
University of Wollongong University of Wollongong

Research Online Research Online

Department of Computing Science Working
Paper Series

Faculty of Engineering and Information
Sciences

1985

A cambridge ring node controller A cambridge ring node controller

Paul C. Bunn
University of Wollongong, uow_bunnp@uow.edu.au

Follow this and additional works at: https://ro.uow.edu.au/compsciwp

Recommended Citation Recommended Citation
Bunn, Paul C., A cambridge ring node controller, Department of Computing Science, University of
Wollongong, Working Paper 85-8, 1985, 74p.
https://ro.uow.edu.au/compsciwp/63

Research Online is the open access institutional repository for the University of Wollongong. For further information
contact the UOW Library: research-pubs@uow.edu.au

https://ro.uow.edu.au/
https://ro.uow.edu.au/compsciwp
https://ro.uow.edu.au/compsciwp
https://ro.uow.edu.au/eis
https://ro.uow.edu.au/eis
https://ro.uow.edu.au/compsciwp?utm_source=ro.uow.edu.au%2Fcompsciwp%2F63&utm_medium=PDF&utm_campaign=PDFCoverPages

Preprint No 85-8

THE UNIVERSITY OF WOLLONGONG

DEPARTMENT OF COMPUTING SCIENCE

A CAMBRIDGE RING NODE CONTROLLER

Paule. Bunn

Department of Computing Science
University of Wollongong

Abstract

This report gives a discussion of the
design of a peripheral controller chip to
Interface a Cambridge Ring Node to a
MC68000 host machine using VLSI tech­
nology. The design of such a chip involves
following a design strategy. The strategy
used Identities what the Interface should
be capable of doing. developing a func­
tional description of the interface. mapping
the interface onto silicon and finally verify­
ing the design. The characteristics of the
interface and the design strategy. along
with the software used In the design. will
be discussed.

UNIVERSITY OF
WOLLONGONG

LIBRARY

P.O. Box 1144. WOLLONGONG. N.S.W. AUSTRALIA
telephone (042)-270-859

telex AA29022

January 1985

Preprint No 85-8

THE UNIVERSITY OF WOLLONGONG

DEPARTMENT OF COMPUTING SCIENCE

A CAMBRIDGE RING NODE CONTROLLER

PaulC.Bunn

Department of Computing Science
University of Wollongong

Abstract

This report gives a discussion of the
design of a peripheral controller chip to
Interface a Cambridge Ring Node to a
MC68000 host machine using VLSI tech­
nology. The design of such a chip involves
following a design strategy. The strategy
used Identifies what the Interface should
be capable of doing. developing a func­
tional description of the interface. mapping
the interface onto silicon and finally verify­
ing the design. The characteristics of the
Interface and the design strategy. along
with the software used in the design. will
be discussed.

P.O. Box 1144. WOLLONGONG. N.S.W. AUSTRALIA
telephone (042)-270-859

telex AA29022

January 1985

A Cambridge Ring Node Controller

The Department of Computing Science
University of Wollongong

Paul C.Bunn

Acknowledgements
I would particularly like to thank my two supervisors, Dr. Richard Hartley for the

many hours of entertaining discussions on a wide variety of subjects and the router and pIa
logic programmes which he wrote, without which the project would have never been
completed on time and Mr. Phillip McKerrow for his excellent supervision and valuable
suggestions on the different ways of approaching the more difficult aspects of the project.

There are quite a number of people that were involved at some stage during the
project particularly John Fulcher, Gary Kelly, Ross Nealon and Michael Milway. I thank
you all for your patience and advice.

1. Introduction
This report gives a discussion of the design of a peripheral controller chip to

Interface a Cambridge Ring Node to a MC68000 host machine using VLSI technology.
The design of such a Chip Involves following a design strategy. The strategy used

Identifies what the Interface should be capable of doing. developing a functional
description of the Interface. mapping the Interface onto silicon and finally verifying the
design.

The characteristics of the interface and the design strategy along with the
software used In the design will be discussed In the following sections.

2. The Problem

The problem Is to design a peripheral controller chip using VLSI design tech­
niques. which will Interface a Cambridge Ring Node to a host machine. such that the
host machine can initiate transmission and reception of data to and from the network
via the ring node efficiently. There should be three data transmission modes. status
handshake. interrupt driven and full duplex DMA. The target machine chosen for the
Interface Is the MC68000.

2.1. The Interface Hardware

Before discussing the characteristics of the controller Chip it Is necessary to
understand the capabilities of and the differences between the hardware that is to be
Interfaced. This section discusses the Cambridge Ring Node and the MC68000
hardware.

2.1.1. The Cambridge Ring

The Cambridge Ring is a local area communications system. It Is a passive ring
network based on the empty slot principle. The ring Is simply a single cable loop to
connect peripherals to a computer. Each peripheral on the ring communicates with
other devices by sending a 'mlnl--packet' containing addressing Information and data.
For a typical ring configuration see Fig. 1.

-2-

T~X'miMl

l1u1tipleJlor

Bi.__-----4 Node _--£ ~

IPrint••I ----'»0<10 I
.-/

---------_...--

Computer

c:-----

Figure 1. A typical Cambridge Ring configuration.

The peripherals interface to the ring through a . ring node'. The ring node has an
asynchronous bus as does the MC68000. The requests to send and receive data to
and from the network are given to the ring node. The ring node has two data transmis­
sion request signals, one for reception of data <the read strobe), the other for
transmission of data (the write strobe). When data is to be transmitted to the network
the transmit signal must be asserted. Similarly, to receive data from the network the
reception signal must be asserted. Another signal of Importance that the node has. is
the Node Read or Write Acknowledge Signal. This signal Is asserted by the node to
Indicate to the device that the ring node is ready to. continue with the current opera­
tion.

There are two other handshake signals that are necessary to make correct data
transmissions and receptions. These transmit done and receive done signals indicate
to the device whether the current receive or transmit operation Is complete. Thus a
device can monitor these signals to determine when a data transfer is complete and
therefore when to start the next data transfer (see Fig. 2 for receive request and
transmit request timing diagrams).

The ring node also has an Internal set of registers. These are accessed by read­
ing or writing to the node. The correct register Is selected by placing the appropriate
address on the address bus.

The ring node has two signals which enable two error conditions to be monitored
by the Interface chip. The first error condition uses the Transmit Error signal which
Indicates that the last mini-packet transmitted was corrupted. The second error condi­
tion uses the Transmit Clock signal which can be used to count the number of
transmission retries that have been Initiated for a single transmission and therefore
can detect unsuccessful transmissions (see Fig 3 for ring node interface>. For more
details on the Cambridge Ring Network see The Polynet network manual llJ.

-3-

""P."'P~ ~ AO:P-A3:P

RO:N 1:] p WT:N

ECHO:N

IS
OO:P'07:P

OO:P·07:P

110 ECHO:N

14 t8

RON:N r }I

~
TON;N

BPR:N

RTPO:N
RTP1 :N

Figure 2. a) Node receive request timing dIagram. b) Node transmit request lim­
Ing diagram.

BlNa

"-
obe /

"-
trot.t> / /~

/ "-
~.ri te sckrlowledge
/ Ri1tg,

.(done Node
/

~
/

:"t clock
'\..,-

....... /
tenor

cket
/

ignsl8
"

TDN
tra:ttztt'11

RD
resd str

vTr
write 8

ECHO
read or

RDN
read do

TCLK
tra:llsmi

TERR
tr~u\Sm.i

111:ni Pa
Status S

Figure 3. Cambridge ring node device Interface.

-4-

2.1.2. MC68000 Hardware
The MC68000 Is a 16 bit state of the art micro-processor. It has 32 bit registers

and versatile address modes. The bus structure Is asynchronous with a 24-blt address
bus and a 16-blt data bus.

The MC68000 has a priority driven Interrupt structure which allows any device to
specify an Interrupt vector number from which the MC68000 calculates the address of
the Interrupt service routine. If the priority of the pending Interrupt is greater than the
current processor priority. the MC68000 will start up an exception processing
sequence (See MC68000 Advanced Information [2]). Figure 4 shows the interrupt ack­
nowledge timing diagram. The Interrupt acknowledge consists of two parts. these
being the Vector Number Acquisition and the Stack and Vector Fetch. .

ClK JL.rL.rLI1JLJ
A4·A23 ::r< }-- '-<
Al.A3J{ }----<__.=~--___;.H~====

AS \ ~ \ __ r--\...._--J1
UDS' \ ~ --\ __ r-\ r

lDS \ ~ \ r-\ r
R/W \ 7 \
5TACK~ \...._(,..-~\~---

OB·016 (}-- (

00-07 (>-- () (
FCD-FC2 ::x J '(

IPlO·IPl2 X"' _
last Bus Cycle 01 Instruction Stack lACK Cycle Steck and

\

.. lAead or Writel l-.. PCl .-1 IVector Number Acquisitioni I Vector Fetch I
1OIIIl...-------·~I~- 'SSp'·"T'" • ... •

• Although a vector number is one bvte. both data strobes are asserted due to 'he microcode used for exception processing. The pro­
cessor does not recognize anything on dala lines DB through 015 at this time.

Figure 4. MC68000 Interrupt Acknowledge timing diagram.

For device addressing the MC68000 has four handshake signals. The first. the
Address Strobe. Indicates to the device that there Is a valid address on the address
bus. Secondly. the Lower Data Strobe Indicates. depending on the state of the
ReadlWrlte signal. that data may be placed on or latched from the data bus. The
ReadlWrlte signal Indicates to the device what the current processor cycle Is. The
fourth signal. Data Transfer Acknowledge. Indicates that the data transfer Is com­
pleted. When the processor recognises DTACK during a read cycle. data Is latched
and the bus cycle Is terminated. When DTACK Is recognised during a write cycle. the
bus cycle Is terminated. (see Fig 5 for MC68000 interface).

-5-

/

~
hobe

/

.'ta shobe
/ l1c6soo0
:--.
te shobe ,

fE-I acknowledge /

AS
address s

LDS
10VTE'I da

RlVl
read/wri

DTACK
data trans

Figure 5. MC68000 device Interface.

Another device compatible with the MC68000. which makes data transfers to and
from a device faster 15. the MC68440 Dual-Channel Direct Memory Access Controller

. <DDMA>. The MC68440 will perform memory-to-memory. memory-to-'perlpheral and
perlpheral-to-perlpheral data transfers. It has an asynchronous bus structure compa­
tible with the MC68000 microprocessor. The DDMA has two separate device interface
channels which have three channel-specific signals and two shared signals. The
channel-specific signals are the DMA request. DMA acknowledge and the device
ready signals. The shared signals are the Data Transfer Complete signal and DMA
done signal (see Fig. 6 for MC68440 Interface).

'"
E-st

/

,-
'\
nowledge ,
ady

,;

"

~er complete l1C68440

/

plete

"
uest

/

I'

"nOVT1ed2e

"-
edy

/

DONI
Dl1A com

(RE01

1
Dl1,A r€'q

ACRl

\

Dl'!A sek

PCL1
devio4:' re

/ RECtO

j
Dl1A requ

ACRO
DllA ack

PCLO
\ device Ie

DTC
data trans

Chanl).e1l

Channe10

Figure 6. MC68000 deceive Interface.

The DDMA 15 used In cycle steal mode. To Initiate a cycle steal transfer the DMA
Request signal must be asserted for two failing edges of the DDMA clock. When the
request Is acknowledged by the DDMA the request line must then be released. (see
Fig. 7 for cycle steal timing diagram>.

-6-

50 51 52 5a 54 55 S6 57 50 51 57 53 54 55 S6 57
CLK

Im __-f--------------
IfG ~/,.---------------

,\

ImAl:J(--'\...~~~~~~~:i=;:=~~~~~===;C=;A1·A7 ---c) >---< I
AS ---.r---'\.\.. ~/,-------~\\.. .JI---

;: :---.r---'\.=::=~=====~/==============
RmlAtRl-r-------------....,\.. ---'r--
OlC -.-J,..----~'___.J,..---------....~

I...-- Chlnnel 0 .. j.-2 CIOCkS-.j~.--Channell -I
In this example. CHO is using burst requests end is al prioftlV 1. CH 1 is using evete l1eal requests and is at Pfiority 0,

Figure 7. MC68440 DMA request timing diagram. Channel 0 Is using burst and
channell Is using cycle steal.

2.2. The Interface

The Interface chip must co-ordinate data transfers between the ring node and
memory usIng three devices (shown In Fig 8) suCh that the programmer can Initiate
data transfers easily and effectively.

The Interface chip must be flexible In Its data transfer modes and should also do
transmission error checking. The error checking utilises the transmit error and
transmit clock signals of the node. Error checking will make data transfers more reli­
able.

Memory

lUNG

Figure 8. Typical ring configuration encorporatlng the Interface chip.

-7-

2.2.1. Data Transfer Modes
The data transfer modes chosen are status handshake. Interrupt and DMA driven

data transfers. These transfer modes are discussed In the following sections.
Status Handshake should be the simplest of all three data transfer modes. To

access an Internal register or Initiate a data transfer by the ring node. the node must
be addressed explicitly through the Interface chip. To Initiate data transfers using
status handshake a ring node address should be placed on the lower two bits of the
address bus. The state of the MC68000's Read/Write signal will determine the direction
of the data transfer I.e. whether receive or transmit.

The next mode Is interrupt driven data transfers. The Interface chip should have
four different types of Interrupts. Two of these Interrupts should be mini-packet receive
and mini-packet transmission Interrupts. The other two interrupts should be the
transmission error Interrupts. Each Interrupt should have a priority associated with it In
respect to the other three. The order of priority Is receive. retry time-out. transmit
error and transmit Interrupt.

The Interrupt request should be made by simply asserting an Interrupt request
line and the response to the Interrupt acknowledge signal asserted by the host
machine should be compatible with the standard MC68000 Interrupt acknowledge
cycle. The MC68000 acknowledge cycle requires an Interrupt vector number to be
placed on the data bus. Internal to the Interface chip. the upper five bits of the vector
number should be software preset to allow flexibility of the position of the Interrupt rou­
tines In the host machine. The lower three bits of the vector number are specified by
the type of Interrupt that has occurred (refer to diagrams of register contents in
Appendix 3 of the Users Manual).

The third data transfer mode takes advantage of the MC68440 DDMA. When using
the DDMA to make a data transfer the Interface chip should control transmission and
reception of data to and from the ring node without interrupting the processor. Atter
the DDMA and the Interface chip have been correctly set up. the Interface chip should
automatically generate DMA and node data transmission and reception requests to
transfer data to and from the host machine and the network. When DMA data transfers
are In progress the data transfer Interrupts should be automatically disabled so that a
transfer Interrupt does not occur (N.B. the error Interrupts are not disabled>' This will
allow the Il'lterface chip to Interrupt the processor as soon as the node Is ready to
transfer data when a DMA transfer Is complete. Note that when doing DMA transfers
the interface chip will allow the programmer to access the node's Internal registers
and will also allow the programmer to Initiate a receive or transmit request. The
hardware does not stop the programmer doing this.

During any DMA transfer it Is necessary for the Interface chip to address the
node. For this reason the Interface chip must have the address of the node stored
Internally. This means that the address bus for the node must run through the Inter­
face chip 50 It can be multiplexed with the Internally stored address during DMA
transfers to select the node.

The Error Checking should be Interrupt driven or flagged. These two error condi­
tions make up the other two interrupts. Transmit error is set whenever the transmit
error signal Is asserted by the node. The transmit time-out error Involves counting the
transmit clock and comparing the number counted with the preset maximum number of
retries. When this number Is reached the error Is set.

To control the Interface chip. and Its data transfer modes.four Internal registers
are reqUired. The first register should store the current node status. that 15. the values
of the transmit and receive done signals. values of the mini-packet status signals and
two error condition flags. The second register should be reserved for the control of
the data transfer modes. The DMA and Interrupt data transfer enable bits and the
address of the node (which are needed during DMA transfers), The third register
should be reserved for the two error condition Interrupts and the upper five bits of the
Interrupt vector number. The fourth should be used to specify the maximum number of
retries before a transmit time-out error Is set.

-8-

In summary. the Interface chip should allow data transfers In three different
modes. Status Handshake. Interrupt and DMA transfers. These may be combined to
meet differing host machine configurations. To accompany the data transfer modes
there should be three registers for the Internal control of the Interface chip and one to
store the current node status. There should also be two error conditions that the
Interface chip should detect. transmit and transmit time-out errors.

3. Functional Description
The Interface chip can be divided Into separate functional blocks (figure 9). These

blocks are the Interrupt handling. address handling. transmit retry counting. DMA
reception and transmission. address mUltipleXing. status handshake and Interface
control. and the registers.

ADDRESS INTERRUPT DtlA
DEC 0 DIlJG CONTnOL tIUI.TIPLEX DB.

DtlA READ REGISTERS

Dl1A TP.ANS.tIIT DECREl1E1ITER

Figure 9. The functional representation or the Interface chip.
The address decoding functional block <figure 10> determines whether the

Interface chip Is addressed or If the ring node Is addressed. If the Interface chip has
been addressed theQ the address decoding must determine which of the Internal
registers Is being addressed and whether It Is being written or read. If the ring node Is
being addressed the address selects the node. The address functional block must
Indicate to the status handshake and Interface logic what has been selected. It must
also determine when an Interrupt acknowledge Is asserted and enable the appropriate
Interrupt vector number onto the data bus.

-9-

WOe1\
oenable

r2e1\
2 enable

r3el\
3 enable

r Oef'L
oenable

r1ef'L
1 enable

\:riefL
e enable

wI eon
g 1 ensble

w2e1\
g ;2 enable

hOeon
go enable

hlen
g 1 enable

h2en
g 2 enable

ohsel
p seleoted

nodse!
e selected

" ",
determ1tlf.' 11 11 chip selected hi stats linE' 0
ehip BE'leete':! dE'tenrLine which ..

... ox nod~ trlternal registE":r read reg.-
8 Hi\/? 1 selected is selected

",
"

read reg

s line 2 ..
rE'sd rei

) det€'rmitl€' it read or wl"itE'
"s litle 3 from registE'r ,

read reg

"
"- write reg.-

1eet 1
"writE're

" 1t interrupt sekmwledge
leet 2

.-
"then chip i~ e.eleeto?d write r:

",.
u t hold reedge

" "
s strobe

.- hold re

if >.J register 1S not "hold r{,

'rite strobe
, selected e1\Sun" -that

"it 18 In hold st:ate ohi
,

"-
ata strobe

.-
nod

R/w
resdl\\

LDS
low-er d

CS2
ctLip se

AO
addres

CSl
chip se

A2
addres

A3
addrE's

AS
sddres

Ai
addres

Figure 10. The address decoding functional block.

The Interrupt functional block (figure 11) determines when an Interrupt should
be set. If more than one Interrupt condition arises, the Interrupt logic must determine
which Interrupt has the highest priority, and then set It. When the Interrupt ack­
nowledge Is asserted the lower three bits of the Interrupt vector number must be
ready to be placed on the data bus.

The Interrupt functional block Is also affected by the DMA functional block.
Whenever a receive or transmit DMA transfer Is Initiated the corresponding interrupt is
Inhibited until the DMA transfer Is complete.

-10-

irq
request

dO
no. bit 0

rsdmao
trai18tn1t

err
lat error

d2
no. bit 2

dl
no. bit 1

"-
errupt enable ,/

determine if an interrupt ,
, has been eo1\8bleod interrupt

t interrupt enable

me out enable
/ ,
" if a reeel\'€' of tra1\Stnit disable Dl1A

terror enahle
,/

1rlterrupt has bp.en eMbled
'\ determ1t\e it it has been

me out
/ hloeJ:ed

tranS't
'"
/

"-
deoteorm.11\e t1\e priority of

t dOi:18
,/ each of the interru,Pts "-

interrupt vector'
"-

t clock / :if an interrr.l,Pt condlHon

"-
arises s8sed the IRQ signa!

terror / and determi:l\l? the lower 3
bits 01 the interrupt vector ,,

interrupt vectorck tra:llStn1t / number and be ready to

t place it on thP. data bus
Whe1\ lACK i9 QS9"rted

"-
ok receive

,/

"-
t interrupt vectati 1 a transmit error occurs

"- disable DlIA tra:l\Sln1t
t seknovTledge '"

ten­
t:caWZm1

btx
Dl1A b10
iutenup

tclk
transmi

rdrl
nad done

b(E'n
trai\Stni

rtqreon
retry U

b(E'n
trs:llSmi

rtryto
:retry ti

hek
interrup

bn{
Dl1A blo
iuterrup

rxen
rtlad int

Figure 11. The Interrupt functional block.

The transmit retry counting functional block (figure 12) consists of three
sub-sections. the transmit time-out register. the down counter and the comparator.
The value In the retry time-out register must be used to reset the down-counter latch
when the current transmission Is complete. The down-counter must decrement the
value In the latch whenever sixteen retries have been counted for the current
transmission. When the value In the down-counter latch Is zero the comparator must
set the retry time-out signal to the Interrupt functional block. .,

TDN '-,

T:rS:l\Stt'L1t dor..e
./

TeLK '-,

T:rS:l\8tn1t clock /

if the nod'? is tra1\SttUtung then
de"ret't"lent thE:' 1{:Qlue 1t'l the dec:ret1\.€':l\t
latch eve:ry t:i.t't\l?S TCLK is asserted
si:cteen tin\l?s.
if the valuE' hl. thEdatch is zero
therL S~8t':d the retry time-out
sig:l\:Sl.
if TDl>1 is asseded reset the 1{:Qlue
ifl the l&tch to thtl value stored
in the- de-cren\e1\tt'r reg1stt'r.

,
I----/~RTRYTO

Retry Time -out

Figure 12. Retry counting functional block.

- 11 -

The OMA functional block (fig ure 13) consists of two parts, the DMA receive and
DMA transmit logic. This section handles the handshake between the DMA controller
and the ring node. One part handles the receive data transfers and the other handles
transmission data transfers. The receive logic is much the same as the transmission
logiC except the transmission logic walt for DTACK to be asserted by the memory.

RD
request

"\\1T
request

STX
nterrupt

RSDl1AT
trsllBlnit

BRX
interrupt

REQl
eoqUE'st I

PCLl
oe ready

MQO
equest 0

PCLO
ce ready

RSDtIAB.
A receiV'€'

if Dl'1A transmit enabled Uieft

"-
block the- tnmsmi t interrupt

lmowledge-
, w'hen thP. node ig ready to "trs:l\smi t gener~te a Dl'IA

DltA;
"' request on BEQ0

ns1er complete
.- when DTACK is asserted by "-

d ;;tM tllP.t1\ory ~eil.p.r3te a node evt

"' tra:nsmit :request
" "-ne 'If'heon the trsfliIlrdt rt>quest is

Dl1A~
"- aclmowledg,ed assert the de1fice

ah strobe
/ ready sigtial (PCLO) "-

d ?
"-

'1t.hen Dl1A is DONI r.l:t\blocl~ en

"
the trat'lStrdt it\terrupt and

"-natex rE'st?t the Dl1AT hit in the
~Ie-dge- Cp.l1tra1 regiate-r node reed

if DtlA reeeivt> t>1\.'ablt>d tht>n '-
\. block the- receive interrupt

node wrire.ad or write /

wllen the node has latched aledge mini-packt>t generate a Dl'1A ..
aqueat by aa8erti~REQ1

block trsnsmit-'i
"- when the DUA controller asserts

·t dOlie " ACIU generate a node REA D
:fl?qUl?st "-

"- when the P.EA D reQ"uest is block receiV:'
tie /

al~knowledged assert the device
:tesdy sig,t\Q1. (PCL 1.) "-

\. .(

eei'!'€' e1\8h1e " reset Dl1
when Dl1A is DONI tuiblock the, receiw interrupt 9t\£1 reset U~ ./

sflBmH e.tl.S3hle " Dl1AR hit in the control register reset Dl'lA

ACKO
Dl1A ao

DRX
DllA re

Tmr
t:nuumu

DTC
data tra

Dnr
Dl1A tr

RDN
rl?sd do

DONE
Dl1A do

LDS
low'e'r d

DTACK
data tra
ac:kll.OW

ECHO
mde l"lJ'
SC:kllOW

Figure 13. DMA functional block consists of two sections the DMA receive and
DMA transmit functional block.

The status handshake and Interface control functional block (figure 14) is
reasonably simple and Is responsible for asserting the Data Transfer Acknowledge
Signal.

DTACK
cknow1edg.e

RD
uest strohe

ElmACK
DTACK pad

quest str~

'- "-

lected " if chip is 8€'lected then "
€'nable DTACE Ilad and then

data 'tra:nsfer a

Q01QG
./ sssert DrACK

"-
'- /

.' if ftode is selE'eted then el\.'able
ata strobe

ensbl€' DTACK pad
\.
/ determine if read or vr.dte "-

:cite s'troboeo
node write If:

"-
request is generated

.-
ad or write

when ECR 0 is asserted "-
"- "edge strobl?
./ 8ssert DTACK node re~d reqAS

&ck!\Ovl'1

ICHO
node re

nodSE'l
node SE'

LDS
low'e'r d

figure 14. Status handshake and Interface control functional block.

a)
PROCESSOR - RING NODE RECEIVEITRANSMIT HANDSHAKING SEQUENCE

PROCESSOR INTERfACE NODE

1. Processor Asserts AS
2. Processor Aserts LOS

3. Interface i nitates
Node transmission.

4. Node asserts ECHO
5. Interface asserts

DTACK

b) PROCESSOR - INTERfACE CHI P READ/WRITE HANDSHAKE SEQUENCE

PROCESSOR INTERfACE

1. Proce~~or A~~erts AS
2. Processor Asserts LDS

c)

3. Interface Asserts
DTACK

DMA- NODE DATA TRANfER HANDSHAKING SEQUENCE

Receive

NODE

,. Tranmission Complete
RDN asserted

INTERfACE CHIP

2. Initiate 8 DMA request
essert, REQ'

4. Generate 8 receive
request essert RD

5. Assert ECHO
6. Assert DMA device reedy

PCl'

3. Acknowledge Request
AC Kt asserted

DMA CONTROLLER

7. DMA complete essert
DTC.

DTACK

DMA- NODE DATA TRANFER HANDSHAKI NG SEQUENCI:

Transmit

DMA CONTROLLER INTERFACE CHI P NODE

, .Trenmission Complete
TDN asserted2. InUtate 8 DMA request

assert REQO

4. Generate atra nsmit
request assert WT

5. Assert ECHO
6. Assert DMA device reedy

PClO

3. Acknowledge Request
AC K0 esserted

7. DMA complete assert
DTC.

Figure 15. Handshaking fOr a) Status handshake transfers. b) Readl Write t(
Interface chip. c} DMA transfers

Figure 16. a) DMA receive state machine. b) DMA transmit state machine. c)
Status handshake and interface control stale machine.

(1I0N:r)

(ACK I)

(ore>

(LO:J)

(OUllHLAG)
I rusul lJrna In rou) <).JUNEFLAli)

I rusel Ilrna out rug)
¥-~--.,

=5TAT5.DTC.ECIIU:N)

tFLAG = [HiNE + DONEFLAG.LD:J)
(rClO = 5TAT5.DTC·ECIIU:N)

(OUNEFLAG = illiiiE + DONEFLAG.LD5)

(WT:N = LUn·riiw·5TATE2)

(nD:N = w:i R/Y{ 5TATE2)
(OTACK = ECIW:N.5TATE2.[lJ9.5TATEI)

(ENDTACK = STATE2 + STATE I)

- 12 -

The multiplexor Is a 4 by 2 to 1 multlplexor.lt has one Input control signal that
determines If the DMA address Is Jammed onto the address bus. This signal is
asserted by the DMA logic when the node Is addressed for a data transmission.

The last functional block consists of the other registers. The functions of these
were discussed earlier.

External to the Interlace chip are the data bus Interconnections. The ring node
data bus is external to the Interface chip. This bus hasa bl-dlrectlonal buffer which
controls the direction of the data transfer. This was made external to reduce chip area.
Data on the bus Is of no Interest so with respect to the Interface It Is beUer If It Is exter­
nal.

3.1. External TIming
Another Important stage In the functional specification Is the checking of the

event sequence during a particular data transfer. These sequences were checked by
drawing the timing diagrams for the Interface chip with the constraints of the external
hardware placed on It. The bus handshaking for the data transfer modes are shown In
Figure 15 with the chip and node access and the Interrupt acknowledge handshaking.
Timing diagrams for these sequences can be found In the Interface chip users
manual.

3.2. State Diagrams
The DMA. status handshake and Interface control functional blocks are low level

handshake sequencing logics (or sequential machines), These are known as flnlte­
state machines and consist of a finite number of states with • rules' for transitions
between the states.

The DMA functional block Is really two separate state machines. These state
machines keep track of the current state In the DMA and data transfer handshaking.
These two machines are quite similar except that the DMA transmit state machine
walts on DTACK to be asserted by the memory before allowing the cycle to complete.

The status handshake and Interface control state machine is reasonably simple.
Its task Is to assert DTACK when either one of the Interface chip's internal registers Is
accessed or during a status handshake data transfer. These state machines are
shown In figure 16a. 16b and 16c.

4. Chip Design

The design of the chip really consists of mapping the functional description onto
silicon. However. before proceeding It Is necessary to formulate a layout strategy. The
strategy used In this design Is the same as that used In PLAs. All control runs at right
angles to data (Fig. 17 Illustrates this strategy), This allows data to travel In one direc­
tion In one layer and, data to travel In the other direction In a different layer. Thus con­
trol can either affect data or •pass over It'.

Control

Ll:jt:1

Figure 17. The layout strategy. Data runs at right angles to control.

Keeping this strategy in mind. the leaf cells developed for each functional block
should reflect this. In the following sections each functional block will be discussed In
terms of Its •slllcon representation'.

Figure 18. The logical representation of the state machines. a) DMA receive. b)
DMA transmit. c) status handshake and interface control.

rsluleO =rsloLeO ·OFlJ\IN + rslllle6' LOS;
rslo le I = rsloleO' UMAIN + rslole I· RON:P;

+ rsloleS'Ul~Co[mNEFLAG;

rslale2 =rslllle \. rWN:N + rslale2 'ACK r;
rslule3 = rslule2 'ArRl;
rslllle4 = rslllle3 + rslale4' UTC;
rslole5 = rslule4.UTe + rsLoLe5' [ITe ;
rsloleO = rsluleS'UTC' UONEFLAG + rsloleO' LOS;

URX = rsloteO.UMAIN + rslulel'IWN:P +
rsLule I .IWN:N + rslule2' ACK I +
rslule2·;';ERl + rslule3 +
rslule4'UTC + rslule4·I.JTc +
rslule5'lJTC + rslule5 'OTC +
rsluleS'DTC·iJONEFLAG + rsloleO'LDS;

I~EUI =rslulel'IWN:N + rslule2·ACKI;
OMACYC = rsluLe2' "CKl + rslule3 +

rslole4· UTC + rslule'!' uTc +
rsloleS·un: ;

RU:N = rslole3 + rslule'1'lJTC;
PCL I =rslllle4' UTC' ECIIO:N + rsluleS·IJTc ;
r~S[)MAR = rslule5 • DTC' IJONEFLAG;
OONEFLAG = (jUNI: + OONEFLAG' LOS;

ttl stllleO - slllleO'UMAOUT + slllte7·[DS ...
slutel =sloleO·UMAOUT + stolel'TDN:P

+ slule6'OTC'OONEFLAG;
slule2 '" slulel'TON:N + slole2'ACKO;
slule3 = slule2·AtKij + slole3'lJTACK'-- 'slole'1 = slule3·UTACK;
sluleS = slule'1 + sluleS' OTC;
slulef> =sluLe5'UTI: + sllllef>'OTC;
slole"? = slule6·[)TC· OONEFLAG

+ slule7 LlJS;

UTX = sl.uleO· OMAOUT + slole I· TDN:P +
slolel·TUN:N + stole2'ACKO +
slole2'ACKO + slole3'OTACK +
sLoLe3'UTACK + slole'! + stoteS'
OTC + sluleS·UTC + slole6·!JTI: +
slole6'UTC'lJONEFLAG + slllte6.
UTC + slule7 + LOS;

REUO = slulel 'TUN:N + slole2'ACKO;

UMACYC = slule2'ACKO + slnle3·0TACK +
stole3·iIT"Ack ... stule'! + sluleS'
UTC + sluleS'UTC + slole5.U'i1:;

WT:N = slule'1 + sluleS·UTC;

PCLO = sloleS·OTC·ECHO:N;

R5UI"IAO = sluleo·UONEFLAG·OTC;

[JONEFLAG = [JUNE + UUNEFLAG· LOS;

t,) sluleO = (iiOllsel.("Jilpsel + slole 1.iiQ(]se1 +
slu le2.cmrJSel) .resel

slule I = (sluteO.nouser + stille '.nodsel).resel
slllle2 = (slllleO.clllpsel + slole2·chlpsel).resel
WT:N = LD5·ii7W·5TATE2

nOoN = [ijii n/l'l 5TATE2
OTACK = ECIHJ:N·STAH2·[US·srATEI
BiDTACK = 5TATE2 • flTATEI

- 13-

The Interrupt functional block and address decoding functional blocks are
Implemented using Programmable Lagle Arrays (PW. A PLA was chosen since the two
sections are simply combinatoric logic and therefore are suited to a PLA. A PLA Is also
easily modified and regular In shape and complies to the overall layout strategy. The
logic for a PLA (see Appendix 2) Is passed to a logic simplification programme 'slmpl'.
Slmpl produces as output, Input to 'plalog' which generates a truth table to be used
as Input to 'plagen' (' slmpl', 'slmpl2' and' plalog' were written by Dr A.I Hartley).

DMA receive and transmit and the status handshake and Interface control
functional blocks consist of three state machines. The best way of Implementing state
machines In nMOS technology Is with a PLA. The three state machines are shown In
Figure 16. If these three state machines are examined carefully It can be seen that
there are quite a number of common Inputs and outputs. Therefore. If these state
machines are merged Into one PLA only one signal fine Is needed for a common sig­
nal. thus eliminating a large amount of routing.

The state machines must be converted from their graphical representation Into a
logical description suitable for Input Into the logic simplification programmes. To do
this each state machine Is considered separately. The first step is to give each state a
bInary representation which Is unique In the minimum number of bits possible. The
logic for each state and the logic for state transitions Is then extracted from the
diagram. Each logical description Is shown In figure 18 (see also AppendiX 2). These
logical descriptions are then merged Into one logical description keeping the state bits
of each separate.

. So far all the functional blocks have been Implemented using PLAs. However a
PLA cannot be used as a register. The register cells need to readable and writable
and sit neatly on the data bus. Further, these register cells must comply with the
overall layout strategy. The best approach Is to firstly consider the register In a func­
tional form and then proceed to the layout details later. Figure 19 shows a functional
representation which allows the register to stack such that control runs a right angles
to data. Thus each register consists of the correct number of register cells stacked
horizontally.

,- J 1 ,
,- f 1 J
,- J I f

- J 1 f
- ! 1 J
,- J 1 f

- ! I J
... I 1 f

--
V L L 11 Pn 0 A U L
I G T L E
T I G T }{

- E C H I (I
R

-
--

DATA BUS

-

-

Figure 19. Functional representation of a register.

As shown In figure 19 the register can be divided Into three parts. the load control
mUltiplexor. the basic storage latch and the write data bus logic. The following sections
will discuss each of the registers.

The node status register simply stores the current values of the ring node sig­
nal discussed earlier and the error flags. Therefore no multiplexor Is required and the
basic register cell with the write bus logic Is needed (note the write bus Is a pUll up
bus>' The circuit diagram Is shown In figure 20.

-j U

!,VI CLOC1(

- 14 -

~2 CLOCK vrurE 1

Figure 20. Circuit diagram tor the node status register.

The control register has to latch the value that Is written to It from the Input data
bus. Therefore the register must recycle the value stored. and must be able to load a
new value. The DMA control bits In this register must be capable of being reset by the
DMA logic. To satlsty thIs the registers must have two different multiplexors with reset
and six without. figure 21 shows the circuit diagrams of the two register cells that
make up the control register.

II OL 0 RESEr LA WI CL OCK (92 CLOCK VRlrE 1

(a)

WPUT A

OUTPUT
PULL UP

HOLD LA ~I CLOCK ~ 2 CL OCR 'WRITE 1

IN

OUTPUT
PULL UP

(b)

Figure 21. The two register cells that make up the control register. a) register
with reset and b) register without reset.

- 15-

The Interrupt vector register Is a read/write register and no bit Is reset by
Internal logic as In the control register. Therefore. only a simple multiplexor Is
required that will allow the register to be loaded and recycle the stored value. However
since the upper five bits of the register stores the upper five bits of the Interrupt vector
number. it must be possible to enable these five bits without enabling the lower three
during an Interrupt acknowledge cycle. To meet this criteria the register must have two
write control lines to the upper five bits (see Fig 22 for circuit diagrams and Fig 21bL

llOLD LA ~I CLOCK ~2 CLOCK VRITE 1 W'IUTE 2

UITUT A

OUTPUT
PULL UP

Figure 22.0ne of the two register cells that make up the Interrupt register. note
the two output bus pUll downs.

The counter register Is a normal read/write register. The value In this register
must be used to reset the decrementer latch. Therefore the multiplexor must facilitate
this (see Fig 21 b for circuit diagram).

The decrementer consists of three parts. the latch .. the comparator and the
decrementer. The latch must be situated next to the counter regIster's multiplexor so
that it can be reset. The decrementer must be situated next to the latch so the values
In the latch can be decremented. For these reasons the best approach to the design
of the decrementer Is to design it $0 that It will fit across the data bus with the other
registers. The comparator should also be designed in this way since It must detect
when all the values In each of the eight latches are zero.

The latch must be decremented every time TCLK is asserted for each transmis­
sion and be reset when the transmission Is complete. The logic to count TCLK. to reset
the decrement latch and set the retry-time out signal was Implemented with a PLA.
The logical representat,lon Is shown In Appendix 2.

The functional block specifications must now be placed on silicon. The functional
blocks cannot be randomly placed since they need to be routed together and to the
Input and output pads. To have a reasonably good guide of the placement of each
block a floor plan must be developed.

The floor plan must show the relative sizes of each of the functional blocks with
respect to the others. The positions of the Input and output pads must also be decided.
Figure 23 shows the floor plan for the Interface Chip. A major part of the floor plan Is
taken up by routing channels which shows the proportion of routing that has to be
done. All the functional blocks were placed so that the routing could be done automat­
ically.

Since the distance from the control PLA (I.e. Interrupt and address PLAs) to the
DMA and status handshake PLA and the distance trom the end of the data path to the
pads Is considerable. buffers are encorporated to drive the signals through the fuJI
distance of the wire. This makes the considerably faster and more efficient. At this
stage the routing of power and the clock shOUld be considered. As can be seen In Fig­
ure 23. Vdd and Vgnd are diametrically opposite each other. This allows Vdd and Vgnd
to run to all parts of the circuit without crossing each other. Similarly with the clocks,

LOS AS lACK C52 C51 A3 A2 Al 1.0

ADDRESS PlA ROUTING CHANNEL

PHI2

. REnlY ADDRESS
RW COUNTER OEeOD ING

INTERRUPT CONTROL PLA EJ
GND

PLA
PLA

OTACK
AO:P

PHil S I GNAl ROUT I NG CHANNEL AI:P

R
07 :JUPEnUUFHA UlOCK a

A2:P
0 U

n RUU T IPIG CflANNn T
06 A

T 0 I A3:P
U fJ REGISTER NA U G

05 T F AND
B TERR
U

I F VECflEMENTER

04 5 N E
G R GLUCK TClK

R :3
03 0

IRQ
U
T ~ ROUTING CHANNEL

D2 I RTP:

N R
I

G U
R

01 a RTP:
U U 0
T CONTROLLER

T
DO I I BPR

PLA
~ N N

G G
RESET TON

VOD ROUTING ROUTING IINVERTI I RON

ACKO ACKI OTC DUNE ECHU WT flO PClO peL! m:uo REQl

Figure 23. Floor plan for the Interface chip.

- 16-

the pads for Phil and Phl2 were placed opposite each other.
Before the floor plan Is complete the positions of the registers and decrementer

In the data path must be decided. Various signals must be routed from the register to
other functional blocks. therefore adequate space must be left between the various
registers so that these signal can be routed. Not only do signals have to be routed
from the register cell but they also have to be routed from the control section across
the data path to the DMA and status handshake section. Figure 24 shows the block
diagram for the data path.

C D I C lJ
0 E N 0 0
U C T N D
N R R E R T R E R

T E E R E R E E

E G 11 R G 0 G S G

R I E U I L I T 1

S
l>I P " S A S

;)

T T T T T T T

E E E E U E

R R R R S R

Figure 24. Block diagram of the data, path.

The floor plan Is a major part of the whole design process. A badly designed floor
plan will make the roullng difficult and thus Increase the amount of time spent on the
layout.

The last Important stage that must be considered before the final details of the
layout can be completed Is the Internal timing sequences. These sequences are
Important since It 15 essential that data arrives at Its destination at the right time and
on the right phase of the clock. Figure 25 shows the Internal timing diagrams for the
Interface chip. The method used In this diagram Is the same as that used by Hartley
[4]. The timing sequences are expressed using modified petri-nets. The horizontal
lines are the events. the green line represents phil and the red line phi2. The length
of the blue line Indicates the relative time taken for the signal to reach It destination.

-17-

j I

-'1.

I

~\~sr_~_l!I---

Figure 25. Internal timing diagram for the Interface chip.
Now that the positions of the functional blocks have been finalised so too can the

layouts for the-various functional blocks. The layout for each of the above functional
blocks is shown In figure 26. These layout are arranged to reflect the floor plan and
shown the relative sizes of each functional block. The routing 1 between the func­
tional block was done automatically using a routing programme written by Or
R.I Hartley.

Before the design can be fabricated It must be verified using software tools. The
PlA were easy to verify using a programme' slmul' which allows values to be assigned
to the Inputs of the PLA and shows the outputs. The address decoding, interrupt,
DMA-status handshake and interface control PLAs were verified using this programme.

Verifying the PLAs by themselves does not give complete verification that they will
Work since the have to work when connected to the pads, clocks and power In the
actual Circuit Not only do the PLAs have to verified under these conditions but this Is
also the case with the register block and decrerrienter must be. When the layout was
completely finalised the programme \ unswlm' was used to simulate the whole Inter­
face chip from the pads.

5. Design Procedure

The design procedure used consists of twelve important steps. These are:

- specification
- functional description
- external timing diagrams
- state diagrams
- layout strategy
- silicon representation of functional blocks

- 18-

- floor plan
- final layout of functional blocks
- layout composition
- design rule checking
- functional black simulation
- complete layout simulation
The specification Is a description of what the capabilities of the interlace chip

should be. The specification covers the data transfer modes and the error conditions
that shouid be considered along with the hardware interfaces. The details of the inter­
nal register contents and addressing considerations are aiso decided upon. External
bus connections also need to be considered since It should be decided if the various
buses really need to run through the Interlace chip.

The functional description addresses the Individual functions of the Interface
chip. For each Individual function a functional representation Is developed and Is
expressed In a diagram. The Interactions between these functional blocks are also
considered. Itls Important that the functional separation Is clean and logic in the Indi­
vidual functional block Is In Its simplest farm. This means any control sequences must
be Identified and represented as state diagrams.

Before the functional design can be mapped onto silicon It Is necessary to have
some sort of layout strategy that guides the way In which each functional description
is mapped onto silicon. The layout strategy should also dictate how the silicon func­
tional blocks are put together. It Is Important that the strategy Is well understood and
that each functional block complies to the strategy.

Once the layout strategy has be decided upon the individual functional blocks can
be mapped Into their silicon representatl<;m. The approach taken in this design was
to identify combinatoric logic and state machines and Implement them with PLAs which
proved to be a good idea. The only other considerations were the registers. The regis­
ter cells must comply with the overall strategy and be easily butted together to give a
neat register. The individual register cells were first represented in a block form
showing the positions of the Input and output signals. After the block representations
are finalised the Internal circuitry Is specified.

Now that a relative Idea of the shape and size of the Individual functional blocks
silicon representation has been gained a floor plan needs to be drawn up. The floor
plan should consist only of blocks representing each of the functional blocks and their
relative sizes. The functional blocks should be arranged so that they comply to the lay­
out strategy. Not only should the position of the Internal functional block be decided
upon. but also the routing of the signal between them and most Importantly the routing
of the two phase clock, Vdd and Vgnd. The position of the functional blocks decides
the position of the Input and output pads. Obviously. if a signal to a functional black
comes from or goes to a pad then It Is desirable for that pad to be as close as possi­
ble to the functional block to make routing easier and reduce delay times.

Now that the position of the functional blocks relative to each other /s defined.
which therefore defines the position of the Input and output signals for each functional
block. the flnal layout for each of the functional blocks can be decided upon. Each of
the state machines and combinatoric logic blocks are easily generated with their input
and output signals In the right places since they are PLAs and are automatically gen­
erated from a logic specification. However. the register cells. decrementer and multi­
plexor are different These need to be considered carefully. the layouts for each of
these should take up as little area as possible. The layouts are first represented as
stick diagrams and are the drawn as complete layouts. These layouts are then mapped
Into the layout language BELLE as separate definltlons.

Once all the layouts for the functional blocks have been completed all that
remains Is to connect them together. The composition of the layout Is relatively
straight forward. The approach taken Is firstly to lay the bottom row of pads. then the
left side pads followed by the state machine PLA and the data path. The data path and
state machine PLA were routed together and then to their pads. When this was com­
pleted the rest of the pads. counter. address and Interrupt PLAs were laid and then

- 19-

finally the multiplexor.
After the layout had been completed It was then tested for design rule violations

with the design rule checker. Any design rule violations are fixed with the graphics
editor.

The next step was then to simulate the pieces. This step should have been done
before the layout composition. The reason It was not done at this stage was because
the software was not available for use. If the simulation was unsuccessful then the
functional block was corrected with the graphics editor.

When all the pieces simulated successfully the whole layout was then simulated
from the pads to ensure that all of the routing was correct. If any mistakes were
encounted then the mistakes were fixed using the graphics editor.

6. Software Tools
There are a number of software tools that were used In the composition of the

layout. The tools consisted of CSIRO's VLSI software. developed during the CSIRO VLSI
programme. PLA logic simplification and simulation programmes and routing pro­
grammes developed by Dr. R.I Hartley for this project. Graphics editor and verification
tools at NSW JMRC were also used In the later part of the design.

The CSIRO VLSI design suit consists of a layout language BELLE. a CIF file sum­
mary programme for use with BELLE called GETSYMBOL. a PLA generation pro­
gramme PLAGEN and a CIF plotting programme VIEWCIF. BELLE proved to be very
useful. It Is a reasonably powerful layout language for describing leaf cells. It is a
language which Is embedded In pascal and therefore has all the programming con­
structs that that pascal offers (see Appendix 3>' All the leaf cells for the layout are
described In BELLE. The dlfflculty arises with BELLE when the leaf cells have to be
merged Into the complete layout. This was solved by the development of a router Which
was Intergrated Into BELLE by Dr. R.I.Hartley. GETSYMBOL Is more or less part of
BELLE.

The PLA generation programme. PLAGEN. proved to be useful since the PLAs
are automatically generated free of design rule errors. This saves vast amounts of time
and allows the PLA to be easily modified without much worry. There are however. a
number of undesirable features with PLAGEN. The low level PLA specification. I.e a
truth table. can lead to Incorrect specifications for large PLA's. due to the number of
l's and 0'5 that are needed to specify the PLA (see PLAGEN users manuaD. This
problem was solved by Hartley by developing the PLA logic specification programmes
s/mpl and PLAlog. These take a high level description of a PLA and produce a truth
table suitable for Input to PLAGEN (see PLA tutorla.l). PLAGEN also produces a stan­
dard PLA and does not allow for the user to easily specify different Input and output
pUll up ratios to cater for large delay times across the and and or planes In large PLAs.
Another feature which Is undesirable concerns the fact that when PLAs become large
PLAGEN does not change the metal thickness for Vdd and GND power lines. These
features could be easily encorporated In PLAGEN without too much worry and hence
produce better PLAs.

VIEWCIF Is a necessary piece of software. without which the design could not be
checked Visually.

Simul the PLA simulation programme was very useful. It enabled all the PLAs to
be verified before they were finally encorporated Into the layout.

The software used at JMRC consisted of a design rule checker. a graphics editor
and a simulator. The design rule checker. Ire. Identified design rUle violations that
went unnoticed during visual Checking. lrc proved to be be very useful sInce It
detected a number of errors. The graphIcs editor KIC was also very useful since It
allowed all the design rule violations to be fixed quickly. The simulator unswim used to
simulate was fairly effective. it was not excessively slow and gave good results. The
only undesirable feature Is Its input format. The input Is specified with l's and O's
which are used to Indicate a signals' state. This becomes confusing and messy with
large simulations. The Interface could probably be Improved by either developing a
simulation language or some sort of graphics Interface that allows timing diagram like

- 20-

specifications.
Generally. I found the software to be reasonably adequate but BELLE became

more and more tedious as the layout grew. The routing. PLA logic and PLA simulation
software was particularly useful. For a layout of this size. a good graphics editor and
simulator are essential from the start.

7. Testing

After the chip has been fabricated It Is necessary to test that It will function
correctly. Firstly. the CRM68000C users manual In Appendix 3 should be read. The
simple operations should be tested first. An Important point to note Is that the Inter­
face chip should always be reset by asserting the RESET signal before each test. This
will ensure that all the state machines are In their Initial states.

The first function to test Is writing to an Internal register of the Interface chip.
The control register would be the best. just be sure not to enable Interrupts or DMA.
just set the Node address. If this seems successful then read from the register and
compare It with the value stored. If this works then do It with the Interrupt register and
the counter register. The Node Status register Is read-only so just read It.

The next function to test Is Initiating a data transfer by the ring node. using status
handshake driven data transfers. Test both transmit and receive operations (see Users
Manual Sect. 2.1>,

The next function to test Is the Interrupts. Firstly. determine the position of the
interrupt vector addresses (see MC68000 Advanced Information), Next. store up the
five most significant bits of the Interrupt vector address In the five most significant bits
of the interrupt vector register (see user manual Sect. 2.1>' Next. enable the Interrupt
control bits In the control register. The Interface chip will' then Interrupt when a packet
is latched Into the node or If the node is ready to Initiate a transmission.

If the MC68440 Dual-Channel Direct Memory Access Controller Is available then
test the DMA transfer modes. To do this the correct address to access the node must
be stored in the four most significant bits of the control register. Then enable the DMA
data transfer bits In the control register. Next Initialise the DMA controller so that it will
transfer x bytes from a given memory location to the transmission channel. This will
test DMA transmission, To test DMA reception Initialise the DMA controller such the x
bytes Is transferred from the reception channel of the DMA controller.

If all these modes of operation function correctly then combine the different
transfer modes. For example. transmit data using status handshake and receive data
using DMA. receive data using Interrupts and transmit data using DMA (see also Sect
2.1 In the Users Manual).

The final checking necessary consists of testing the two error conditions. These
must be tested In two ways. firstly by\simply reading the node status register (see Sect.
7.1 In the Users Manual) and secondly with the Interrupts enabled (see Sect 7.3 In the
Users Manual), To test the mini-packet corruption error hold the TON pin high and
pUll the TERR pin low. Similary to test the retry time-out error. load the counter regis­
ter with one and hold the TON pin high and pUll the TCLK signal low sixteen times.

As far as basic error checking goes this Is about It. More complicated data
transfer mode switching and special case testing should be done.

Conclusion

The design approach used In the design of the Interface Chip proved to be rea­
sonably successful. Starting with the development of a functional description. and then
verifying the functional description by drawing the timing diagrams is a good method
of verifying that the design. when Implemented. will work. Choosing a layout strategy
and developing an Internal timing model for the layout is essential. The composition of
the layout Is particularly dependent upon the software tools and hardware available. A
good graphics editor. layout language. router. PLA generator and simulator are about
the minimum software requirements needed to design a reasonable chip. A good
graphics computer or CAD system would not go astray.

Figure 26. The Interface chip layout.

'OJ
~ .-.__.. "-----,

[]

REFERENCES

(1) Loglca VTS limited (1981> Cambridge Ring Network Manual
(2) Motorola (1983) MC68000 16-BIt Microprocessor, Advanced Information
(3) Motorola (1984) MC68440 Dual-Channel Direct Memory Access Controller,

Advanced Information
(4) Hartley.R.1. (1983) Z-80 MUltiplier Chip

(5) Mead, C. Conway, L. (1980) Introduction to VLSI Systems 1st ed. Addison-Wesley
Inc. Philllppines.

Appendix 1
Layouts of standard cells.

AEGCElL VLSI Leaf Cells AEGCELL

NAME
regcell - general purpose register cell

DESCRIPTION
Regesll Is a general purpose static register cell which Is Phll-Phl2 clocked. It'ls
designed so the Input can be multiplexed. Thus the register can have many Inputs
form a number of sources one of which must be the register Itself. since the value In
the register must be recycled. The register cell has two buses. the Input bus and the
output bus. The output bus must be a pUll up bus since the write logic Is dependent
upon this.

LAYOUT

r-- r-- .-- r--

r~
r--

rq L r--
I

~ r---
'-r-

f..¥-J J J
~ 'fn@ l L-il Jt--

l[-
I I I ~ I ~AI
~n -

~r-I f-U
I-J I """ r--

~
t-- r j lSI J~

I J rA ""-r J
~

l J ~r---t L r '-- J I

~J l~ -r--
I J

~,

I ~J , I
~ --- I-- 0--- ~

@

7th Edition vlsl cells

REGCELL

CHARACTERISTICS
size: 72 by 47 Lambda.
Inverter ralUos:

Inverter 1 4: 1
Inverter 2 4: 1

bus pUll down ralto: 2:1

Input capacitance:
7 square eg.

reslstence of bus pull down:
8 square Rg

VLSI Leaf Cells REGCELL

TESTING
Fully simulated with unswim 2.0 and design rule checked with Ire.

AUTHOR
Paul C Bunn
University of Wollongong

7tn Edition vlsl cells 2

DECREMENTER VLSI Leaf Cells DECAEMENTER

NAME
decrementer - ripple carry decrementer

DESCRIPTION
Decrementer Is a ripple carry decrementer. Its Is designed to be compatible with
regcel/. An appropriate multiplexor should be designed to Interlace the decrementer
to the register cell or latch. It Is Important to note that buffers should be placed
between each decrementer cell since the time taken to ripple accross the can data
bus Is quite substantial esplcally for more than about 4 bits.

LAYOUT

- ,...- ,...--- ..- ..---

~ L.
r~~ =- l

-
r-- r-- ...-

....----.- - - ,'-- r--- r--- ,....----- r i---

IX I lIPK:' :1 ts I IlXl IIXI 11'><-' I :>C1 lex! I ~
[
i--

~
I--- 1..-1.-.- L..--- 1.-0. L,.-- L_ I.-.- ,--Lf--

I--

[
I-- I

L.-

r--
@
~

IC$J 1 f~..... 1 -' I I

I

I

- --- - - '-- - '--- i--

DECREMENTER

CHARACTERISTICS
size: 91 by 47 Lambda.

Inverter raltlos:
Inverter 1 4: 1

Input capacitance:
7 square Cg.

VLSI Leaf Cells DECREMENTER

TESTING
Fully simulated with unswlm 2.0 and design rule checked with Ire.

AUTHOR
Paul C Bunn
University of Wollongong

7th Edition vlsl cells 2

--'-__&-__:].. I

[~ -j ". 1_ I ::J
~

[';~ -
I I 'if[---;-+---

~;~ ~
_ td Tj t:Jb
l I

Appendix 2
Logical descriptions of PLAs.

Interrupt PLA logic.

%Input
rxen
rtryen
txen
terren
rtryto
rdn
tdn
tclk
terr
brx
btx
lack
Int1
Int2
Int3
Int4

%output
Int4
Int3
Int2
Intl
Irq
rsdmao
err
dO
d1
d2

,- receive Interrupt enable -,
,- retry checking Interrupt enable -/
,- transmit Interrupt enable -,
,- transmit error Interrupt enable 'A'
,- retry time out -,
,- receive done 'A'
/- transmit done -/
''A transmit clock 'A/
/- transmit error 'A'
,- DMA block receive Interrupt 'A'
/- DMA block transmit Interrupt -,
,- Interrupt acknowledge 'A'
/- Interrupt state bits -/

,- Interrupt request 'A'
/- reset DMA transmit bit -/
,- transmit error -/
/- Interrupt vector number bit 0 -/
/- Interrupt vector number bit 1 -,
/- Interrupt vector number bit 2 -/

%speclflcatlon
Int1 =-rdn.rxen.-brx;
Int2 = rtryto.rtryen;
Int3 = -tclk.-terr.terren;
Int4 =-tdn.txen.-btx;
Irq =Int1 + Int2 + Int3 + Int4;
dO =-lack.lnt3.-lnt1.-lnt2 + -iack.lnt4.-int1.-int2.-int3;
dl =-lack.lnt2.-lntl + -lack.lnt4.-lntl.-lnt2.-lnt3;
d2 =-lack.lnt1 + -lack.lnt2 + -laqk.lnt3 + -lack.lnt4;
err =-tclk.-terr;
rsdmao = Int3.-lnt2.-lnt1;

Address decoding PLA logic.

%Input
aD
a1
a2
a3
cs1
cs2
lack
as
rw
Ids

%output
trlen
rOen
r1en
r2en
r3en
w1en
w2en
w3en
hOen
h1en
h2en
chsel
nodsel

Itc address /lne 0 tcl
Itc address /lne 1 'Ill
Itc address /lne 2 tcl
Itc address line 3 *1
Itc chip select 1 tcl
I'll chip select 2 _I
I'll Interrupt acknowledge *1
Itc address strobe 'Ill
Itc readlwrlte address strobe _I
Itc lower data strobe tcl

I'll tristate pads enable tcl
Itc nodes status register read enable "I
I" control register read enable *1
I" Interrupt vector register read enable *1
1* decrementer register read enable tcl
I'll control register write enable 'Ill
I'll Interrupt vector register write enable 'Ill
I'll decrementer register write enable "I
I'll control register recycle enable 'Ill
I'll interrupt vector register recycle enable *1
1* decrementer register recycle enable *1
1* chip selected signal *1
1* node selected signal "I

%deflnltlons
csel = -as.cs 1.-cs2.a2.a3:
nsel = -as.Cs 1.-cs2.-a2 + -as.Cs 1.-cs2.-a3;
regO =csel.-aO.-al.-lds;
reg 1 =csel.aO.-a1.-Ids;
reg2 =csel.-aO.a1.-lds;
reg3 =csel.aO.a 1.-lds;
readOen = regO.rw;
readlen =regl.rw;
read2en = reg2.rw;
read3en = reg3.rw;
wrlteOen =regO.-rw;
wrltelen =regl.-rw;
wrlte2en = reg2.-rw;

%speclfication
rOen = readOen;
rlen = readlen;
r2en =read2en;
r3en =read3en;
wOen = wrlteOen;
wlen =write len;
w2en =wrlte2en;
hOen =-wrlteOen;
hlen =-wrftelen;
h2en = -wrlte2en;
trlen = csel.rw.-Ids + -lack;
chsel = csel + -lack;
nodsel =nsel;

Counter PLA logic

%Inputs
tdn
tclk
xO
xl
x2
x3
oldtdn
oldtclk

%output
oltclko
oJtdno
x30
x20
xlo
xOo
resetc
count
chold

1* transmit done *1
1* transmit clock *1
1* count state bits *1

1* tdn flag *1
1* tclk flag *1

1* tclk flag *1
1'1< tdn flag '1<1
1* count state bits *1

1* reset decrementer latch *1
1'1< decrement decrementer latch *1
1* hold decrementer latch 'It.1

%deflnltlons
cnt = oldtclk.-tclk;

%speciflcatlon
xOo = -xO.cnt + xO.-cnt;
xlo = -xl.xO.cnt + xl.-(xO.cnU;
x20 =-x2.x1.xO.cnt + x2.-(xl.xO.cnU;
x30 = -x3.x2.xl.xO.cnt + x3.-(X2.x1.xO.cnU;
count = x3.x2.x l.xO;
oltclko =tclk;
oltdno =tdn;
resetc =oldtdn.-tdn;
chold =-(X3.x2.xl.xOl;

Appendix 3
Interface chip user manual.

cnM68000C Users Manual

Paul C. Bunn

Department of
Computing Science

University of Wollongong

CRM68000C Users Manual

Paul C. Bunn

Department of
Computing Science

University of Wollongong

1. Introduction
The CRM68000C Is a peripheral controller chip designed to Interface a Motorola

68000 host machine to a Loglca Polynet Cambridge Ring Node. The CRM68000C arbi­
trates data transfers between the Cambridge Ring Node and the host machine utilising
the following features:

- an 8 bit data bus.

- flexible data transfer modes
... status handshake transfers
... Interrupt driven transfers
... Direct Memory Access transfers

- tour on board registers
... Node Status register
... Control register
... Interrupt Vector register
lit Transmission Time-out register

- transmission error checking
- transmission retry checking
- reasonable transfer rates (yet to be determined)
- a programmable Interrupt vector address
- programmable ring node address for DMA transfers

2. General Operation
The purpose of the CRM68000C is to make the control of data transfers between

the host machine and the Cambridge Ring Node faster and easier. To do this the
CRM68000C has three separate data transfer modes and two different error condition
interrupts. These features enable compatability with different host machines (see Flg.l
for typical system configuration>. This section discusses the three modes of operation
and each of the two error conditions.

2.1. Modes of Operation.
Status Handshake is the simplest of all the three modes. When using this mode

of operation the ring node must be addressed expllcity through the CMR68000C to ini­
tiate a data transfer. To Initiate a receive operation by the ring node one of the three
ring node addresses must be placed on address lines AO and A1 (see Sect 4.0) and
the ReadlWrite (R/W) signal asserted (note: this Is achieved by a simple processor
load from the address of the 1/0 register). When the node has serviced the receive
request the CRM68000C will assert the Data Transfer Acknowledge CDTACK1 signal to
Indicate to the processor that data Is present on the data bus and the cycle may be
terminated. Figure 2 shows the sequence of events between the processor and the

-2-

CRM68000C when using status handshake.
Using Interrupt Driven data transfers the CRM68000C will Interrupt the processor

when the ring node Is ready to transmit or receive data. When the CRM68000C has set
an Interrupt the processor will acknowledge the Interrupt and the CRM68000C will
place an appropriate Interrupt vector number(see Sect. 3.0) on the data bus as with all
Interrupts. The Interrupt vector number Is used to Indicate which interrupt was set. The
M68000 uses the Interrupt vector number to calculate the interrupt vector address of
the appropriate Interrupt handler for each Interrupt (for interrupt vector numbers see
Table 1J. Figure 3 shows the sequence of events for a transmit Interrupt.

Direct Memory Access transfers are the fastest at all transfer modes. Atter the
DMA controller and the CRM68000C have been Initialised. the CRM68000C anp the
DMA controller will arbitrate data transfers between the ring node and the host
machine. The CRM68000C has two DMA channels: one is for the control of data
reception and the other for data transmission (see Fig.4>' The DMA controller compati­
ble with the CRM68000C Is the Motorola 68440 Dual Channel Direct-memory Access
Controller.

For machines that do not have a DMA controller the CRM68000C can be config­
ured so that both handshake and Interrupt control can be used to transfer data. For
example. transmission of data can be interrupt driven and reception of data
handshake driven. This means that the CRM68000C will Interrupt the processor when It
Is ready to transmit data and to receive data the CRM68000C must be explicitly
addressed using a processor read.

The CRM68000C can deal with machines that have a DMA controller with only one
channel. For example: the DMA control/er could be Interfaced to the reception chan­
nel of the CRM68000C and data transmission could be controlled In either handshake
or Interrupt mode. This means that the DMA controller will handle all receive data
operations and the CRM68000C will interrupt the processor when the ring node Is
ready to transmit data. N.B. When one data transfer direction is under DMA control.
the programmer must ensure that node accesses Involving data transfer In the other
direction do not interfere with DMA operations. The address of the register to/from
which DMA transfers are taking place is automatically selected by the CRM68000C.
protecting the channel against address changes. but not against changes to the
register contents.

The flexibility of transfer modes allows the ring mode to be driven in different
ways. so that It Is easy to interface It to most systems using the CRM68000C.

Retry Checking allows unsuccessful data transmissions to be detected. The ring
node will continue sending the same mini-packet until it is acknowledged by the desti­
nation node. The number of transmit retries. before the CRM68000C will set a transmit
time-out Interrupt. can be specified using the Interrupt time-out register (this register
counts in quantum of 16 retries thus the value in the register must be multlpilled by 16
to get the actual number of retries).

When transmit error Interrupt is enabled the CRM68000C will set the transmit
error Interrupt when the ring node asserts transmit error signal (TERR>.

3. Interrupt Vector Numbers

The interrupt vector number Is an eight bit number. The upper five bits are speci­
fied by the value stored in the upper five bits of the Interrupt vector register. This gives
the user the ability to select the vector number base value under programme control.
The lower three bits are specified by the Interrupt that occurs. Table 1 summarises
the interrupt vector numbers and the priority of each Interrupt. where 3 Is highest
priority and 0 Is the lowest priority.

-3-

Table I: Interrupt Summary.
I I

Interrupt Vector l• •
i Interrupt i priority DO 01 02
t

3 I 1 1 0; Receive I'
I·I

; Trans. Time-out 2 0 0

i Trans. Error 0 0

: Transmit 0 0 0 0
•
I

0 0j SPUriOUS X

X : not applicable.

4. ADdressing MODes
There are two aDdreSSing mOdes. The lirst inVOlves adaresslng me ring noae's

registers through the CRM68000C. the second involves aaaresslng tne CRM68000C's
internal registers. When addreSSing either the CRM68000C or tne ring noae DOlO GS I
and CS2 must be asserted. Address lines AO ana A1 are usea to aetermlne wnetner
lhe ring node or the CRM68000C has been selectea. Aaaress lines A2 ana A3 are
used to determine which at the Internal registers or the GRM68000C are La be
accessed. Table 2 summarises the various addreSSing moaes.

Table 2: Addressing Summary
I Address Internal Register·-i Device : A3 I A2 I Al : AO

i

Noae I 1 1 X X
1 0 X X

I 0 1 X X I• I

:CRM68000C 0 0 0 0 j Node Status
0 0 0 1 i Control
0 0 1 0 : Interrupt Vector
0 0 1 1 I Transmit Time-out i

X : not applicable.

b. Data Bus Oporation

The most important POlOt to note about the oata bus organisation IS mat me oala
Irom the nOde does not go through the CRM68000C Out 15 COntrOllea oy a bi­
directional buffer external to both the ring nooe and the CRM68000C. The directIon or
the buffer 15 controlled by the state at the Read Strobe <Rm signal or the nOde. The
buffer is normally set in the write direction but 15 reverseo wnen RD 15 asserteo.

6. Signal Description

This section contains a brlet description at the Input and output ~)Ignals. InCluoea
at the end is a summary oescriblng the electrical characteristIcs ana active states or
each signal.

It is important to note that the terms assertIon and C1eassert/on will De useo La
indicate a signals' state. Assertion is used to indicate that a signal 15 onven active ana
deassertion is used to indicate that a signal is driven rnactlve. The Signal summary
describes the asserted states tor each signal.

-4 -

6.1. Signal Organisation

Some related signals can be grouped and each of lhese groups is discussea in
the following paragraphs.

6.1.1. Ring Node Signals
Read Done <RON) is an input to the CRM68000C and is asserted (lOW) Oy the ring
node to indicate that the last receive operation by the ring node IS complete and
another may be initiated.
Transmit Done <TON) is an input to the CRM68000C and is asserted <low) by the ring
node to indicate that the last transmit by the node is complete and another may be ini­
tiated.
Node Read Request (RD> is asserted (low) by the CRM68000C to request a read
operation by the ring node.

Node Transmit Request (WT) is asserted (law) by the CRM68000C to request a
transmit operation by the ring node.

Node Acknowledge (ECHO) is asserted (low) by the ring node in response to a read
or write request to indicate that the pending operation may go ahead.

Node and Mini-packet Status Signals <SPA ATPO RTPl>; SPA is the broadcast
mini-packet signal. It Is asserted (low) by the node to indicate that the last mini-packet
received was a broadcast mini-packet. RTPO and RTPl are node status signals (see
the Polynet Aing Node manual (1)).

Node Address Lines (NAO-NA3) are outputs (rom the CRM68000C and are used to
select the ring node's internal registers during all data transfers.

6.1.2. Processor Signals

Address Bus Lines (AO-A3) are inputs to the CRM68000C from tne nost macnlne ana
are used to select either the ring node's or the CAM68000C's internal registers.

The Data Bus Lines <00-07> are used to read and write to the internal registers or tne
CAM68000C.

Lower Data Strobe (LOS> Is asserted by the processor to indicate data IS present on
the lower eight bits of the data bus <00-07>.

Address strobe (AS) is asserted (low) by the processor to indicate that a valid
address is present on the address bus.

The Interrupt Request and Acknowledge (IRQ. lACK> signals are tne Interrupt con­
trol signals. IRQ is the interrupt request and is asserted <low) by the CRM68000C. For
an interrupt request external hardware is required If the CRM68000C is to be interfaced
with the M68000. The external hardware should handle the priority at each perlpneral
which is daisy chained along 8' priority IIne.lnterrupt Acknowledge <lACK> IS asserted
by external hardware when the appropriate set of function codes appears on the runc­
tion code control lines of the M68000. (See M68000 Advanced Information (2»)

The Data Transfer Acknowledge <DTACK> signal is bi-directional; it indicates that a
data transfer is complete.

The Read/Write Strobe (R/W) is an input to the CRM68000C and defines tne current
data transfer as a read or write cycle.

6.1.3. Direct Memory Access Channel Signals

The DMA Request <AEQl.AEQO) signals ate asserted (low) by the CRM68000C to
request a data transfer between the ring node and memory <the request generatIon IS
cycle steal for the M68440>. REQO is a request to the OMA controller to place data on
the data bus tor the current transmit operation. REQl is a request to tne DMA con­
troller to read data tram the data bus for the current receive operation.

The DMA Acknowledge (ACKO.ACKl> signals are asserted (low) by the OMA controller
to indicate to the CRM68000C that data is being transferred in response to the prevI­
ous request. ACKO is asserted in response to a OMA transmit request ana ACKl is

-5-

The Data Transfer Complete <OTC) signal is asserted (low) by the DMA controller to
Indicate that the data transfer Is complete and the data has been successfully
transferred.
The DMA Done <DONE> signal is asserted (low) by the DMA controller to Indicate that
the data transferred Is the last In the block. This occurs when the DMA controllers
Internal transfer count register Is decremented to zero.

6.1.4. General
The Two Phase Clock (PHIl.PHI2); the first and second phases of a non-overlapping
two phase clock. and generated from the Me8000 processor clock. These signals must
be generated externally. this allows for flexibility when testing allowing frequency and
mark-space ratios to be counted.
The Chip Reset (RESET) Is asserted (low) to reset the CRM68000C. It places all the
Internal logic Into Its InlUal state but does not reset the register contents.
The Chip Selects (CSl.CS2) when both are asserted select the CRM68000C.
Vdd Is the positive supply which Is five volts.Csee Sect.9)
Vgnd Is the ground connection pln.(see Sect.9)

Table 3 : Signal Summary.

directionl I I II Funct. I signal I active driver pin
I group I name I I state I type I number I
I Chip Sel.l CS1 I in I high I I i41
I I CS2 I in I low I I 15 ,
I Node I TDN I in I low I I 44 I
I I WT,RD I out I low I I 37,38 I
I I RDN I in I low I I 43 I
I I ECHO I in I low I I 36 I, , TCLK , in , low I I 2 I
I I TERR I in I low I I 3 I
I , BPR I in I low I I 45 I
I I RTPO I in I low I I 46 I
I I RTPI I in I low I I 47 I
/ Processor I AO-A3 I in I high I I 10-13 I
I I NAO-NA3 I out I high I I 7-4 I
I I DO-D7 I in/out I high/lowl tri-statel 29-22 I
I I LDS I in I low I I 18 I
I I AS / in / low I I 17 I
I I IRQ I out I low I I 48 I
I I lACK I in I low , I 16 /
I I DTACK I in/out I low I tri-state! 20 I
I I R/W I in I high/low I I 19 I
I DMA I REQO I out I low I I 41 I
I I REQI I out I low I , 42 I
I I ACKO,ACKI/ in I low I I 32,33 I
I I PCLO,PCLll out I low I I 39,40 I
I I DTC I in I low I I 34 I
I I DONE I in I low I I 35 I
I General I PHIl ,PHI21 in I high/low' / 21,9 /
I I RESET I in I low I ! 30 I
I I Vgnd,Vdd I in I I I 8,31 I
I I I I I I I

-6-

7. Registers
This section contains a description of the CRM68000C's internal registers ana rne

control bit assignments within each register. There are tour eight-bit registers. In eacn
register summary any bit not used Is filled with a . 0'. Following tnls IS a taDle sum­
marising various characteristics of each register.

7.1. Node Status Register

The Node Status Register contains the current status ot tne nng noae at
any given time.

TIJN.RIJN.BPH.RI PO.RI P'I: These have tne same aetinitlons as In tne signal
description.

err: when asserted (high), indicates that there nas Deen a transmit error.
Zero Count: when asserted (high). indicates that there IS a time-out Interrupt.

'HQ: when asserted (high). indicates an interrupt request has Deen generarea.

Register Address: A3=0. A2=0. A 1=0. AO=O.

Operations; Read only.

-7-

7.2. Control Register

The control register Is used to set up me diHerent moaes Of operation.
DMA and interrupt.

bit 7 6 5 4 3 2 1 0
~TXEN~DMATIDMAAI

DMAR: With the DMA Receive bit <DMAR) assertea <high) • tne CRM68000C will
change the control ot received data transter. from status hanashake (0

DMA control. Data Is than transferrea directly Into memory Of the host
machine via the DMA controller. On completion Of the DMA transfer OMAR
is automatically deasserted (low). The side effect at setting tnlS Olt IS. me
receive interrupts wlff be disabled until the DMA receive transfer IS com­
pleted.

DMAT: With the DMA Transmit bit <OMAn asserted <high). me CRM68000C will
change the control of data to be transmitted by the ring noae from status
handshake to DMA control. Data is then directly transferrea from tne
memory of the host machine via the DMA controller to the nooe. On com­
pletion of the DMA transfer the DMAT will automatically oe aeassertea. As
with DMAR the side effect of setting this bit is. me transmit Interrupts wlff
be disabled until the transfer is completed.

RX~N: With the Read interrupt bit (RXEN) asserted (high), the CRM68000C will
interrupt the processor whenever a mini-packet arrives ana mus ShOulO
be read and DMAR is not asserted.

TXEN: With Transmit Interrupt bit <TXEN) assertea (high), lhe CRM68000C will
interrupt the processor whenever the node is free to service a transmiS­
sion and DMAT ;s not asserted. Note. If there IS no more aata to oe
transmitted this bit must be deasserted.

NAO-NA3: These bits specify the node address required tor a OMA tranSfers.

Register Address: A3=O. A2=O. A1=0. AO=l.

Operations: Read/write.

-8-

7.3. Interrupt Vector Register

The interrupt vector register contrOls the two error Interrupts ana sets me
upper five bits of the interrupt vector register.

bit 7 6 5 4 3 2 1 0
~RTENITERRENI

Tf:RHf:N: With the Transmit Error Enable bit nERREN) asserted (high) me
CRM68000C will interrupt the processor whenever the ring noae aetects a
transmit error.

RTf:N: With the Transmit Time Out Error bit (RTEN) asserted (hIgh) the
CRM68000C will interrupt the processor whenever the numoer or retries lor
the current transmission exceeds sixteen times the numoer storea In tne
Transmit Time-out Register.

IV3-IV7: These bits specify the most significant bits or the Interrupt vector
Number (IV3-IV7). the lower three bits (IVO-IV2) or the Interrupt vector
number are specified by the type of interrupt that occurs.

Register Address: A3=1. A2=O. A1=1. AO=O.

Operations: Read/Write.

-9-

7.4. Transmit Time-out Register
The Transmit Time-out register (8 bits) sets the number of transmit retries before
the CRM68000C will set a transmit time-out Interrupt (one bit Is equivalent to six­
teen retries).

Register Address: A3=0. A2=0. Al=l. AO=l.

AeadlWrlte.

Table 4: Register Summary.

0000
000 1
001 0
00 1 1

Address (A3 A2 A1 AD>
read only
read/write
read/write
read/write

OperationsRegister name
!Node status
: Control
: Interrupt Vector
!Transmit Time-out

- 10-

8. Data Transfer Modes: Timing Details.
This sectIon contains the Timing diagrams for each data transfer mode. Along

with these are the normal processor read and write timing diagrams which show the
details for a write to a CRM68000C Internal register. These timing diagrams are not
precise. they are meant to show only the sequence of events that occur. More precise
timing diagrams will be produced when real-time measurements can be made.

50

I

-11-

8.1. Processor Read Timing Diagram (odd byte read from the CRM68000C)

This timing dIagram Jllustrates the sequence of events when an internal register
Is read.

50 51 52 53 54 55 56 57 58 59

CLOCK_' I I I I I I I I I I
"0-1\7 -«)>- _

,,------------/
CSI

CS2
------/ "'......_----

,,'------_--1/
R/V ...- _

. LOS

REG
ENABLE

CHIP
SELECT

I>TACK -h.

1>0-7 ----------/ ,'-----
,,'---------'/

- 12-

8.2. Processor Write Timing Diagram (odd byte write to the CRM68000C>

This timing diagram Illustrates the sequence of events when an internal register
is written to.

50 51 52 53 54 55 56 57 56 59 50

CLOCK_I II I I I I I I I I I I I

"0-,.7 -'<)>- _

CSl

CS2

DTACK 4-__-...

CHIP
SELECT

lDS

REG
ENABlE -...

DO-7 -----------'/ ,,~--

,,"---- --.J/

- 13-

8.3. Processor Read Timing DIagram (odd byte read from the ring node>
This timing diagram Illustrates the sequence of events when the ring node Is

addressed via CRM68000C for a receive operation.

50 51 52 53 54 5w 5w 55 56 57

CLOCk_I I I I I I I I I I I I I I
"'0-1\7_' -«)>- _

""'--------------/

ECHO - --....

DT ACK l-_ __...

RD:N ~..,__--......

LDS

R/V

CSI

CS2

NODE
SELECT

DO'-7 / "
" /

RDN:N /

- 14-

8.4. Processor Write Timing Diagram (odd byte write to the ring node)
This timing diagram Illustrates the sequence of events when the ring node is

addressed via CRM68000C for a transmit operation.

50 51 52 53 54 5w 5w 55 56 57 56 59 50

CLOCK_III II 11111 III L
1.0-1.7_----.«)>---

,, --J/

,,'------------------/00-7

OT ACK ----.-..;..-----------f-"""\

YT:N ----------}J-----.

ECHO

R/v

CSI

CS2

LDS
NODE -+_--..

SELECT

,,'-----------"/
TDN:N /

- 15-

8.5. DMA Receive Timing Diagram
The DMA Receive Timing diagram shows the sequence ot events when me

CAM68000C is controlling a DMA receive operation.

50 51 52 53 Sv Sv Sv Sw Sw Sw

CLOCK

AO-A7 --<--------------------'>-
AS ,"""------------------------/
CSt
CS2
DIY

LDS
,-----------------------......,,/

l;

/ "-
"- ./

\ ~{j

\ f
,
~

-J \ I-/

\ \/
~

n

~ -
1'\ (,h'"--"" ~

) I
I) \ (J
J~~

-j;l.,. ./

J,
I !

I ...
./

\
\. ~

DttA
CYCLE

brACE:

DELAYED

\IT:1l

\1lUTE
:iT

ECHO:Jf

DYC

peLl

BEQI

ACXl

YDll:Jf

DlfAOUT

DO-D7

EHABLE
BEG -------------------------------­
CIIIP SEL ------------------------------

DYACK

- 16-

8.6. DMA Transmit Timing Diagram
The DMA Transmit Timing diagram shows the sequence of events wnen me

CRM68000C is controlling a DMA transmit operation.

SO Sl S2 S3 Sw Sw Sw Sw SOO SDI S4 S5 S6 S7 sa S9 so

CLOCK

AO-A7 -< ---.J)-

AS
,~----------------------'/

,'--------------------------'~

....... ""7' \
L

~ /

\ /

\ I....... /

\ I ~rl

I f
-,. i'

~) \ /1-

/\ \/T

\ ----/
""'- ./ (" 111'" _____ ""l-

I---71)

\ (/
\ f'

....... ./

I

~ 7
11

llD:JI

READ
SY

ECHO:.

DYC

PCLO

DOllE

nDIl:H

DUAl»

DO-D7

nEQO

ACJCO

EHABLE
REG
CUIpSE

DYACK

CSI
CS2
VV

LDS

DIlA

CYCLE -----------------------------/

"0-A7

-17-

8.7. Interrupt Acknowledge Timing Diagram
This ,timing diagram shows the CRM68000C'g response to an lACK from the pro­

cessor via the external hardware.

54 55 56 57 50 51 52 53 54 55 56 57 58

CLOCK_' I I I I I I I I I I I I

-----"> <'-----------------

R/"rI

-------/ ,,------------
lDS

DTACK

DO-D7

FLO-2

RXENABlE

RDN:N

IRQ

- 18-

9. Hardware Details

9.1. Power Supply

Vdd : +5 volts.
Vgnd: ground

9.2. Pin out

04
D3
02
01
00
RESET
VdLJ
ACKO
ACKI
OTC
OONE
ECHO
~yT

RD
PCLO
PCL1
REqO
REq1
RON
TON
BPR
RTPO
RTPI
IRq

0
I I

I

I -1

I I

I 1

I 1

I

I J

I I

I 1

I
CRM68000C

I 1

I 1

I -1

I I

I I

I 1

.1 I

I I

1

I

I I

TCLK
TERR
NA3
NA2
NAI
NAO
Vgnd
PHI2
AO
Al
A2
A3
C51
C52
lACK
AS
LOS
R!W
OTACK
PHil
07
06
05

Figure 1. Typical system configuration.

melD.org

8 bit data bus

Address Bus

Figure 2. Sequence ot events dUring a receive operation. uSing status
handshake control.

lUng
node

iniUate
receive
--et.~io......- __--.

C
R
m
6
8
o
o
o _ p@raUon
C receive

"----~iDitiate

DTAC

receive
request
~~

receive
request

assert

m
6
8
o
o
o

Figure 3. Sequence of events dUring a receive Interrupt.

Ring~~
node

receive
cOJDplete

~

..,.,.,.-----­
..,.,.,.""""""'" initiate

receive
operation

C
R
m
6
8
o
o
o
c

interrupt
receive

m
6
8
o
o
o

DMA receive operation.figure 4.Sequence of events aunng a

set lip ring node address for DmA transfers

rea.dy

Ring
nOde

com.plete
opera.tIon

recei'Ve

C
R
ill
6
8
o
o
o
c

tra.nsfe
DmA

/regue~s~t ~

ffi68440

enablt!])mA-;-e'-c-e-.-·ve--D1""'--o-d~e---------~~~_~~~~__
set

uP
DmA

controllerm
6
8
o
o
o

. com.plele
reguest

Appendix"
Software manual pages.

alt (1) UNIX Programmer's Manual alt< 1)

NAME
alt - Activate the alternate port on the VC4404 terminals

SYNOPSIS
alt

DESCRIPTION
Aft reads a file from standard Input. turns on the alternate port on the VC4404 terminal,
writes the file to standard output and then turns off the alternate port.

SEE ALSO
plotclf (1) belleCl>. celleO), plagen(l). getsymbolO)

AUTHOR
Paul C Bunn
University of Wollongong

BELLE (1) UNIX Programmer's Manual BELLE (1)

NAME
belle - Integrated circuit mask layout language

SYNOPSIS
belle filename.bel

DESCRIPTION
Belle will generate an Intergrated circuit mask layout from the BELLE specification in
the Input file and place It in fIIename.clf.

BELLE Is the procedural Integrated circuit mask layout language distributed by the
CSIRO Division of Computing Research VLSI program as an aid to designing circuits
for AUSMPC 5/82. It Is embedded In the Pascal programming language. Embedding
the language allows the power of a high level programming language to be used to aid
the description of Integrated circuit mask layouts. without the need to develop an
entirely new programming language. BELLE Is similar to the Simuia package LAP
developed at Caltech. Because of the differences between the base languages. the
syntax of user statements Is rather dlfferefJt.

BELLE is composed of a set of Pascal procedures which can be used to describe the
various structures In a layout. BELLE generates Its output In CIF (Caltech Intermediate
Form) CHon and Sequin. 1980], which Is a low level description of the circuit. CIF is the
standard data format chosen for communication of designs during the MPC.

BELLE Is a leaf-cell tool. That Is. It Is Intended to describe the geometries of relatively
small subclrcult elements. It may also be used to some extent as a composition tool to
place several cells (I.e.. compose them) to generate a complete layout.

One of the major features of BELLE Is that It provides a very convenient means for
parameterising circuit components. A circuit used In one design can be used In
another by simply modifying the parameters for size. number of Inputs or outputs. etc.
As BELLE modules are created by designers for various circuits It may be possible for
the design community to build up a library of BELLE procedures for commonly used
circuit components such as memory cells. decoders. comparators. etc.

The built-in functions of BELLE are:

SETSYMNO
- Set the symbol number of the next symbol to be defined.

DEFINE
- Define a symbol.

ENDDEF
- Delimits symbol definition.

DRAW - Draw an Instance of a symbol.

MX - Mirror a symbol in the X-axis.

MY - Mirror a symbol In the V-axis.

ROT - Rotate a symbol.

LAYER
- Set the current layer.

BOX - Draw a box (rectangle).

FLASH
- Draw a cl rcle.

WIRE - Starts the definition of a wire ..

X - Add a horizontal segment to the wire.

7th Edition local

BELLE (1) UNIX Programmer.'s Manual BELLE (1)

v - Add a Vertical segment to the wire.

XV - Add a 45 degree segment to the wire.

DX - Add a relative horizontal wire segment.

DV - Add a relative vertical wire segment.

DXV - Add a relative 45 degree wire segment.

NODELABEL
- Label a node.

COMMENT
- Insert a Comment into the CIF.

EXISTING
- See If a symbol has been defined.

IMPORTSVMBOlS
- Read a header file containing a list of symbol names, numbers and bounding
boxes of externally defined symbols that are used by the BELLE module.

SETNOEND
- Suppress generation of the End statement In the CIF output file.

SET45
- Allows 45 degree wires.

BOUNDINGBOX
- Calculate the bounding box of a previously defined symbol.

ABORT
- Stop execution and output an error message.

POLVCUT
- Generates a Metal to Polyslilcon contact cut.

DIFFCUT
- Generates a Metal to Diffusion contact cut.

BUTTCONTACT
- Generates a Poly to Diffusion contactvla a Butting Contact.

SEE ALSO
BELLE users tutorial.
plotclf (1) bellem. celle(l). plagen(l). getsymbol(l). slmpl(l), slmul<l). plalog(l).
The CSIRO VLSI programme.

BUGS
The BUTTCONTACT fuctlons will sometimes fall to draw the Butting Contact In the
orientation specfled.

7th Edition local 2

CELLE (1) UNIX Programmer's Manual CELLE (1)

NAME
celie - Integrated circuit mask layout language

SYNOPSIS
celie I option)fllename.cel

DESCRIPTION
Celie will generate an Intergrated circuit mask layout from the CELLE specification in
the Input file and place It In fIIename.clf.

CELLE Is the procedural Integrated circuit mask layout language based on BELLE. The
only difference between CELLE and BELLE Is CELLE Is embedded In C not Pascal. For
a description of CELLE see belle(l) and belle(S). The advantage of celie over belle is
that celie Is more that six times faster, especially for large layouts.
The options that celie Interprets are:

-r link In the router.

SEE ALSO
BELLE users tutorial.
belle<l), plotclf (D celle(D, celle<l), plagen<lL getsymbol(1). slmpl(l), simul(U. pla­
10g(1).
The CSIRO VLSI programme.

BUGS
The BUnCONTACT functions will sometimes fall to draw the Butting Contact In the
orientation specified.

AUTHOR
Paul C Bunn University of Wollongong

7th Edition local

EXTRACT (1) UNIX Programmer's Manual EXTRACT (1)

NAME
extract - Extract symbol definitions from a clftlle.

SYNOPSIS
extract [option ...] cUflle outputflle.

DESCRIPTION
Extract will extract symbol definitions from a CIF 2.0 clfflle.

The following options are Interpreted by extract.
-s Print a summary of all the symbol definition names and their symbol numbers

on standard output that are In the clftlle.

-c Insert a call to the extracted symbols.

-I Specify lambda for the extracted symbols.

-n Do not place the End symbol on the end of the clftlle

SEE ALSO
plotclf (1) belle(1), celleO), plagen(1), getsymbolm. slmpl(1). slmul(l), plalog(l).
The CSIRO VLSI programme.

AUTHOR
Paul C Bunn
University of Wollongong

7th Edition local

GETSYMBOL (1) UNIX Programmer's Manual GETSYMBOL (1)

NAME
getsymbol - Getsymbol generates a header file from a clfflle.

SYNOPSIS
getsymbol clfflle.elf

DESCRIPTION
Getsymbol Is an auxiliary programme to BELLE. It is used in conjunction with the
IMPORTSYMBOlS function within BELLE. It /s used to generate a header file of the
type required by IMPORTSYMBOLS. Getsymbol operates on a elfflle and produces a file
containing the names of all symbols, their symbol numbers and their bounding box. An
example output from getsymbol looks like:

Lambda 250
901 DlffCut -500,-500,500,500
902 PolyCut -500,-500,500,500
903 ButtCont -750,-500,750,500

The first record specifies lambda for this library.
The second and subsequent records have the format

Sym.No. Sym.Name Bounding box (lower left, upper right corners)
All Coordinates are given In hundredths of microns.

SEE ALSO
plotclf (1) belle(l), celle<l), plagen(l), extract(1), simpl(l), simul(l), plalog(l).
The CSIRO VLSI programme.

AUTHOR
Paul C Bunn
University of Wollongong

7th Edition local

PLAGEN (1) UNIX Programmer's Manual PLAGEN (1)

NAME
plagel) - PLA generator

SYNOPSIS
plagen plaflle.pla

DESCRIPTION
Plagen Is a program which will generate a pia In elF code from a truth table descrip­
tion. The program Is largely Interactive. from the point of view of specifying options in
the pIa generation. These user supplied options will be described shortly.

The general operation of plagen Is that It reads from a file platlle.pla and creates the
pia In a file plaflle.clf. The Input file Is of the form of a truth table. preceded by a line
which contains the number of Inputs. product terms and outputs. For example. con­
sider a pia with 4 Inputs. 5 product terms and 3 outputs. The Input to plagen might
then be:

453
10xl 010
xxll OOx
1100 lxl
1OOx xOl
001x 000

A single space is required to separate the inputs from the outputs for each product
term and also to separate the three fields on the first line. Generation of the pia is
then under the control of the following requested Information:

symbol start number: the main symbol number of the pia is given this value and all
subsymbols are given numbers relative to this. This Is needed for Belle to avoid con­
flicting symbol numbers.

subsymbol generation: suppression of cif code for the subsymbols may be achieved
for cases where more than one pia Is being used. each using the same subsymbols.

pia programmed: placement of programming cells may be ommltted for cases where
only the overall size is required.

Inputs/outputs: a number of obvious selections regarding clocked or unclocked
inputs/outputs and whether a finite state machine is being generated.

outputs position: the "traditional" pia has the outputs and inputs on the same side
(necessary for finite state machine generation>. This flag allows generation of a pia
with auputs on the opposite side of the pia to the Inputs.

labels: unless specifically ommltted all inputs and outputs are labelled. For a pia with
symbol number N specified. Inputs are labelled as plaNinx where x ranges from 0 to
<lnputs-l). with '0' referring to the left-most Input (furthest from the OR plane). Out­
puts are labelled as plaNoulx (e.g. pia 1000ut3) with x=O being the output closest to the
AND plane. All labelling is done using the 94 extension of elF.

The cells which plagen uses to build up the pia are similar but not the same as the
standard Han & Sequin cells distributed. The Input and output drivers are the same
but programming and other cells are not. For this reason the symbol names have
been changed to avoid confusion with the other pia cells. elF code for all these cells
Is contained In the program.

7th Edition local 1

PLAGEN (1) UNIX Programmer's Manual PLAGEN (1)

The main symbol for the pia (which Is always generated) has a symbol name of piaN,
where N Is the symbol number specified by the user.

SEE ALSO
plotelf (l) belle(l), eelle(1), plagen(1), extract(l),slmpl(l), slmul(1), plalogm.
The CSIRO VLSI programme.

AUTHOR
Paul C Bunn
University of Wollongong

7th Edition local 2

PLOTCIF (1) UNIX Programmer's Manual PLOTCIF(l)

standard terminal GAP Interpreter.
Tektronix GAP Interpreter.
Servogor 281 GAP Interpreter.
Hewlett Packard 7574a GAP Interpreter.

Calcomp drum pio~ter GAP Interpreter.

NAME
plotclf - Plot a clf file

SYNOPSIS
plate" [option...] filename. elf

DESCRIPTION
Platelf will produce Input for a Servogor 281 plotter, Tektronix 4010 style terminals,
Hewlett Packard 7574a plotter, Calcomp drum plolter and VC404. VC4404 terminals,
from a standard CIF 2.0 file. The file name must end In '.clf'. Platelf produces GAP
output and passes It via a pipe to a nominated gap Interpreter, which produces the
specific device Input (defaUlt beIng the Tektronix 4010 style) on standard output.

The Following options are interpreted by plotelf.

-tek Produce graphics output specific to a Tektronix 4010 style graphics terminal.

-tty Produce output suitable for the VC404, VC4404 terminals and 300 series Balfls-
tic printers.

-hpg Produce output suitable for the Hewlett Packard 7574a plotter.

-ser Produce output suitable for the Servogor 281 flat bed plotter.

-cal Produce output for the Calcomp drum plotters.

~ Produce GAP output.

-b Report the bounding box size of the CIF layout.

-h header.
Specify a header. The string header 15 drawn at the base of the plot along with
the current date and time.

-r angle,x,y.
Rotate the plot angle degrees around the centre x,y.

~ xl,yl,xu,YU.
Select a window from xl,yl to xU,yu.

The platelf CIF parser will report any InconsistencIes withIn the cmlle.

FILES
lusr/gap/tty
lusr/gap/tek
lusr/gap/ser
lusr/gap/hpg
lusr/gap/cal

SEE ALSO
belle(l), celle(l). extract<l). plagen(l), getsymbol<l), slmpl(l), simul(l), plalog(l),
gap(1), gap(5).
GAP, Graphlos Assistance Package. R.S.Nealon, University of Wollongong, preprint
80-6.
The CSIRO VLSI programme.

DIAGNOSTICS
The diagnostics produced by plotcif itseHare Intended to be self-explanatory.

AUTHOR
Paul C Bunn
University of Wollongong

7th Edition local 1

PlOTCIF (1) UNIX Programmer's Manual PlOTCIF (1)

BUGS
Plotelf requires the whole layout to be in memory. due to the way in which It builds the
parse tree. Therefore. generation ot plots tor extremely large layouts may be slow.

7th Edition local 2

RENUMBER (1) UNIX Programmer's Manual RENUMBER (1)

NAME
renumber -Renumber the symbol definItions within a elffile.

SYNOPSIS
renumber { option ... J

DESCRIPTION
Renumber will read a standard elF 2.0 elfflle from standard input renumber all the
symbol definitions and symbol calls and with them to standard output.

The following options are Interpreted by renumber.

-snurrber
will start the renumbering from number, the default starting value Is O.

SEE ALSO
plotelf (1) belleO)' eelleO)' plagen(1), getsymbo/(l)

AUTHOR
Paul C Bunn
University of Wollongong

7th Edition local

	A cambridge ring node controller
	Recommended Citation

	tmp.1284095578.pdf.2qg0Z

