers. other cirCuits will perform boolean operations such as "anging* or
*ornng” together two binary patterns. More costly computers incorporate more circuits
in the arithmetic logic unit. there couid be a circuit for multiplying integers or even cir-
cuits capable of processing “real” numbers. '

One of the features by which computers can be differentiated is the tiexibility ot
the mechamisms for feeding data into the arithmetc logic unit and for directing the
resuits into storage. The Data Generai NOVA computer is an exampie of a machine
with a simpie but restrictive mechanism. On the NOVA, only data in high speed regis—
ters can be passed to the arithmetic 10giC unit and the resuits must be returned in one
of the input registers. More typically, machines aillow also gata fetched from memory
10 be combined with data in a register with the result being placed in that register.
Some machines are still more tlexibte.

The PDP-8 has the simplest and most restrictive form ot arithmetic logic unit.
There are really only two circuits ==~ an adder. and a circuit for performing a boolean

- 44 -

"and® operation. These circuils curwin® gata in the acc with gata fetched from
memory leaving the results in the acc.

2.2.3. The Control Unit.

The tinal component of the cpu s the control unit. This comprises a number of
registers contamning intormation that define the state ot execution of a program aiong
with Circuitry that igentities wnat insiruction must be partormed next and how 10 per-
torm that instrucuon.

2.2.3.1. The Contro! Unit's Regisisers.

pc 000010000011
(flags 000000)
ir 001010001000
mar 000010001000
mar 000000000011

Memory Address Register (*mar-) and Memory Data Register (*mdr°).

The control unit registers with the simplest applications are the memory aggress
register. "mar“. ano the memory cata (bulter) register, “mar” ("mor"). The roie tor
these registers 18 to interface bDetween the Cpu Circuits and the bus. If the cpu wants
some galum, elther a program gatum Qr an instrucuon, then it loads the adaress ot e
memory locauon contaiming the required datum Into the mar and puls a “read
memory” signal onto the controi iines of the bus. The memory unit responds by going
10 the tocauon defined by the vaiue in the mar register. tetching a copy ot the contents
ol that locauon and returning this copy. over the bus. 10 the mdr. Once the datum nas
thus been qgolained, the cpu Circuits route it internatly aither to the INsSIruchon register.
‘“ir®, if 1118 to be interpreted as an Instruction, or via the arithmatic logic unit through to
ine accumulalor if theé gatum represents something that the program i3 10 manipulate.
Data being written 10 main memory ailso pass via the mdr and thence onto the bus.
Similar conventions pertain when transterring data between the cpu and peripheral
gevice controtlers.

instruction Rogister (“ir®).

The instruction register hoids the bit pattern representing the instruction currently
being executed. Through their programming experience in PASCAL, students are tami—
har with 30 of MacroscCopiC “Nstruchions” such as the adaditions/mulnplicanons eIc
tnvoived in expression evaluauon, assignment “instructions” and proceaurd cail
‘instrucuons”. When programming at assembly language level. students nave o tearn
10 detine the corresponding oparations al a moré miCroscopic level where. 10r exam-
ple. even a simpie PASCAL assignment statemeny/ instruction”, €.g. &.=b,. expands
g three machine—ievel iNstructions (wiz ciear the acc. add contents ol memaory ioca-
on “b° (0 the acc. store the contents of acc in memory iocaton "a”). Execuuon ot a
program invoives i) fetching each Successive INStryction i1nto the ir regisier, w
docoding the feiched insiruction to determine exactly what it Specifies,) execution
ot the specitied sequence of gata manipulations.

]6

Program Counter (*pc”).

Another concept, already developed through the programming of PASCAL loops
and conditionat statements, is that of the "locus” of control. Students are familiar with
the idea of something ——— "the computer® ——-~ stepping through a sequence of PASCAL
statements comprising a program. Physically, this locus is realized in the form of the
program counter “pc”. The contents of the “pc” register is the address in memory con-
taining the next instruction to be executed. For straight-line code the program counter
can simply be increased after each instruction is fetched so that it contains the next
instruction address. (On the PDP-8, ali instructions occupy exactly one word of
memory each, so that for straight-line code the pc can be incremented by 1 each
time).

Transters of controi, when encoding io0ops or for jumping around code that is only
conditionally executed (as in “if ... then begin ...; ...; ... ‘end" etC), are a bit more
complex. Basically, the address of the next instruction to be executed has to be caicu—
iateq, or retrieved. This computed address is foaded into the pc.

Subroutine calls. (procedure calls), are even more tiresome. When cailing a suo—
routine it is not sufficient merely to transfer control to that bit of code (as achieved by
loading the pc with the address of the subroutine). somehow a mechanism must be
provided to get back to the main calling procedure, resuming execution at that instruc—
tion immediately following the subroutine call. The mechanisms that are provided for
adjusting the pc across subroutine calls constitute another of the more obvious ways
for differentiating between various designs of computers. The PDP-8 adopts a pecu—
liarly crude approach adequate only for the simplest applications. This subroutine cali
mechanism is detailed later.

Flags resister.

Another typical constituent register of the control unit in a cpu is the *flags”
register. This comprises a set of one-bit flags each indicating various status settings.
Some of these flags might record the resulits of previously perfermed comparison
operations on machines with expiicit compare instructions. Others might detail infor-
mation regarding the status of the bus and its use by peripheral devices. The PDP-8,
at least its early variants, does not really possess such a “flags” register.

2.2.3.2. Instructions, their format and decoding.

On the PDP-8. the formats of instructions are simpile. Three bits of an instruction
word, bits 0-1-2, identify the actual instruction to be performed. With three dits it is
possible to represent eight different binary patterns. viz 000, 001, ..., 111 (or 0-7 octab.
Correspondingly, the machine has eight basic instructions. The different binary pat—
terns, interpreted as representing instructions, are referred 10 as “opcodes”.

One of these eight basic instructions, “iot", is used to specify controi signais for
peripheral devices. Consideration of iot instructions is deferred until fater.

Six of the remaining seven instructions are basically similar in torm. These are
the "memory reference” instructions. They use the nine remaining bits of the tweive-
bit instruction word 10 identify a memory location. This location might constitute the
source from which data are 10 be fetched when performing an addition or an "and*
operation, or might represent the destination into which the current contents of the
accumulator register are to be copied. In a "jmp* (i.e. goto) instruction. the address

" bits of the instruction word will specify the memory focation containing the next
instruction.

The final “instruction®. "opr", really comprises two whole families of instructons
for manipulating data in the acc and link registers. Some of these “operate” instruc-
tions involve clearing (.e. setting 10 zero) the acc and/or link registers, compiementing

_]7..

the bits in these registers (all binary 1s become 0s and vice versa) ana rotating the bit
patterns around. .

Other operate instructions implement a rather restricted form of condgitionai
branch instruction. These "skip” instructions are limited in that they aliow the program
Io branch around only one instruction! A typical skip instruction. "sna“ (skip on non-
zerg accumuiator), involves testing 1o see if the acc is non-zero, if so the program
counter will be incremented causing the immediately succeeding instruction to be
skipped over. In the same group as the skip instructions there is the "hit" (hait
instruction; this stops the computer at the end of a program.

2.2.3.3. The Fetch—Decode—Execute Cycie.

The circuits both for identifying the instruction t0 be performed and for perform-—
ing instructions can best be conceived in terms of a stored "program”, (in fact, that is
quite often how the circuits are implemented). This "program” defines a sequence of
data transfers between specified registers. This control program can be envisaged as
being something of the the form:

repeat
fetchinstruction;
decodeinstruction,
executeinstruction,
until halted,;

The *halted” flag gets set when the machine executes a "halt® instruction.

The individual procedures. fetchinstruction, decodeinstruction, and executein—
struction, will comprise code that specifies how data is to be transferred between vari-
ous registers of the cpu and locations in memory. Thus, fetchinstruction could be
something like:

procedure fetchinstruction;

begin
{ Copy program counter to mar i
mar:=pc;
{ Send request to memory, via bus, for contents }
{ of location specified by mar }
frommemory,
{ Copy retrieved datum from mdr to ir }
ir:=mdr;
{ Increment pc so that its pointing at next }
{ instruction. }
{i.e. pass T & contents of pc to adding circuit }
{ truncate the resuit to 12-bits }
{ store truncated result back in pc }
pe:=add(pc,1) mod 4096,

end;

The procedure for decoding an instruction consists, primarily, of a big “case” state-
ment. The three bits, 0-1-2, containing the opcode must be abstracted from the ir
register. This opcode. 0-7 octai, defines the branch of the case statement appropriate
for tne particular instruction to be executed. Thus. opcode 0 signifies that an *ang*

-18 -

instruction is needed, while opcode 7 specifies an "opr" operate instruction.

The interpretation of the remaining bits of the instruction word depends on the
particular instruction being executed. For instructions like "and”, “tad” (i.e. add). “jmp*
ti.e. jump or goto) and “dca” (i.e. deposit contents of acc in memory and then ciear
acc) the remaining bits in the ir register will specify. directly or indirectly, the address
of the memory {ocation to be used. For these instructions, the rest of the aecoding
process consists of resolving exactly what memory address is being referencea and
getting this address into the mar register. in an "iot® instruction, the remaining bits
will specify which device controller is to receive a ¢ ymmand signal and, aiso. will
identify the particular command signal that must be sent. The remaining nine bits in
an operate instruction specify the particuiar bit-manipuiations or skip—tests that must
be performed on the contents of the acc and link.

Finally. once the instruction has been fully decoded it must be executed. Execu-
tion can again be described in tarms of a program specifying transfers between regis—
ters. A simple example is provided by the PDP-8's “dca” instruction. The effect of this
ingtruction is to store the current contents of the acc in a specified memory locaton
and to clear the acc. The instruction decoding process will have identified the instruc—
tion as being "dca” (from its particular opcode O11-binary 3-octal), and will have
decoded the address biis to derive the required address which will be held in the mar
register. The actual execution of the "dca“” instruction can be defined in terms of the
following micro—-program for manipulating the contents of cpu registers and store:

{ Execute dca instruction |

{ (instruction decoding stage has already set the)

{ address of the memory location in the mar register)}
{ First, copy contents of acc into mdr register }
mdr:=acc;,

{ Now send signal over bus to memory telling memory }
{ unit to store the contents of mdr register in the }

{ the location specified by the address in mar }
tomemory;

{ Now clear the acc }

acc:=0;

{ Finished execution of dca }

The controf unit will have such micro—programs corresponding to each possible
instruction of the computer.

.]9...

3. The Basic Simulator.

3.1. The simulator and its display.

At this point. it is best to 100k at the simulator program. Details of how to run this
program undger UNIX are given alsewhere. Essentially, the simulator expects to read in
from a ftile, the “object” lile. a previously prepared and encoded definition ot the
sequence of PDP-8 instructions that comprise the program to be run. These det are
reag in; the user is required to specify a display speed appropriate for the terminal n
use and 1o indicate whether the program is to run continuously or is t0 pause between
each stage in the instruction feich—decode—-execute cycie. Once appropriate controi
parameters have thus been specified, an initial display ot the state of the simulated
magchine is presented. This display i1s continuously updated as the simulatea machine
executes the program provided.

The general form of the display s shown below. Bold type has been used 10 ingi—
cate those fields that are high-lighted on the screen (through the “inverse-vigeo*
display capability). Fields containing asterisks are filled with specific octai data in real
dispiays. The fields dranslated instruction>, <Major stage of instruction> ang <minor
stage of instruction execution> contain text defining exactly what actions are currently
being performed. The tield <single step prompt contains a prompt when the machine
is being run in single-step mode and i3 waiting for a user-response betore continuing

. operations.

+

o
3
c

acc %% ink [pc =] ir F55¥)

mar 223} mdr 559 <wransiated instruction>

Major stage of instruction
«minor stage of instruction execution?

e we me me e @

BUS: control ***** address **** data ****

MEMORY .
Address Contents

AKRRR WEA X
RKRXRA XKRRXR
K XXX KERX
KERX KERR

KRR R KERR

<single step promprv

P T

There are three components in the dispiay. The top portion of the screen shows
Oata defining the state of the Cpu along with the textual descriptions of current activity.
The centrai portion of the screen shows the status of the bus. This portion of the
Gisplay gefines the last data transfer between the Cpu and memory specifying whether
a memory READ or WRITE operation was performed. the address of the referenced
memory Iocation and the value for the data transferred.

Finally, in the third component of the display. there is a “wingow" into memaory.

20

Even in the basic simulator, the simuiated PDP~8 possess more than five hunareg
‘woras” ot memory. It 1s obviously impractical to simuitaneously display the contents of
all memory {ocations. instead. the "window" into memory shows that locauon to whicn
access, {or reading or writtng. has most recently been madge. The two preceding anag
‘w0 subsequent memory locations are aiso shown. (f the maost recent memory access
was a READ for an instruction fetch, then the memory wingdow will show the sequence
of instructions currently being execuisd. (f the last memory access hag been a WRITE
10 a iocation representing some element of a vector being processed in some oop
then the five memory locations shown would represent the array eiement, the two ale-
ments previously processed and the elements still to be processed in the ioop. The
memory window changes at each memaory access. :

A typical instantanaous gisplay is shown below. This example represents the state
of the machine when it i3 part way through axecuting a particuiar add instruction. This
add instructton was at memory tocation 0201 (all values given are in octal): the pro-
gram counter has already been incrementad and igentifies 0202 as the memory toca—
non containing the next instruction 10 be executed. The instruction register contains
the vaiue 1207; just below the pc/ir registers the display shows the transiation, 1.e. tad
0207 tmeaning add the contents of memory iocation 0207 to the current contents of
the accumulator). The acc currently hold the octal value 1. the link is zero.

-+

5
-
c

acc {0007) tink @ pc T0202] ir

mar (0207} mdr [0002) tad 0207

Executing instruction
Data Fetch

BUS: control READ address 0207 data 0002 '

MEMORY '
Address Contents
0205 7402
0206 0001
0207 0002 0002
0210 0003
0211 0000
To continue pressRETURN

e @ e e mMe wm e me e me Be Ge Ge W G Ms e B e mw e

+

Execution of the instruction has reached the point where the requireqd gatum, (.e.
the contents of memory location 0207, has been fetched from memory. The texi
aescriptions igentify the major stage as being “Executing Instruction” with the mnor
stage as “Data Fetch". The mar register identifies location 0207 as the last memory
eiement referenced. The bus display shows that the most recent transfer was a READ
from memory, at agdress 0207. The memory window shows locations 205~~~211 octal.
The reterencec adgdress (s highlighted. and the vaiue read from that adoress repeatec
o the right hand side of the column showing the contents of the Qisplayed memory

2]

tacauons. This value, 0002, is also indicated as being the last aata element transterrea
over the bus, from where it has been copied into the mdr. As values are transterrea
into, or out from registers, the corresponding display fields are brisfly highlighted.
Since the pragram was being run in singie~step mode. execution has been suspendea
at this point awaiting a response from the user.

On receiving a response from the user the program wouid continue. The contents
of the mdr and acc registers (i.e. 0002 and 0001) would De (conceptually) passed to
the adding circuit of the ALU of the simuiated machine (the ALU is not incorporaiad in
the display). From the ALU, the resuit 0003 of this addition wouid be routed into the
acc. Execution of this add instruction would then be complete. The simulator wouid
proceed then to the fetch cycle for the next instruction.

The display wouid change appropriately. The major cycie would be identifieg as
instruction fetch. The contents of the pc, 0202, would be seen o be copied 10 the mar
angd a memory read access performed on the appropriate location. The memory
display would change to show locations 0200-0204 and the appropriate gatum, i.e. the
bit pattern representing the next instruction, would be movead from memaory 10 the mar,
Once again, if in singie step mode, the simuiation would pause for user response.

3.2. An example program. and coaventions for arranging programs n the
memory of a PDP-8

The program that the machine was executing, when this display recoraing was
made, was:

tocation instryction

0200 aod the contents of memory iocation 0206
to the current contents of the acc

0201 add the contents of memory location 0207
to the current contents of the acc

0202 add the contents of memory {ocation §210
to the current contents of the acc

0203 store the resulting sum in memory locaton
0211, and ciear the acc

0204 reload sum from location 0211

0205 hait

0206 the constant, 1}

0207 the constant, 2

0210 the constant, 3

0211 zero, (for the sum)

This program fragment introduces some assumptions. Why. for example, the start at
iocation 02007 What did the acc contain pefore we added in the contents of memory
location 02067

in the generai case, deciding where a program is t0 be executed in memory 1S a
rather onerous task. Typically. a computer will be time~-shared. programs for many dit—~
terent users will be in various parts of the machine’s main memory with cpu-atiention
being swapped around between them. If you Specify particular memory locations. like
0206 as in the example above. then obviously your program will only execute correctly
if your data is foaded into the real memory iocation 0206. If this iocation happens to be
occupied by some other program then you must wait before you can run your program,
Since generally you would want to have programs in all parts of memory you would
have to establish some arrangement that particular programs go at particuiar

agagresses. Such an arrangement is hopelessly inconvenient. Consequently, it 1s nor—
mal 10 Iry 10 defer the decision as to whers a program Is tg be run for as tong as pos-
sibte. Usually. one pretends that the program starts at some fixed tocation such as 0 or
40000000-octal or whalever: all memory addresses are then described relative (o this
presumeda starting pomnt. Then. just before the program is executed (or possibly durning
execution), these relative aodresses are converted to real machine agdresses
appropriate tor whergver it 18 that the program has actluaily been stored in memory.
This agjustment of addrasses in the text of the progra: can be e¢ffaected by haraware,
or by software or by a combination of both.

Life of course is easiar on the PDP~B. Usually such a simple macnine 1s 0edi—
cated to a specific application and then it is possibie to choase appropriate adoresses
and incorporate these in the program. Therg are certain conventions about how
memory 1s utilized. For reasons that hopelully will becoma clearer latar. the first 200
octai (128 decimab locations. with addresses G—— 177, are esseatially the place where
one stores one's global variabies. The next 200 locations. addresses 0200~-0377, are
where the main program goes aiong with possibly one or two smalf subroutines.

Restrictions on how the PDP-8 can access its memaory make it appropriate to
think in terms of 200~octal (128~decimal) word “pages”. Page 0 is for the globais. page
1 for the main program. subsequent pages are tor subroylines or gata arrays. The
basic simutator has four such pages of memory. The simulator has a built in
presumption that the main program wili commence at {ocation octai-200, i.e. the first
word of page 1, and appropriately initializes the pc. it also zeros the acc and link
registers prior to executing the POP-8 program read from file. On a real PDP~8 com-
puter. there were smali switches on the “operator's consoie” that ailoweg the user (o
clear registors and appropriately initialize the program counter.

Y

{ 000000000000 ! Page 0, addresses 0..177, globais
010101010101

000100000000

111011000000 | Page 1, addresses 200..377, main
001000010000 { program. start address 200.

00000006 1010

000000000000 | Page 2. addresses 400..577,
110000011010 ¢ subroutines or data

000000000000

_23.-

3.3. Representing a program to be executed.

The program, that is to be executed by the simulator, 1s not of course represented
in terms of textuai definitions of instructions like 0200 add contents of memory iaocation
0206 to acc. Instead, the "object® lile read in by the simulator contains, as a set of
octal numbers, definitions of what memory iocations are being used angd the instruc-
tions. or data constants. that are 10 go in these memory locations. The object hie for
the example program given earlier reads as follows:

*0200
1206
1207
1210
3211
1211
7402
0001
0002
0003
0000

$
0

Lines beginning with an asterisk define the first address for a subsequent sequence of
instructions; there may be more than one such origin directive in a object file as
wouid, for example, be the case if there were some program text at 0200 ang a large
pre-initialized data array starting at 0400. Lines beginning with a singie space are
interpreted by the simulator as specifying data. instructions /constants /whatever, that
are to be placed in the next available word of memory. The dollars terminates this
section of the “object” file. The simulator contains a couple of routines to read in an
appropriately formatted file of octal numbers and store them in the array that
represents the memory of the simuiated PDP-8.

With a real computer, things tend ta be a bit more complex. Firstly, a much more
compact encoding would be used for the object file. Here we use a sequence of char-
acters ‘1',°2°,°0',’7' to represent the 12-bit binary pattern ‘001010000111°. But eacn
such ordinary character takes up eight bits in itseif so, really. we have a 32-Dit
sequence conveying only 12-bits of information. Many more efficient encoding
schemes are possible. in other respects. our object file is reasonably realistic. any
reai object file must convey the same information concerning addresses and their
contents.

Of course, unlike our simulator, a real computer can’t have built in PASCAL func-
tions for reading in. "loading”, the contents of an object file. However, it is possibie on
aimost any machine to write a short *loader” program that can read in object tiles from
some stanaard device and can fill out the appropriate memory ocations with the data
representing instructions and constants. Rarely would such an "absolute” loaqer
require more than a score or so of instructions. It is a common expedient to utilize the
last few words of avallable memory to hotld this loader program.

24

000000000000

1

- aqgress 0

USER PROGRAM AND DATA
HERE

- |last location available 10 user

1110110600000

1011111111017
000010000000

<—- address 7740 ockel

System LOADER program for loading
user.programs from some standard

input device.

MAIN MEMORY

Such an "absolute” loader represants about the simpiest form of "systems® software on
a computer. as we elaborate this “operating system” we find that a rapidly gecreasing
fraction of the memory of the computer is left for user's own programs.

- 05—

4. Preparing Programs for the Simulator.

4.1. Assembly language programming with the “smap” assembler.

A program represented as a table of octal numbers may be quite appropriate for
a computer but it is barely comprehensible to a human. Of course one can learn ta
associate a particuiar binary pattern, e.g. 000-binary 0~octal, with a particular opera-—
tion that the computer can perform (in this case an "and” instruction). But it is a iot
easier if the text of the program had some totally equivalent but more rcadiiy
comprehensible alternative represeniation, such s for example the wora "and" if its
an and instruction that we want,

it is in fact quite exceptional for anyone ever t0 have to write out a program for a
computer in terms of the binary patterns representing instructions (or their equivaient
octai or hexadecimai representations). instead. one writes in "assembly" language.

There are no general assembly languages, each such language is unique 10 a
particular machine. However, most take essentiaily the same simple torm. Each line of
the assembly language program represents information that will eventuaily correspona
to one instruction that can be executed by the computer. Each line is divided up into
"fields”.

First, there is a labet field (familiar 10 those with some exposure t0 FORTRAN (with
statement "labeis”), or even BASIC (with line numbers)). A label can identify a particu—
lar program statement and allow reference to be made to it elsewhere as, for exampie,
in a jump (goto) instruction. Labels are also used 1o identify those memory tocations
employed for holding constants or program variables. The label field wiil frequently be
left blank (more like FORTRAN than BASIC).

For an instruction. the next “field” will hoid. not the opcode itseif, but instead
some name, or "mnemonic’. for the opcode required in the current instruction.
Mnemonics are supposediy chosen to remind programmers of exactly what operations
a particular instruction entails. “and" is a fairly obvious mnemonic for a logical AND
instruction; the PDP-B’s use of "tad" to designate the addition instruction seems 04d
until one knows that the programmers who thought it up liked to be reminged that they
were using two’s complement arithmetic (hence. two’'s complement addgition).

What comes after the opcode’s mnemonic depends on the particular instruction.
If the operation involves for example transfer of data between a cpu register andg
memory then the next field(s) will contain some specification of the address of the
appropriate memory locaton.

Difierences in assembly languages are fairly obvious ang closely related to
specific machine characteristics, For exampie, in many ways the NOVA is like a PDP-8
but the NOVA has two accumulators. "A* and “B*", where the PDP-8 has but one. On
the PDP-8, data can only be stored from the acc register. but on the NOVA data can
come from either "A* or "B" accumulfators so, in any store instruction, one must
specify which register is being referenced. This information may be incorporated n
the opcode. e.g. have distinct STOREA and STOREB instructions, or may be specified
through some additional instruction field, e.g. STORE (A/B). Machines differ signifi-
cantly in the range of ways in which the required memary location may be specified.
s0 another area of difference in assembly languages is in those fields wherein the
address is defineq.

Comments can be included in assembly programs. These are solely for the
penefit of the programmer and are thrown away before the program is ever prepared
for machine execution. However. given the intrinsic difficuity of reading an assembiy
language program, comments are essential. (Maybe more essential than the coge?
The code itseif will soon be obsolete. good comments will at ieast tell the next guy
about a program that was once thought worth writing and then maybe he can rewrite

- 26 -

iv. ‘Usually, comments are introduced by some special character Qypically this char~
acter might be ‘/*, ;" or '*'); ali text on a line following this comment marker is con—~
sidered to be comment. Some assembly fanguages make special provision for com~
ments on each line of code (everything after the 35th character, or other arbitrary
limit, gets considered as being a comment),

A program written in assembly language has of course stiil to be converted into a
form that can be processed by a computer. This conversion is the task of an "assem-
bler”. An assembier reads the source text of the program and generates from this an
object file. similar 10 those we have aiready considered. and a listing that details
exactly the instructions generated and the storage [ocations assigned both for those
instructions and data. The object file is for input to the (oader of the computer that is to
execute the code. The listing is used as a reference by the programmer when check—-
ing out the actual execution of the program.

The assembly language that one uses is really defined by the assembier pro-
gram. Different assemblers. all devised to produce code for the same machine, will
vary greatly in the facilities that they provide their users. One assembier might aliow
users to include string constants in their programs. e.g. "Hello Worid®. wnereas
another assembler might require that the programmers specify each byte of such a
string as an octal or hexadecimal constant. (i.e. 110; 145; 154; 154. ..). Such differ—
ences in the assembler are manifest in the assembly language that is defineq.

An assembly ianguage program {or our *add three numbers” exampie is as foi-
lows: -

/ Add the vaiues of the threge constants in consta, constb.
/ and consitc. Store the sum in “sum”. Stop with the sum

/ in the acc.

%200
tad consta
tad constb
tad constc
dgca sum
tad sum
hit

consta. 1

constb, 2

constc, 3

sum. O .

$

it is more useful 10 provide comments that attempt to expiain the purpose of the subse—
quent section of code than tc append a comment to each individual instruction. Quite
often, programmers first working in assembly language will, on being toid to inciude
lots of comments, produce a pragram that reads:

-27 -

=200
tad a / add a to accumulator
tag b / add b to accumuiator
tad C / add ¢ to accumulator
gca d / store accumulator in d ang clear acc
tad d / add d to accumuliator
hit / hait

a. 1 fa=1

b. 2 /b=2

c. 3 /c=3

a, 0 /d

$

While there are indeed many comments in the second version they convey little infor~
maton.

This fragment of assembly language is written in the format useg by the “smap*
assemblier that has been devised for procassing students’ PDP-8 programs. For smap.
comments should be introduced by '/’. smap accords no particuiar significance to the
column useqa for instructions, standarg tab positions are quite convenient. Foliowing
stangard PDP-8 assambler notations, fabel names (which must begin with ietters ang
comprise six of fewer characters) are terminated by a comma *.".

Apart from the lines containing the six instructions, the program nas three con-
stants and one variable. For smap, the values of the constants must De given as
~ (unsigned) octal numbers; the variable should be initialized 1o zero. in more sophisti—
cated assemblers. there are "pseudo-ops® or "assembier directives” that will, for
exampie, allow one to define a decimal constant or create a text string that is {o pe
'stored as a sequence of characters in several successive memory focations. smap
goes not implement any such "data definition” pseudo-ops.

in fact, smap only has two assembler directives. One is represented by the °'$’
sign in the exampie. This is used to mark the end of the input so that smap knows that
it has read in the complete program. The other assembler—directive implemented in
smap is an “origin" directive. An origin directive allows the programmer to specify
where a particuiar bit of code is to go. (presuming of course that one can specify
absoiute addresses). Here. we want the code to start at 0200. Following stangard
PDP-8-assembier conventions, an asterisk '*’ is used to identify an origin directive.
"*200" specifies that the next sequence of instructions go into locations starting at
memory {ocation 0200.

The example also illustrates a minor difference in layout between PASCAL pro-
grams and typicai assembly language programs. In PASCAL, all vanabies are
declared before the code. Usually, though not invariably, assembly language programs
have a set of instructions iollowed by “declarations” of local variables. Some program-
mers like 10 gather all variables together and place them subsequent to all code sec-
tions, while others will keep each subroutine and its (ocal variables grouped together.
Restrictions on how a program may address variables may preclude one or other of
these options on a particular machine. On the PDP-8, it will usually be more appropri—
ate 10 deciare a subroutine’s iocal variables immediately after its code segment.

4.1.1. The assembly process.

The operations of an assembler program will be considered in more getail in the
lecture course (some details may aiso be availabie in an appendix to this aocument.
Essentially, an assembier has to read through the source text of the user’'s program,
take cognizance of origin directives, find instructions and generate appropriate coge.

- 28 ~

We can consider, briefly, how an assembler might process the exampie program.
First, it can obviously ignore all comment lines, (those beginning with ‘7). On finding
an origin directive, e.g. *200, it must update whatever record it keeps of where in
memory code is to be piaced. The first real instruction in the program being assem-
bled reads “tad consta”.

The word “t1ad” can obviously be easily abstracted from this line. An assembier
has an internai table, its "symboi tabie”, wherein there are definitions of, in effect,
reserved words. The assembler can {ook up "tagd" in this table and confirm thatit is &
valid instruction mnemonic. that it's a memory reference instruction and so should be
followed on the same line by some address specification, and that the opcode that
should be written to the object flie is " 1",

The assembler could then continue to process the same line and would isolate
the word "consta®. Of course. this is the first time that this word has been encountereg.
There is no definition for it in the symbol table. From the context, the assemblier might
infer that its intended to be the name to be accorded t0 some memory location but it
has no way of determining the appropriate address.

There are various ways of resolving problems of such “forward references”
(references to variables or program labels whose definitions have yet to be encoun—
tered). The simplest solution is to read through the program text twice. On the first
pass, the assembler program just finds all variables, and program labeis, and deter-
mines their appropriate addresses. These data are inserted into the symbol tabie.
Then on the second pass. code can be generated because the assembier program
will by then possess the required addresses. '

smap is an example of such a two pass assembier. On its first pass, smap will
note the origin directive *200. The next line. "tad consta®, is recognizable as an
instruction; smap can ignore detaiils and simply increment its iocation counter to 0201.
Each additional instruction is processed similarly and results just in an increase in the
focation counter. When the line. "consta, 17, is encountered the smap assembler wiil
identify a label (that comma makes it very easy to write a (abel detection routinel). The
current value of the location counter is 0206; smap can add the information
“name=consta“. "symboltype=label", "value=0206" to its symbol table. Similar process—
ing defines the labels "constb”. "constc” and “sum” with values 0207, 0210 and 0211.

On its second pass. smap can now process an instruction like “tad consta®. The
“tad" is recognized as a valid instruction mnemonic. the first three bits of the instruc-
tion word being assembled can thus be set to 1-octal 001-binary (the correspondging
opcode). “consta” is recognized as a valid operand in an instruction’s aggress fieid,
because it has been defined as a user label. its value, 0206. can be used to fitl out the
nine~-remaining address bits of the instruction word. Thus, the full instruction “1206"
can be generated.

Like any other {fanguage. an assembly ianguage has a few rules of syntax. it's not
right to say something like "tad tgd" (because one shouidn’t be using "tad” to name a
memaory (ocation). Similarly, it’s wrong to have an insiruction such as “and fred" if the
label "fred” isn’t defined anywhere in the program. it's aiso wrong t0 use the same
{abel name twice; it may be tempting to use the label “loop.“ at every point where a
loop back is necessary but such usage will just confuse the assembler. One other syn—
tax restriction is the limitation of labels to start with a letter and comprise six, or tewer,
Characters. another restriction in smap limits the size of numbers (which should not be
greater than 4085 decimab.

There appears to be a general agreement among authors of assembpler programs
that reports of syntax errors in users’ code shouid be as unheipful as possible. On
detecting an error, the usuai response of an assembler program is to print a one
character message of compiaint and to then stop.

- 29 -~

smap attempts to be more helpful in that it identifies, reasonably precisely, the
point at which the error was detected and the perceived nature of the error. it may wel
stili be necessary to run the smap assembier several times before ali errors are ehim~
inated. For example, if smap discovers, during the course of its first pass, that you
have gefined the labei “l00p.” as being in two different places then it reports this “gou-
bly defined symbol” error (identifying "loop" as the offending symbol aiong with the
point of second occurrence) and then stops. it may also be the case that you have
referenced ancther label. e.g. "loopl” as in *jmp foop1". which you have never defineaq.
smap does not detect such “undetined label” errc s until it has been able to success-
fully complete its first pass and is working on the second pass through your program’s
source text.

4.2. The instruction Set.

itis at this stage appropriate to consider the main instructions, their opcoges ang
mnemonics, that are available to you when programming the PDP~8.

The Memory Reference Instructions

There are six instructions for referencing memory, these being and. tad. dca.
isz, jms and jmp. Three of these are used either to transfer gata from the accumuila-—
tor to the main memory (dca) or 10 combine data from memory with the current con—
tents of the accumulator (tad, and). The jmp and jms instructions provide for uncondi-
tional transfers of control and for subroutine calls.

The isz instruction has rather a iot of related uses. What it actually does is first to
take the contents of a specified memory location, increment this value by 1, andg store
the resuit back into the same memory location; then, the instruction causes the cpu to
check whether the addition gave a zero resuit. i.e. the old vaiue had been —1. if so the
program counter would be incremented causing the next instruction t0 be skippead.
There are three common ways in which this instruction is used. it can control simple
*for loops”: you initialize some memaory location to minus the value of the joop limit ang
then at the end of the body of the l00p. just preceding the jmp instruction that takes
you back to the beginning of loop sequence you "isz” this tocation, when you've been
around the loop enough times you will get to skip the jump back.

pseudo—PASCAL (with labels) code
a:=fimit; tad limit
a:=-a; cia
x:=a; geca x
100: L100.
{ toop body}
x=x+1; } .
if x=0 then goto 101, j_o>—=— isz x
goto 100: jmp L100
101: L1071,

The other uses both take isz as just a convenient method of incrementing a vaiue,
ang ignore the bit about skipping on zero. An isz instruction might for exampie be a
convenient way of updating some counter expected to lie only in the range say 10—
1000; a single isz instruction can update the vaiue whereas at least three instructions

- 30 -

would De necessary if the current vaiue of the counter had to be 10aded Into the acc,
incremented by 1 and the resuit stored back. The other. rather similar use. uses the
1Sz instruction to increment an “address pointer”. Pointars wili be aiscusead further later
on: basically they allow reference 10 some memory location whose agdress has been
Jderived through some calculation. {ike for exampie in code for accessing an array gig~
ment. If an array is being processed in sequence then quite commonly the 1Sz instruc—~
tion will be used to increment the address pomnter o reference the next eilement.

Summary of Memory Relerence lnstructions.

()]

D

2)

KY)

4)

5)

o / 2.3 4 5 6 7 8 9 10U
=Y T T 1] ¥ T

i,

l {
—i D e S £ SHS WS w—
| opcoae { address mode and focation |

OPCODE MNEMONIC

000-binary O AND
00i-binary 1 TAD
010-binary 2 182
Ol11-binary 3 DCA
100-binary 4 JMS
101-binary 5 JMP

and : logical AND. The and instruction causes a bit-by-bit Booiean AND opera-—
tion between the contents of accumulator ang the data word specified by the
instruction. The rasuit is 1eft in the accumulator.

tad . Two's Complement Addition. tad performs addition between the speciiieg
aata worg and the contents ot the accumulator leaving the resuit of the adgition 1n
the accumulator. if a carry out of the maost significant bit of the accumutator
should occur then the link Dit is complemented.

isz . Increment ang Skip if Zero. The isz instruction adds a 1 to the referenced
data worg and than examines the result of the addition. if a zero result occurs, the
instruction following the isz is skipped. If the result 1s not 2zero. the instruction fol—
lowing the sz i1s pertormed. in gither case. the resuit of the agdginon replaces the
oniginal gata word in memory.

dca : Deposit and Clear Accumulator. The dca instruction stores the contents of
the acc in the reierenced location, destroying the original contents of tne toca—
uon. The acc 18 then set to zero.

jms : JuMp to Subroutine. (Discussead in next saction on addressing Moges ang
subroutings).

imp : JuMP. The jump (goto) instruction l0ads the effective agdress. calculateg
auring instruction gecodaing. into the program counter pc.

H

Operate instructions.

in principte. there are 9 bits available to igantity operate class instructions, sup~
‘posedly therefore aliowing some 500 such nstructions. it doesn’t work tnat way.
Operate instructions are “microcoded". Specific bits are used to designate specific
‘micro~instructions”. One “micro-instruction” clears the acc (i.e. sets it 1o zero);
another ciears the link. “Micro-instructions” can be combined in various ways. Thus.,
one can clear the accumulator and then go on to increment it (SO getung the constant
0001 1n the acc) all within a single operate ins..uction. There are@ nhowever 10ts Of res—
trichons on the allowad combinations of microinstructions. Consequently, only a tew of
the 500 odd possibie 9-bit binary patterns actually represent valid. executable instruc—
uons.

The basiC operate “micro—instructions” are:

data manipuiation:

i) cla. ctear the accumuiator, i.e. set it to 0000.
i} cil, ctear the link.

i) cma, complement the accumulator. i.e. all binary 1-s become 0-s, ail O-s
become 1-s,

v} cml, complement the link.

v} rar, rotate the accumulator and link right. This instruction treats the acc and link
as a closed 100p ana shifts all bits one position rignt:

example:
before ~
Loy 2 % 4 S T8 9 10U
/ ojo0jol| /|1 |1 }O0|lO}|0OC|lO}O|O
i []
after ' :
i :
L I h -“l

S ;
Ej)ooo;;)o_oooo;
o i

- e 4 e ¢ . s o e n e - eemeaes,

vi) rtr, rotate two right. a shift of two piaces to the right is executed. Both rar ana rtr
use what i1s commonly catled a circuiar shift, meaning that any bit rotated oft one
eng of the accumulator will pass into the link and then on again into the other
end of the accumulator.

vii) ral, rotate left. This instruclion treats the acc and link as a closed (00p and shifts
ail bits in the toop to the left performing a circutar shift ieft.

viii) rtl. two piace rotate left.

itk

-32_

ix) lac. increment the accumuiator, the contents of the acc are increased by 1.

Xx) nop. nooperation is performed. the program control is simply transferreo to the
next instruction in sequence.

A particularly common combined instruction., which has acquired its own
mnemonic. is "cia®. "cia® combines complementing and incrementing and is the
instruction necessary to negate the number in the accumulator.

skips. (conditional jumps over a single instruction)

iy sma, Skip on Minus Accumuiator. The next instruction is skipped if the contents
of the accumulator, interpreted as a two’'s compiement number, is {ess inan zero.

i) spa. Skip on Positive Accumulator. The next instruction is skipped if the accumu-
lator is greater than or equal to zero.

iiiy sza, Skip on Zero Accumulator. The next instruction is skipped if the accumulator
IS zero.

ivy sna. Skip on Nonzero Accumulator. The next instruction is skippeo if the accumu-
lator 1s non-zero.

v) snl, Skip on Nonzero Link. The next instruction is skipped when tne link bitis a 1.
vi) sz, Skip on Zero Link, The next instruction is skipped when the link bitis a 0,

vii) skp. unconditional SKiP. The next instruction is skipped.

viii) hit, HaLT. The computer will stop at the compietion of the current instruction.

4.3. A more realistic example program.

Now that we have at least cursorily covered the general concept of assembly
fanguage programming. and have considered the instruction repertoire available, its
worth looking at a slightly larger program than the "add three numbers” exampie. All
that the program does is loop around. for some fixed number of limes. storing into
memory a number representing the current count of iterations. The program intro-
guces only one new concept and a further minor detail concerning the arrangement of
programs in memory. The new concept is that of pointers and "indirect addressing*“.

in this program, it's necessary to refer to successive elements of memory as one
iterates around a ioop. On the first iteration, one has to store 1 in, as it happens. laca—
tion 217; on the next iteration. a 2 must be stored in (ocation 220; then a 3 in 221 ano
so forth. Eventually, depending on the number of times the ioop must be executed.
reference may need to be made to locations 400, 401 etc. Consequently, we would
appear to require a "store” instruction in which the address gets changed. It is not
possibie to do this.

Instead, indirection is used. A variabie is used to record the address of that
memory location in which the next number generated is 10 be stored. After each
number is stored, the value in this variable can be incremented so that the new vaiue
refers to., or points to the next location to be used. Because it "points® to some
required memory location, such a variable is generally known as a "pointer variable*
or just a "pointer”.

The actual store instruction in the program i0op contains the address of this
pointer variable. Of course one doesn’‘t want the datum stored in the address speci—
fied. that would just cause the value of the pointer to be overwritten. Rather, one wants
t0 indicate that the vaiue of referenced pointer be used to determine where exactly the
gatum must be stored. Thus, the instruction has to read something like "deposit the
contents of the acc in that memory location whose address is currently stored in this

33

pointer variable® or, more concisely, “dca indirect pointer".

This implies that we have some means of indicating that the method of interpret-
ing the address part of an instruction be changed. On the PDP-8, one of the nine
-‘address bits in a memory reference instruction is used to designate the “mode” for
interpreting the address. There are thus two address modes; the setting of this control
bit (which is actually bit 3 of the instruction word) determines how the remaining
agdress bits are to be used. (f this bit is zero. we have "direct" addressing. The
adgdress given in the instruction is the address in which data is to be stored. or irom
which data is 1o be fetched or to which control is to be transferred. If bit 3 is a 1. then
"indirect” addressing is necessary. The address given in the instruction designates the '
memory iocation of a pointer variable. the required, effective address must be fetched
from that location before performing the store. add. jmp or other instruction. (More
sophisticated machines typically exhibit a targer number of addressing modes andg
must use more bits of an instruction word to designate an appropriate mode).

Note that indirection makes an instruction take longer to execute. One extra
memory cycie. and some other additional work, are entalled. in decoding the address
in an instruction like "dca indirect pointer”, the bits that identify the address of the vari~
able "pointer” have first to be abDstracted and interpreted so that the appropriate
memory location of “pointer® is identified. That first decoding step is. of course, stan-
dard to all memory reference instructions. However, if indirection is being usea, one
must then go on to read from memory the vaiue in this referenced location. So an
extra memaory access must be performed. it is the vaiue thus read out of memory that
represents the real effective address. This effective address must then be used in the
subsequent data fetch or data store operation.

The first couple of lines in the program, shown below, initialize a pointer variabie,
"ptr*, s0 that it contains the address where the first datum is to be stored. Then. a
~counter is initialized with (minus) the number of times the loop is to be traversed. The
body of the ioop in this program starts at label "loop” and ends with the “jmp (oop”
instruction.

The Source Text of the Program.

This is an example PDP-8 program written more or iess in
stangard DEC PDP-8 assembler style.

Basically. the program does the following

for i=1 to 13 do storeli+216}):=i. (where all numbers are
in octab).

what it actually does is.

1) set a pointer to point to where to store next item
2) set a counter to —13 octal (i.e. 7765
3) (ndx, its iteration index, is already zero so does not

/
/
/
/
/
/
/
/
/ iike most PDP-8 programs, it starts at address octai 200.
/
/
/
/
/
/
/ need to be initialized).

/ .

/ toop)
/ 4) pick up the value in ndx
/ 5) increment it
/ 6) store the incremented value back in memory
/ 7) pick up the new value of ngx again
/ 8) store it “indirect ptr®, i.e. ptr is assumed
/ to contain the address wherg we will store
/ the current contents of the accumulator.
/ 9) increment pointer so that it points to the
/ next memory iocation ready for next time
/ (note, this increment and skip won't cause
/ us to skip since pltr is never going to
/ get to point to location zero).
/ 10) increment counter, skip if the value of counter
/ becomes zero. Since we started off setting
/ counter to ~13(ocial) we should skip after
/ going round the i00p the right number of
/ times).
/ 11 if haven’t skipped this instruction, go back to "ioop*”
/ 12) hait
*20
count, 0
ptr, O
nax, O
*200
tad tab / initialize "ptr" from predetined value in “tab”
daca ptr
tad x / and “count” from value in "x"
dgca count
ioop, tad ndx / increment vaiue in ndx
iac
gca ngx
tag ndx / store it in next "array element”
dca i ptr
isz ptr / update ptr so it references next array element
isz count / increment 100p control & check for termination
jmp loop / if not yet terminated, go back
hit
x, 7765 -/ equivalent to —13 octai
tap, 0217 / constant specifying where array to start.
S

in the body of the loop. the vaiue of "ndx" is incremented and copy of the incre—
menteo value stored in the array. The "dca i ptr" is the store instruction that must in
effect reference successive elements of memory. The “i" between the opcode anad the
address is how the use of an "indirect” addressing mode is signailed to the assembier.
It a source statement specifying a memory reference instruction contains an “i",
between the instruction mnemoniC and address iabel, then smap generates an
instruction in which bit 3 is set to 1 (so flagging the indirect mode); usuaily. bit 3 of a
memory reference instruction is zero (so flagging direct addressing).

- 35 -

After the "dca i ptr® instruction, there are two “isz"s. The first simply increments
the pointer so that the next location is appropriately referenceqd prior 10 anotner itera—
tion of the loop. The second is the instruction that tests for the ena of the loop: when
the loop is has been completed sufficient times, the count (which started as a negative
vaiue) will reach zero causing the jump back instruction to be skipped. The program
terminates at the halt instruction.

The minor detail regarding program layout relates to where on page 0. the “glo—
bal variabtes” ptr, ndx and count get piacead. The first of these is at *20 rather than *0.
it happens that the first sixteen memory locations, addresses 0..17octal, on an PDP-8
typically have rather special uses and should not be employed simply to hoid globail
variabies.

When this program is processed by smap. the first output produced is a symbol
table. This is written to UNIX standard output, i.e. usually the terminai, at the end of
pass 1. it defines both the labeis used in the program being assembled and aiso the
stangard “reserved” words (which are mainly mnemonics for the operate and /O
instructions). A fragment of the symboi table produced for the exampie program s
shown below:

SMAP Pass 1. Symbol table listing:

Symbo! table:

Narrie Type Value Name Type value
adcrb ot 6601 adsf ot 6602

and mri . 0000 cia opr 7041

tab label 0216 tad mri 1000

tis ot 6046 tsf ot 6041

X label 0215

On completion of its second pass. smap writes a listing to “standard output® ang
an object file. Part of the listing follows. It is typical of listings proguced by assembiers
with various columns of information. The leftmost column identifies the address in
which data is to be stored. next follows the vaiue to be stored in that address. the thirg
-column, i.e. the rest of the line, shows the source text from which these data were
generated. Thus, for instance, the line reading “0202 1215 tad x* shows that
smap has arranged that memory iocation 0202 will contain the octal vaiue 1215 which
it has determined to be the appropriate binary pattern for an instruction to add the
contents of location 0215 to the acc.

- 36 —-

SMAP Pass 2 Assembly listing.

/ this is an exampie pdp-8 ..

/12 hait
%20
0020 0000 count, O
0021 0000 ptr, O
0022 0000 ndx, O

*200
0200 1216 tad tab
0201 3021 dca ptr
0202 1215 tad x
0203 3020 dca count
0204 1022 loop. tad ndx
0205 7001 iac
0206 3022 dca ndx
0207 1022 tad ndx
0210 3421 dcaiptr
0211 2021 isz ptr
0212 2020 isz count
0213 5204 jmp loop
0214 7402 hit

0215 7765 x, 7765
0216 0217 tab, 0217

(The effect of the indirection bit can be seen by comparing the code generated for
“dca count® (3020 in location 203) and “dca i ptr* (3421 in location 210). Bit 3 of the
instruction word corresponds to 0400 octal).

smap's other output is the object file. This can be seen to contain the essential
summary of the data shown in the first two columns of the listing. Not every aodress
need be specified because. given the starting point for a code segment. most
addresses are implicit. Aiso in this object file, following the code. is a copy of the sym-
bol table. This is purely for the convenience of the simuilator system. It aliows the
dranslated instruction> field. in the dispiay. to explicitly refer to the program’s original
{abels. Thus, the display, at the point where instruction "1215" (at 0203) was being
executed, would read “tad x* rather than just "tag 215",

The Object File

37

*0020

0000

0000

0000

*0200

1216

3021

1215

3020

1022

7001

3022

1022

3421

2021

2020

5204

7402

7765

0217

$

45

adcrdb 36601
adsf 36602
and 1 0000

tis 3 6046

tsf 3 6041

X 00215 -
$

This example program can be executed on the basic simulator. Since it invoives
a few iterations around a multi-instruction 1oop, it takes some time to run with the very
gdetailed dispiay.

The display of program execution is of course transient and proviges no per-—
manent record of the program’s correct running. The program aoes change the
memory of the simulated PDP-8; the changes effected can show whether or not the
program ran successfully. The simulator contains a provision for the contents of
memory to be printed off both prior to, and subsequent to, execution of a program.

The printout of memory thus obtained is an instance of a program "dump”. it
shows addresses and contents of those memory locations that are non-zero. The
“dump produced by the simulator shows simply the memory contents in octal. Quite
commonty, computer systems provide a much more detailed "dump” showing eacn
memory location in several different printing formats e.g. hex. instructions, characters.

The example shown below demonstrates that the program did indeed modify
memory by writing in integers 1..13 octal starting at memory (ocation 217.

- 38 -

The Program “dump”.

Printout of contents of memaory prior to program execution.

Address Contents

0200 : 1216 3021 1215 3020 1022 7001 3022 1022
0270 . 3421 20271 2020 5204 7402 7765 0217 0000

Printout of contents of registers and memory subsequent to
program execution.

acc:0000 pc :0215 link 0

Address Contents
G020 : 0000 0232 0013 0000 0000 0000 0000 0000

0200 : 1216 3021 1215 3020 1022 7001 3022 1022
0210 : 3421 2021 2020 5204 7402 7765 0217 0001
0220 : 0002 0003 0004 0005 0006 0007 0010 0011
0230 : 0012 0013 0000 0000 0000 00GOG 0QGGO 0000

-39_

5. The PDP-8's addressing mechanism and subroutine calls.

5.1. Addressing.

in 1965, haraware was relatively expensive sO the designers of the PDP-8
skimped on what they proviged. The result is a relatively clumsy way of accessing
memory. The foliowing description of the addressing mechanism is taken, with minor
adaptations, trom DEC’s documeniation.

Only nine bits are available to speacify & loci.tion in a memory reterencing instruc-
uon. However, a fuli 12 bits are needed to uniquely addgress the 4096 locatons that are
containgd in the POP-8’'s memory unit.

To make the best use of the avaiiable nine bits. the PDP-8 utilizes a logicatl divi-
si0n of memory in blocks (pages) of 200~octal (128 decimal) locations each as shown
in tollowing tabie (ali values in octal):

Page Memory Page Memory
locations locations

0 0-177 20 4000-4177

1 200-377 21 4200-4377

2 400-577 22 4400—4577

3 600-777 23 46004777

17 3600-3777 37 7600~-7777

Since there are 200-octal locations on a page and since seven bits can represent
200-octal different numbers. seven bits (5 through 11) are used to specify the relative
focauon within the page.

The page is specified by bit 4, called the current page or page 2erc bit. If bit 4 s
0. then the reference is interpreted as beng to a location on page zero. 1.e. one ol the
first 200 iocations in memory. if bit 4 is a 1, the page aadress is interpreted 10 be on
the current page. i.e. the page containing the instruction currently being executed. For
example, if bits § through 11 represent 123-¢octal and bit 4 1s a zero. the location
reterenced is absolute address 123. However, if bit 4 1s a one ang the current instruc-
ton is in a core memory location whose absolute aggress s between 4600 ana
47770ctat then the current page agdress 123 designates the absolute address 4723.

0o,/ % 32 4 5—‘.‘-‘#7 4:—3:94104:I/

X

-y e b 4 re e e vy
) s v v A \d - v v

| 9pcooe { A

’

location in page |

* Current page or page zero bit.

0 = page zero
I = current page

40

Indirect addressing.

The scheme aescribed above aliowed addressing of 400-octal locations by any
instruction ——— 200 page zero locations and 200 current page locauons. HOw are the
remaining 7400 locations to be accessed?

Bit 3 of a memory addressing instruction igentifies the addressing mode. When
bit 3 1s a zero. the operand is a direCt address. When bit 3 1s a one. the gperand i1s an
ingirect address. An indirect address (pointer aagdress) identifies the iocation that coi—
tains e desired agaress (effective address). To addruss a location that is not girectiy
addressable, the absotute address of the desired location is stored in one of the 400
directly agdressabie locations. this pointer address 1s the used in the memory refer—
ence instruction but with bit 3 set to 1. When executing, the machine will ietcn the con-—
tents of the specified pointer agaress and then use this to specify the etfective aadress
in a subsequent fetch cycie to get the required datum.

0 + 2.3 4 5 &7 8 9 40 4
@I x|

| opcoae - Page adoress !

[} ' .

) * Current page or page zero b

@ DirecVindirect agdressing bil

0 direct adaressing. reterenced memaory
iocation contains required datum.

1 indirect addressing. reterenced memory
iocation contains the address ot
the required gdatum,

—4]_

5.2. Subroutine calls.

An effective subroutine call mechanism has 10 resoive two probiems. First, as
noteg eariier, one needs to maintain some record of where a subroutine was invoked,
so that when the subroutine has been completed one can return and resume the main
program. Second. one requires some mechanism for passing arguments to a subrou-
tine and retrieving results back when it is compiete.

5.2.1. Subroutine linkage on the PDP-8.

The method by which connection is established between a cailing routine and a
called subroutine is referred t0 as a subroutine linkage mechanism. A linkage
mechanism must provide some means for preserving the address of the instruction to
which return must be made. Suppose for instance that we have a subroutine call *jms
sub1”® at location 0204. This instruction will be fetched. the pc incremented, to 0205,
ang the instruction decoding process carried out. The address 0205 now in the pro-
gram counter represents the point to which return must be made. This vaiue must be
saved somewhere before the program counter is changed to point to the first instruc~
hon of the subroutine.

The probiem is, of course, where to save the return address. On machines with
lots of registers one can use a register. provided that the subroutine knows which
register has thus been reserved to hoid its return address. then all is well. The PDP-8
doesn’t have any registers to spare and so it can’t adopt the “linkage register"

approach. A more satisfactory approach, using “stack” data structures in the main
" memory of the computer, will be considered in the lectures. Unfortunately, the
addressing mechanisms on the PDP-8 really preciude the stack oriented approacn
(besides, very few peopie had thought of such sophisticated tricks back in 1965 when
the PDP-8 was designed).

it's necessary on the PDP-8 to use main memory to store the return address. The
memory location used must somehow be known to both subroutine and calling pro—
gram. The only obvious place is the first location of the subroutine. This is of course
the address referenced in the JuMp to Subroutine instruction and so it's known to the
cailing program. A subroutine can be expected to know its own starting address. So.
on the PDP-8, the first location of a subroutine doesn‘t in fact contain an executabie
instruction. instead its a place for storing the return address.

When a jms instruction is executed the effective address must first be evaluateg
(it may be a direct address or entail indirection). This effective address, held tem-—
porarily in the mar register, identifies the start of the subroutine. The current value in
the program counter, already incremented and thus pointing to the location foliowing
the jms instruction, is written into the memory address specified by the contents of the
mar register. The contents of the mar register are then incremented by 1 and this
value ioaded into the pc. The next instruction fetch wili consequentiy retrieve the first
instruction of the subroutine.

The state of the machine at the point where the jms instruction has been fetched,
decoded but not executed would be something like:

42 -

0204 4240 jms sub1l pc §0205] mar |0240‘

 iza]

0240 O subl. 0
0241 1020 _ tad count

0257 5640 imp i subl

After execution of this jms instruction one would have:

0204 4240 jms subl pc j0241] mar Jo240]

0240 0205 subl, (original "0" now overwritten by return agdress)
0241 1020 tad count

0257 5640 jmp 1 sud1

with the next instruction fetch from jocation 241, i.e. the first instruction of the sudrou-
tine, ana with the return adaress stored at 0240.

Eventually the subroutine will need 1o return 1.e. it needs to reset the pc to the
value 0205 stored at subl. This return simply requires and “indirect” jump. The execu-
uon ot the “/mp 1 subt* instruction at 0257 entails the following sequence of actions In
aadress aecoding. fFirst, the bit 4 is isolated, as its a 1 this igdentities the adaress hes
on the current page. then bits 5..11 are abstracted and interpreteg as igenbfying the
40th iocaton on the current page. i1.e. 0240. Then, because bit 3 ts set an indirect
cycie is performed. the contents, 0205, of the referenceg memory iocaton, D240, are
retrieved Into the mar. Finally, the jmp instruction is executeq, +.e. contents of mar
copied 10 pc. and thus the return has been maage.

It was noted earlier that. usuaily, the main program is on page 1 (locauons
200..377) and that subroutings were on other pages (the basiC simulator has onty
pages 0..3. the agvanced version has pages 0..17). So typically. one would be trying to
call a subroutine on another page. Note that the following COd@ is 8rroneqQus:

-.43_

*200
jms subl
jms sub2

400
subl, O

its not possible to directly reference location 0400 in an instruction at 6200; such a
reference is to a different page. One can only directly reference a current page or
page zero location. Such a subroutine call must be coded using an indirection via a
pointer variable. viz:

*200
jms i psubl
jms i psub2

psubl. subl

psub2, sub2
*400
subl, O

The smap assembier should detect and complain about any erroneous cross—page
references.

5.2.2. Passing parameters on the PDP-8.

Normally, on any machine, if only a few arguments need be passed (0 a subrou-—
tine then they are passed in registers. Similarly, results are returneg in registers. Of
course. on the PDP-8. we only have the acc. Consequently. we can only pass one
argument into a subroutine via a register and can retrieve only one resuit back. A sin—
gie argument and result wilt be quite sufficient for any exampie programs that wiil be
written for the simulator.

If there are insufficient registers t0 pass all necessary arguments then one typi—
cally passes to the subroutine the address of some "array” in memory in which addi-
tional required arguments are tabulated. This approach will be covered in iectures on
*stack~oriented” systems fOr subroutine linkage and parameter passing.

- 44 -

6. Debugging Assembly Language Programs and the Advanced Simulaior.

6.1. The Problem of Errors in Assembly Language Programs.

One soon learns that a successfui, error free compllation or assembly represents
but a small step towards a working program. On attempted execution the program may
run, but proouce wrong resuits, may (cop performing forever some mysterious and
futile computation or may simply “die” obscurely. '

Almost any given aigorithm takes far more statem.nts tc express in an assembply
language than in some high levei language such as PASCAL. Even if programmers’
error rates. in errars per hundred statements, were constant, assembly language pro-
grams would inevitably contain more errors because of their greater length. Typicalty.
programmers find greater opportunity for error in assembly language and their error
rate in fact rises, thus compounding the problem.

Errors in assembly language programs tend to be more gamaging than those
committed in some high level language. Consider for exampie the sort of error where a
loop termination condition is inappropriately expressed resulting in reference to some
array element beyond the true array dimension. A PASCAL compiler typically inserts
code to verify each computed array subscript. At run—time, such code wiil trap an
aerroneous reference and terminate the PASCAL program with an error message ingdi—
cating the general nature of the error and its approximate {ocation (in terms of a line
in the PASCAL source program). Not so with an assembly program. One might con-
ceptuaily have had an array, equivatient to PASCAL’s “var #ft : arrayl0.. 1271 of integer”.
stored in memory locations 500..677 octal. A run—time reference to the —-3rd element of
this array would simply be a request for the contents of store iocation 0475. Such a
request is perfectly valid and the contents of that (ocation will be retrieved ana used in
the computation. Now address 0475 presumably contains either some other data ele—
ment used in the program or, possibly, an instruction. An instruction. when interpreted
as data, is of course just another number (save that it has a perverse tendency to
represent the greatest or ieast element of the array., or whatever eise was soughv.
Whatever it was that was in the referenced location gets used. Consequently, the pro-
gram will, probably. run to compietion but may yieid erroneous resuits (depending of
course on the particular values in the test gata employed).

Even more mysterious behaviours are manifest if, with the same sort of error, one
tried 10 write to the ~3rd element of the array. In so doing, one would overwrite the ori-
ginal and correct contents of memory focation 0475. The processing of the array might
well be completed satisfactorily, so enhancing the programmer’s confidence in that
processing routine and diverting the search for the error from its true location. Such
an error of overwriting will only be apparent if. at some later stage of the computation.
the original instruction or datum is again required. If the overwritten focation was used
to hold an element of program data then the new vaiue, erroneously written into the
iocaton, will cause unexpected. and inexplicable results to be obtained elsewhere.
Most bit patterns representing numbers can also be interpreted as instructions. Con—
sequently, if the overwritten location was supposed to contain an instruction then there
will be an attempt to interpret the new erroneous value as an instruction. The attempt
may be successful and some instruction, aibeit not the intended one, will get executeaq.

The most common type of assembly language error. apart from the king of
erroneous data addressing just discussed, probably reiates to arbitrary transfers of
control. Jmp, jms and skp instructions all admit any degree of misuse. In PASCAL pro-
grams are forced to be well structured. it is, for example, impossible to jump into the
middie of a "for-ioop” and thus end up checking against loop limits that have never
been initialized. Such uncontrolled transfers are triviaily realized at assembly language
level. Although all programmers intend 0 write clear weil structured assembly pro-
grams from algorithms expressed in some pseudo—-PASCAL. the liberty alloweg at the

- 45 -

assembly language level frequently subverts these intentions. Programs with compiex
control flows are created which, after a coupie of rounds of modification become com-
pletely incomprehensibie and in which alit transters invoiving any address computation
become unreliable.

One particular cause of errors, relative jumps defined in the program source text,
is eliminated with the smap assembler. Quite often, one wants to code an instruction
that will effect a jump around say the foliowing five instructions (as for instance when
encoding the faise branch of an “if” statement). One may not feel inclined to invent an
additionat iabel on the instruction to be jumped tc' rather one simply wants to say
“jump over five instructions®. Many assemblers do provide a notation, e.g. "jmp .+6°,
which achieves the desired effect. Unfortunately. the subsequent addition of a coupte
of extra instructions to the “true” portion of the conditional may then have overlookeg
side effects. (The lack of such relative addressing in smap is due soleiy to the lazi—
ness oOf the implementor and not to any overt intent to prevent such self-inflicteg
errors).

Other common, but trivial errors. include specifying the wrong address mode (so
perhaps resulting in the use of the address of a variable rather than its vaiuel, or
specifying the wrong instruction. in their norma!l heipful manner, designers of assem-
biers contrive to provide pitfalls such as instructions with very simitar mnemorucs. it s
difficuit, especially when working with a listing produced on a low quality printer, to
notice that one has written !b where th was intended. The program that {oads one
byte. when two were desired, runs but does not achieve .its intended purpose. Not
surprisingly, paranoid delusions concerning malevolent machines are engemic
amongst those first learning assembly language.

The normal response t0 mysterious bugs in a PASCAL program is to throw in a
whole series of "write” statements. These extra "tracing” statements allow one 10 print
off tables containing the values of all important control variabies. or 10 print appropri-
ate messages at procedure invocation, loop termination etc. With a few well chosen
trace statements, a programmer can usually rapidly localize the erroneous portion of
coge.

This technique is tess readily appiied to assembiy tanguage programs. A one line
PASCAL trace statement. e.g. “writein(‘entered sort routine, n = °,n:8);", may weli
require a score, or more, of assembly language instructions. A “few well chosen trace
statements” may consequently represent more lines of code than the original errone—
ous program. Even if one had the tenacity to insert the additional tracing code (and
sheer luck sufficient to perform the insertion without introducing additional errors) one
has a further problem. The new code will have resulted in significant changes to the
detailed construction of the program. The address containing the instruction overwrit-
ten in the original buggy program. or address to which erroneous transfer was made,
now maost probably contains something different. One stili has a bug to chase. but its a
different bug from that in the original program and may express itself in some com-
pletely different fashion. :

The response of despair is t0 use a “program dump®. Earlier we examined the
‘dump” produced from the basic simulator. it showed the originai memory contents
and the contents on completion of the program. If the program contains errors one
can get a dump made at the point at which it died. or was aborted if it was stuck in
some i00op. This dump represents the state of memory at some unknown time after the
commission of an error. One may examine the contents of memory as presented in
this aump. One searches for evidence of deviations from the required behaviour of the
program, such as memory locations that contain unexpected and inappropriate data.
From such evidence one may be able to identify the source of the disruptions. Debug-
ging from program dumps requires considerable patience, care ang an appropriate
mental attitude. It is a task apparently well suited to acoiytes of the Church of Latter

~ 46 -

Day Saints.

6.2. Interactive Debugging.

The best approach to debugging assembly language programs (and high ievet
language programs for that matter) is t0 work interactively, at a terminal. controlling.
tre execution of the program. Single—siepping ot a program is a powerful technique.
One does not work one—cycie at a time (as in the basic simulator), instead one exe-—

“cutes one statement (i.e. one instruction in assembler) at a time anad views the
changes effected before proceeding.

The probiem with single—stepping is that its only viable when one has brought

- execution of the program very close to the point where the error 1s actually committed.

Suppose for exampie that one had a binary search routine in which the error related to

the test for the two array pointers passing one another. Even in the simplest contrived

test case, it might require several hundred, or several thousand. instructions to be

executed before the erroneous code was reached. It is impractical 1o single step
through several hundred instructions in order to reach the region of an error.

A more flexible system is required wherein one can run the program normailly up
to some point chosen to lie just before the suspect code. Such a point, whereat execu—
tion is 10 be temporarily suspended, is referred tc as a "breakpoint”. On reaching a
breakpoint, control should be transferred t0 some interactive routine that will let the
user inspect the values of chosen variabies, set subsequent breakpoints, and, if
necessary, 0 invoke singie-stepping of the next few instructions. When the user is
satisfied. execution of the suspended program shouid be resumed.

It is easy t0 implement such a system on a simuiator. One simply provides an
extra array of boolean variables of the same size as the array representing memory.
Instructions at which there are to be breakpoints are flagged by setling e
corresponding boolean to true. The simulator program can check in this boolean array
to see if a breakpoint is needed prior to the next instruction fetch. If a breakpoint has
been reached, the simuiator can call a "break® handling routine that provides the user
with various options for inspecting memory and cpu registers. When the user indicates
that the program is to continue, the break routine is exited and simulator resumes with
the next instruction fetch. it is possibig, but considerably more difficuit to implement a
similar interactive debugging function for a real computer.

The “advanced simuiator” contains some break (debugging) functions loosely
modelled on standards such as DEC’'s DDT and UNIX’s adb. As well as allowing for
control over the execution of the program. the break functions enable the user to
define the required detail in the display of the simulated computer. Control is passed
10 these break functions prior to attempted execution of the user’s program. this aliows
the initial setting of display options and, if necessary, initial breakpoints. The simuia-
tor attempts to trap all errors. such as errongous memaory reterences. and pass con-
trol to the break functions.

6.2.1. The “break’ functions.

The break functions announce themseives by ciearing the screen. printing the
current value of the program counter (Break address : xxxx) and then promptng the
user with the prompt “break”. The user may then enter a variety of commanas.

1) +/- commands. These turn on (+) or turn off (-) various run—time displays. These
display options are considered in the next section.

2) . commands. These commands enable the user to set. or to remove breakpoints,
resume execution of the suspended program, abandon execution entirely ang to
obtain various other information. :

- 47 ~

3) Memory dispiay commands. These allow the contents of specified locations in the
memory to be displayed in various chosen farmats. One can for example view a
particutar range of locations on the assumption that these focations shouid con-
tain instructions; comparison of the instructions displayed with those in the orngi—
nal program listing will reveal any that have been gverwritten with program gata.
The basic format for these commands is “<address>[.<repeai-factorr}/<ormabv “;
that is, an address (either an octal constant or the name of one of the program
{abelis) optionally followed by a repeat-facior (given as a comma foliowed Dy an
octal number), a “slash” character and then a one character format specificatiun.

Each command entered by the user is processed immediately. on compietion of a
command. the break function again prints the "break>" prompt. This cycie only ter—
minates when the user enters “:c* (for "continue® i.e. resume/start execution of user
program) or ".q" (for "quit® i.e. abandon it aib.

The full set of ":* commands comprises:

b
:d

:q
K3
S
u

set breakpoint.

continue execution of PDP-8 program.

‘dump” registers and memory to terminal screen.
terminate PDP-8 program.

“dump” registers to terminal screen.

list user defined symbois (labeis).

undo, i.e. remove. a breakpoint

For the :b and :u commands (set angd remove breakpoint), the break function responds
with “Address for breakpoint . An address must be either an octal constant or one of
the program labels. Breakpoints can only meaningfully be set at locations containing
instructions that are fetched. Breakpoints set on data elements, or on the first worg of
subroutines. are inetfective for no instruction fetch is performed on such focatons.

The :r command simply prints the current contents of the acc. link ana pc regis—
ters. These vaiues are also printed for the :d command. which then proceeds with a
memory dump similar to those previously illustrated and discussed. The :s command is
simply a convenient way of getting a summary of some of the data available in the
symboi table listing.

The formats in which memory words can be displayed are:

¢ one ASCIi character/word.

a word value in signed decimal.

i word interpreted as an instruction.

0 word value in octal.

p two 6-bit characters packed in a word.

Some example memory display commands might be (user input shown in bold type):

breai>

toop. 10/i

loop 0204/ tad ndx 0205/ iac
0206 / dca ndx 0207 / tad ndx
0210/ dcaiptr 0211/ isz ptr
0212/ isz count 0213/ jmp loop

(Here the user requested that the contents of 10 (10 octal, i.e. 8 decimal) memory
locations, starting at the address of the labeil called lcop. be displayed as if they
represented instructions).

48

break>

204.4/0

loop 0204/ 1022 0205 7/ 7001
0206 / 3022 0207 / 1022

(Here. the request was for the contents of four memory iocations to be dispiayed in
octab. -

breaic
215/d
X 02157 -11

(This was an example of print out as a signed decimal number).

6.2.2. The displays in the advanced simulator.

The aisplay options are set using the *+" and "-* commands in response to the
*break> ® prompt. The commands are:

* list current dispiay settings.

c set/reset CPU dispiay.

d set/reset memory display for “data“.

i sevraset memory display for "instructions”.
| selreset logging of registers on interrupts.
p setreset display for status of peripherais.
.8 sel/reset single step mode.

t set/resetinstruction transiation display.

The initial, default, settings for the various options can be obtained by "+*".

break>

4R

Current display settings:

C.P.U. : true

“Data” Memory Window . true
"Instructions” Memory Window ! true
Status of Peripherais shown true
Single step mode : false
Translation of instructions true

Some exampie commands are:

-d

(This command would turn off the "Data” Memory Window during any subsequent
display of program execution).

+s

(This command wouid cause subsequent program execution to be in single step made.

i.e. the simulator would pause between each complete instruction untii a user
response is received).

Even at their most eiaborate, the displays in the advanced simulator are less
complete than those of the basic simulator. The C.P.U. display takes the following form:

C.P.U.

ace Pr=x=liink 1) pe E—'ﬂ

-7
Time: **x*x 10 seconds

Only the acc, link and pc registers are displayed. There 1s a new component. replacing
mar mdr and text fields. this i1s a crugde time estimate. The estimate 1s based On a one
micro~second memaory cycle time and various somewhat arbitrary measures ot other
components in instruction times. (Rather than use fractional micro—-second umes, tne
umits are 10°-7 seconds). if the CPU display is on, then the register displays are
upgated each time the corresponding reg:ster is changed. the time is upgateo at tne
ena of each instruction. If the instruction transiaton option 13 set then., when an
instruction has been compietely decoded its "disassembpled” form is gisplayed t
appears to the right of the point where the pc register would be Qisptayed. irrespective
of whether or not the CPU display option is enabied).

There are w0 separate windows into memory. One shows the region last
accesseo on an instruction fetch, the other the region for the last data fetch or write
operation. These display components are separately seiectable. ingdiviguaily they are
like the singie display of the basic stimulator. The memory displays. if selected. appear
on that region of the terminal screen below where the CPU gispiay would go. An exam-—
ple with both memory windows selected 1s.

MEMORY
instructions Data
Address Contents Address Contents
0176 0000 0214 7402
0177 0000 0215 7765
0200 1216 0216 0217
0201 3021 0237 0000
0202 1215 0220 0000

The peripherais display, which occupies the bottom porton of the screen, will
contain messages identifying any peripherals which currently have “flags” set, (ana
what gata is in any reiated input buffers). The status of the interrupt ine is aiso
reporteq.

Maintaining an elaborate display consigerably siows gown the simulauon. in nor-
mal use, the disptay may be limited to just the translated instruction while the program
1S executing code that seems correct. More elaborate options can be selecteg when

the program has been run up 10 a oreakpoint just precedmg some, as yet untaentitieg.
error. ’

6.2.3. A worked example of the use of the break package.

Systems like interactive debugging functions really require live gemonstration on
a program containing genuine pugs. Contrived exampies rarely suffice, for the bugs
are known anag easy to discover. This exampie i1s only partially worked out; it s
intended to suggest some uses for the debug funclions.

The program is a slightly modified variant of that presented earlier when discuss—
ing indirection. The intended change was simpiy that the numbers 1..13 octal de
storeg on page 0. in locauons 150..162, rather than in locations following the coge.

-f50—

Another change, introducing the bug. has also been made.

If the program is executed as is, it will loop seemingly endiessly. it wiil aiso be
seen to be executing "and" instructions, although there are none of these In the text,

/ a puggy version of the standard example program for
/ storing some data.
*20
count, 0
ptr. O
nox, O
*200
_tad tab
aca ptr
tag x-
dca count
foop. tad nax
1ac
gca nax
tad nax
gcaiptr
isz count
isz ptr
jmp 1oop
hit
X, 7765
tab, 01560
$

Following such an unsuccessful attempt at execution, the program was rerun with
a breakpoint at “loop”. The recording shows the initial settings of the controis. onty the
instruction transiation display was desired so the others were turneag off.

BREAKPOINT

Break address : 0200
breai>

-C

break

-0

breat

=i

breaio

-p

break

b

Address for breakpoint
toop .

break>

:C

Eacn time the program completed a cycle it stopped at label 100p. it would then have
been possible to inspect the values in "count®, "ndx" and “ptr®, or in any other memory
locations. instead, the program was just "continued”, i.e. \C response 10 breaw. This
process was repeated until it was noticed. through the transiated instruction dispiay,

-~ 51 -

that mysterious “and” instructions were being executed. Then. at the next breakpoint.
varicus displays of memory were requested.

Break agdress : loop
break
:C

("ang” instructions observed in translated instruction display)
Break agdress @ loop

break

N

acc : 0000 pc : 0204 iink O

Address Contents
0020 . 0025 0207 0000 0000 00G0 0000 0000 00600

0150 : 0001 0002 0003 0004 0005 0006 0007 GO10
0160 : 0011 0012 0014 0015 0016 0017 002G 0021
0170 : 0022 0023 0024 0025 0026 0027 0030 0031
0200 . 0032 0033 0034 0035 0036 0001 0000 1022
0210 : 3421 2020 2021 5204 7402 7765 0150 0000

break

200.20/i
0200/ ana 0032 0201/ ang 0033
0202 / and 0034 0203/ ang 0035

ioop 0204 / and 0036 0205/ ana 0001
0206 7 anag_ 0000 0207 / tad nox
0210/ dcai ptr 0211/ 18z count
0212/ 15z ptr 0213/ ymp 100p
0214 / hit

0215/ opr 204

b 0216/ and 0150— :
0 0217/ and 0000

breaic

-q

Program finished.

Do you want final contents of memory and registers "dumped” to a fite?(Y or N)n

These displays showed that some anomaly had occurred at the point where the itera—
tive cycie should have terminated. The value 13 shouid have been the last value
stored in memory. at location 162. after storing this value, the program shouid have
halted. instead, this value is missing and the program has continued its cycte storing
values from 14...36 in successive memory iocations. it has then again changed ang
stored 1 and 0 in locations 205 ang 206. Because it did not stop as expected. it has
overwritten parnt of the program with the last few vaiues generated. These values. e.g.
0036, when interpreted as instructions are perceived as “and” instructions, 0036 = ang
036.

The example was again rerun. This final time, when the l0oop was near to termi—
nation, count = -2, the displays of instructions ang data fetches/writes were re—
enapled. The last few instructions preceding the expected l0op terminaton were

- 52 -

executed in single step mode. Through these methods, the source of tne error was
identified.

7. Talking to peripheral devices.

So tar, our exampie programs have been contrived to0 De whoiely self contained.
All gata that they have required were adefined internaily. The only “resuits” generateg
are the displays of successful execution (possibly evidenced by the final “gump”).
More typically, programs are intended 10 process data gefineg at run—-time and need to
be able 1o pertform both input and output.

The most common requirement is that a program be able to read a sequence of
characters typed in on a keyboard and to write some appropniately transformeag ¢char—
acter seguence to a teletype (i.e. printing terminal) or a video screen. The aavancea
stmulator incorporates a “teletype” and "keyboard” which can be operated through the
stangarg 1/0 instructions of the PDP-8.

When a key is struck on a keyboard. electronic or electromechanicai gevices
cause a sequence of voitage pulses to be transmitted over connecting wirés to a key—
board control unit. The particuiar sequence of voltage puises encoges the required
character in some agreed manner. The controlier contains an eight-bit "buffer” regis—
ter 1n which it builds up the charactar as it receives the successive voltage pulses.
Similarly, a teletype controller contains a buffer register in which it stores the coae for
the character to be printed or displayed on the terminal. The circuitry 1n the teletype
controlier reads the successive bits out of this buffer register ang uses them (o gen-
erate voitage puises for controlling the electronic or electromechanical gispiay aevice.

These “buffer® registers in the device controllers are aiso indirectly accessidie to
the cpu. The cpu can send, via the bus, a signal 1o, say. the keyboarad controller asking
it for tne current contents of the keyboard buffer register. This datum wouid De
returned. via the bus and mdr register, to the acc where it could be analyzed by the
program. Similarly, the cpu can send a signal to the teletype controller teiling it to
copy 8-pits from the acc (sent via mdr and bus) into the teletype (tty) buffer register.
and then 10 use these data 10 generate appropriate signals as will cause the
corresponding character to be printed.

¢ 1 2 3> 4 5 6 7 & 9 10 un

' |

aevice igentfication

11 I 0] l function
OP-CODE

6)

10t

On the PDOP-8, such requests to device controllers are effected through rot
Ginput-output) instructions. The opcode for this instruction is, as always. in bits 0—1-2:
for 10t's, the opcode i1s 6. The remaining nine bits of the instruction word igentify the
gevice controiier., to which a command is 10 De sent. and the signal igentitying the
function that the controller is required to perform. Six bits are used to igentify the gev-
1ce, the last three bits encode the function.

For example, device igentifier 04 happens t0 designate the teletype controiter. A
commandg sent to this tty controller specifying function 4 will cause that controller to
take a copy of the low order 8-bits from the acc (via mdr and bus) and transmit these
to the connéected téerminal device. The full instruction word would thus be "6044". There
18 @ mnemonic for this instruction, tpc (Teletype Print Character),

Messages couid thus apparently be printed on a teletype by means of the

54

fotlowing code:

/ initialize a pointer to the address of the start of a message.
/ message to consist of ingividuai ASCll characters
/ one per word and terminated by a zero word.

tad amsg
dca ptr
/ ioop.
/ cycle around untii the zero word marking end of message
/ is found; transmit each character to tty.
joop., tad i ptr
sna

jmp done / found end marker, leave this section
/ have character, transmit to tty.

tpc
/ increment ptr so that it points to next word. then go
/ back to continue lcop

isz ptr

jmp loop
amsg. msg
msg. 110 /H

145 /E

0 / end marker

Though reasonably logical, such code would not in fact work correctly. The most likely
resuit of executing the code segment wouid be for the teletype t0 try to proguce a
‘rubout” character.

The cpu, the bus, the controllers all run in microsecond ttme quanta. The cpu
sends data to the tty controlier ——— and they‘re there. in the teletype butfer register. in
a coupte of microseconds. Then its up to the controllier to forward these data pits to
the device.

Electromechanical devices proceed at a slower pace. A printing terminai may
take one tenth of one second to print a character; even a video terminal takes of oraer
one one—hundredth of a second. The physical nature of the devices limits the speed at
which they can accept data: the controller must limit its transmission rate to what the
gevice is capable of handling. Consequently, a teletype controiier wili probably have to
hold. in its buffer register, its copy of the bits representing a character for something
like one tenth of a second. If. as in the exampie program, the cpuy attempts to send a
second character, only a few microseconds after the first, then these new gata bits are
*or"-ed in with those representing the previous character. The entire character
sequence representing the message will be loaded into the teletype buffer register
before the controller would have completed sending of the first one bit of the first of
these characters.

I i70 is t0 proceed correctly, the cpu must wait untii a device controlier has com-
pieted one task before it gives it another. its simple for the circuits in the gevice con-
troller to register completion of a task; in the example of the teletype controiier the task
would be complete when the last bit of the current character had been successfuliy
transmitted. At that point, the controlier could set a one-Dbit boolean variablie, or flag.
to ingicate that it was ready t0 process more data. S0, as well as a buffer register to
hoid data being transmitted or received. a typical controlier will incorporate a "flag*

55

register.

Bﬂag

J B R R Devics

—) OIOOIOOOI

buffer

bus

Ccontrolier

Like the buffer register, a controlier’s flag register can aiso be accessed by the cpu.
What one normally wants to do s make a conditional jump, or skip. if the flag 1s set so
ingicating that the gevice 1s ready. A typical I/0 instructon testing a flag 1s "6041" tst
(Teletype Skip Flag). if the tty controlier’s flag is set then execution of the tsf instruc-
tion causes the pc 10 be incrementad by one S0 that the next instruction in sequence
18 skipped.

Through the use of such instructions one can create |00ps that wait unhi a gevice
I8 reaay:.

twait, tst
imp twait

The program will 100p around this pair of instructions untii the teletype controiier sets
its flag indicating that it can accept another character.

We now have aimost the complete mechamism for a viable "senag message” rou-
tine.

/ 100p.

/ cycie around untit the zero wore marking end of message
/ t8 founa. transmit each character o tty.

loop. tadiptr

sna
|mp done / found eng marker, ieave this secuan
/ have character, transmit to tty.
tpc
/ wait until it got therel
twait, isf
fmp twait
/ increment ptr so that it points to next word, then go
/ back to continue 100p '
isz ptr
jmp oop

This program sends the first character of the message and waits appropriately unti
that character has been successfully transmitted. The program then i00ps Dack, Col-
lects the next character ang sends it. However. the “ready® tlag on the tetetype con—
trolier 18 sull set as a consequence of the successful transmission ot the first

56

character. so, the wait loop is immediately satisfied and the program proceeds at once
to sending 3rd, 4th and subsequent characters. it is necessary o clear the flag at
some appropriate point in the loop (extra redundant clear flag operations are not in
any way harmful). There is another iot instruction, 6042 tcf (Teletype Clear Flag). which
performs the ciear operation (on the simulator it aiso clears the data buffer).

A correct version of the program is:

loop. tadi ptr
sna
jmp done / found end marker, leave this section
/ have character, transmit to ty.
/ but first ciear ready flag if set
tcf
tpc
/ wait until it got there!
twait, tsf
jmp twait
/ increment ptr 30 that it points to next word, then go
/ back to continue loop
isz ptr
jmp loop

The two instructions 6042 (tch and 6044 (tpc) can, and normally wouid be combined
into a single 6046 (t/s) instruction.

Reading data from a keyboard requires a similar loop. One must wait testing the
flag on the keyboard controller untii it gets set to indicate that its ready to give new
data to the cpu. The two instructions most needed to control the keyboard are ksf
(Keyboard Skip Flag) and krb (Keyboard Read Buffer). the krb instruction ciears the
flag ready for next ime. Thus, an appropriate wait loop for getting data from a key-
board might be:

kwait, ksf
jmp kwait
krb

The real computer terminal is of course used to control the simulator. it was con-
sidered that any arrangement whereby it was also used as the terminai on the simu-
lated PDP-8 would prove too complex (one would need to indicate whether the next
character typed was intended to control the simulator or constituted data to be read py
the PDP-8). Instead. the simulated PDP-8 has a pseudo-keyboard and pseudo-
telotype that are, in fact, standard UNIX files. Data are read from andg printed to these
files, one character at a time, using standard PDP-8 iot instructions. (Currently, the
files must appear in the user’s working directory with fixed names: the input file being
*.8.kbd.1%).

The following is an exampie program for the simulator that uses these input ang
output mechanisms. (it copies characters from the pseudo—keyboard to the pseudo-

teletype. the program terminates after copying the first zero. ‘0’, character found in the
input file.

57

/ Copy characters from keyboard to teletype.
/ Stop after first zero character.

*200
cla
ioop. ksf - / wait for keyed input
jmp foop
krp / read it
tis / printit
wait, tsf / wait for printing
imp wait
cia / check if it was the character zero.
tad const / i.e. 60 octal.
sza
jmp ioop
hit
const, 60
$

The execution of the two instructions tsf; jmp wait would, on a real machine. take
about 5 microseconds. If one were waiting one tenth of one second. as one would if
waiting for a teletype to print a single character, then one wouid have to go around
that i00p something like twenty thousand times. On the simulator, the devices have
been speeded up by a factor of some three orders of magnitude. Wait loops are still
noticeable. but one only has to go around some twenty times, rather than twenty
thousand.

8. More advanced I/0 ——— interrupts.

The concept of interrupt driven I/0 is elaborated in the iecture course. The main
example used concerns an PDP-8 system on which data 1s to be acquired. at fixed
time intervals from an analog to digital converter. simultaneous with the processing of
previously obtained data. Acquired data have to be buffered in memory unul they can
be processed.

The example program used is included here for reference. The "ciock” ang "a/g"
converter incorporated in the simulator do not correspond to any real DEC manutac-
turea devices and their device identificatton numbers and function codes are arbitrary.

.58

Simple example of an interrupt driven program.

It simulates a simple kind of laboratory data acquisition task:
(n.b. its not a periect simutation)

every 200microseconds sample the d/a. store data in a buffer whiie
processing previously acquired data

A T T e e e

/ We assume that time taken to process each datum is variable

/ and that, although processor can in iong run keep up with gata

/ acquisition, there wilt be short term fluctuations where data acquisition
/ gets ahead. So we have a circular buffer (512 words long starting at

/ location 512) with two pointers into it ——— one for the functions

/ that process data and one for those that put the data in. We assume

/ that acquisition process will never get 512 words ahead of processing

/ s0 that there is no need tc check for buffer being full. We assume

/ that it is sufficient just 10 compare pointers, if they are equal

/ that means that processing has caught up with acquisition and must

/ wait, otherwise assume it means some data availabie for processing.

f ‘

the clock interrupts every 200 microseconds (approx) once started

the a/d can be started. it stabilizes and can be read after
time equivalent to about 50 microseconds

we use both under interrupt control

algorithm:
initialize
start clock
until there is gata to process do i00p.

processing data:
pick up next unprocessed datum from circular buffer, anailyze it
(the analysis routine is a phony, we just shuffle bits
around, number of iterations depends on number of Dinary
ones in the datum (which is actually a random number
generated by the program that simulates all this))

interrupt analysis:
save system
skip chain to find who done it

if clock. clear clock flag (ieave it running so will
get another interrupt in 200time units)
and start an a/d transfer
return from interrupt

if asd, clear a/d flag. read value and save it in
butfer

- 59 -

return from interrupt

the main program is one page 1. locations 200-240 octal

AN NN NN

/ the data analysis routine is on page 3, locations 600-630 or so
/
/ page 0 has a few giobais etc. and also the hardwires interrupt
/ entry point at location zero
/
/ the interrupt analysis. skip chain etc is on page 2 around locations
/ 400 etc.
/
*0
/save program counter on interrupt
0
/go off and identify cause of interruption
jmp i pints
pints. 0400
/ places to save acc and link
accsav, 0
{nksav,0
*20
ptri, 0
ptr2, 0
mask, 1777
bstart, 1000
gatum, O
*200
/ main program starts here
start, cla cil
/ initialize both pointers to start of buffer
tad bstart
aca ptrl
tad bstart
gca ptr2
/ start the CloCk,
6504
/ turn interrupts on
6001
/ (a rather unsatfe check to see if data waiting)
loop. tad ptri
/ compare pointers to see if more filled in
cia
tag ptr2
sna cla
jmp loop
/ since some data, get it and save in gatum
tag i ptrl
gca gatum
/ upgate pointers, rememoer its a circular buffer so this
/ is a bit fussy

- 60~

tag ptri
iac
anag mask
snha
jmp repos
aca ptril
jmp proc
/10 repos, we ran off the top of the circular buffer so reset
/ pointer back to bottom
repos. tad bstart
dca ptri
;-
/ 10 proc. cail the subroutine that actually processes datum
proc. |ms i procs
jmp loop
procs, 0600
/
/ Page 2,
/ first save the acc
/ then save link
/
/ then go down skip chain trying to find who interrupted
*400
ints, dca accsav
rar
dca inksav
/ first check the clock, device 50, operation 2, skip
/ it clock has raised its flag
6502
Skp :
/ ok, it was clock. go do something about it
jmp ciksrv
/ otherwise, probabiy the a/d
/ device 60, gperation 2, skip if a/d stablized and flag set
6602
skp
jmp aa
/
/ oops. something interrupted but don’t know what,
/ best stop dead
hit
/
/
/ here is code for controliing return from interrupt
/ we restore the link
xit, clacl
tag Inksav
ral .
/ and restore the accumuiator
lag accsav
and turn interrupts back on, note that
this is actually delayed a couple of instructions to
give us a chance to get back before another interrupt
couid be accepted

- N NN

6"

6001
/ How to return? Just go back to whereever address stored
/ in {ocation zero says
/
jmpiQ
/
/
/ serve the Clock.
/ that means just clear its done flag, leave it running
clksrv, 6501
/
/ ang it also means that we should start the a/d on its next sampie
6604 '
/ but that is all so return from interrupt after
/ restoring status appropriately
jmp xit
/
/
/ an interrupt from the a/d. it means the next sampie is ready
/ read it into the accumuliator, then store it away.
/ upgate pointer into buffer (usual fuss for a circular pointer)
ad, 6601
/ value from a/d, 10bits, now in acc
dca i ptr2
/ value now saved, do the pointer updating
tad ptr2
iac
angd mask
sna
jmp reset
/ haven‘t hit end of circular puffer so just
/ carry on
aca ptr2 ,
/ go and ao return from interrupt
jmp xit

/
/

if have reached top of circular buffer then reset pointer
back to bottom

reset, tad Dstart

/.

%N N N N NN

600

dca ptr2
return from interrupt
jmp xit

Page 3.
the coae of the processing routine
its not serious so NG comments

procl. O

tad datum
jms count
cli rar

sni

jms count

cia
tag datum
cla

rtr

sni

jms count
cla cil

imp 1 procl

count, 0

sna
imp 1 count
daca worg
dca cl

count!, tag worg

rar

dca worda
szl

iszcl

cla cil

tag worg
sza cla
jmp counti
tag ¢l

jmp i count

word, O

cl.
$

0

62

- 63 -

9. Limitations of the PDP-8 architecture.

The principal advantage of the PDP-8 as an introductory machine s its simplicity.
Despite its somewhat clumsy addressing mechanism, the machine s fairly easy to
program (perhaps because one can usually remember the entire instruction reper—
toire(?)). Some disadvantages to the design are obvious. One would like more instruc—
tions. it is, for exampie, liresome t0 have to write a subroutine to perform an "or" of two
gata elements through some contrived sequence of complementing and "anding” ot
data. Certainly, a few additional instructions would ailow for shorter programs.

There are more substantial problems in virtually every aspect of the design. The
suproutine call mechanism proves extremely clumsy if one has many arguments ang
results to pass. it's impossibie to have recursion. The response O InNterrupts s
unnecessarily siow: a little extra hardware can make things a lot faster. The fixed size,
one worqa, for every datum is very cramping and leads to clumsy coge. The arithmeuc
facilities are inadequate. there are no mulitiply or divide instructions In the basic
machine, it's difficuit to detect arithmaetic overflow. The address space is t00 smail,
one can’t have large programs. The paged addressing scheme leads to inefficient use
of even such memory as is available. There are t00 many restrictions on how one may .
pass data to and from the arithmetic iogic unit.

Many of these problems will be addressed in the iecture course wnen more
sophisticated machine architectures are introguced.

NAME

assemble, exec8, trace8 —~ prepare and run programs for a simulated minicom-—
puter

SYNOPSIS
/pub/211/assemble name

/pub/21i/execsd

/pub/211/trace8

DESCRIPTION

exec8 and trace8 simulate the execution of programs on a Digital Equipment Cor-
poration PDP-8 minicomputer. assemble converts source programs, written in
PDP~-8 assembiy language. into object files for these two simulators.

trace8 is intended to heip illustrate the basic “fetch—decode—execute* cycle of the
machine. It maintains a display of the cpu registers, of the bus connecting the
cpu to memory, and of a window intc memory.

exec8 is used to illustrate more advanced topics. such as flag- and interrupt-
driven i/0. The dispiays showing the status of the simulated machine are iess
comprehensive than those maintained by trace8. various components of these
displays are optionally selectable. exec8 also incorporates a simple interactive
"debugging’ package that allows Dbreakpoints to be set and the contents of
memory and cpu registers to be displayed.

FILES

/pub/211/source/symbois, symbol table containing standard opcode mnemonics
used by assemble.

.8.kbd.1,.8.tty. 1’ , these two files (in the user’'s working directory) are the input

for the pseudo-keyboard and output for the pseudo-teletype of the simuiated
PDP-8. If the program run on the simulator requires input then this must be
copied into the file .8.kbd.1 prior t0o execution.

name, the file containing the user's PDP-8 source code.
object, a file, created by assemble, containing the assembied object code.

dumpfile, a file (optionally created by exec8 or trace8) showing the contents of
memory of the machine before and after execution of the simulated program.

SEE ALSO

Course notes describing the simulator displays and the debugging options built
into execs.

BUGS
Please report bugs. by mail nabg, as they are found.

	A screen oriented simulator for a DEC PDP-8 computer
	Recommended Citation

	tmp.1284097890.pdf.MK8Qo

