University of Wollongong

Research Online

Department of Computing Science Working Faculty of Engineering and Information
Paper Series Sciences
1985

A cambridge ring node controller

Paul C. Bunn
University of Wollongong, uow_bunnp@uow.edu.au

Follow this and additional works at: https://ro.uow.edu.au/compsciwp

Recommended Citation

Bunn, Paul C., A cambridge ring node controller, Department of Computing Science, University of
Wollongong, Working Paper 85-8, 1985, 74p.
https://ro.uow.edu.au/compsciwp/63

Research Online is the open access institutional repository for the University of Wollongong. For further information
contact the UOW Library: research-pubs@uow.edu.au

https://ro.uow.edu.au/
https://ro.uow.edu.au/compsciwp
https://ro.uow.edu.au/compsciwp
https://ro.uow.edu.au/eis
https://ro.uow.edu.au/eis
https://ro.uow.edu.au/compsciwp?utm_source=ro.uow.edu.au%2Fcompsciwp%2F63&utm_medium=PDF&utm_campaign=PDFCoverPages

Preprint No 85-8

THE UNIVERSITY OF WOLLONGONG

DEPARTMENT OF COMPUTING SCIENCE

A CAMBRIDGE RING NODE CONTROLLER

Paul C. Bunn

Department of Computing Science
University of Wollongong

Abstract

This report glves a discussion of the
design of a peripheral controller chip to
interface a Cambridge Ring Node to a
MC68000 host machine using VLS| tech-
nology. The design of such a chip involves
following a design strategy. The strategy
used identifles what the Interface should
be capable of doing. developing a func~
tional description of the interface, mapping
the interface onto silicon and finally verify-
ing the design. The characteristics of the
interface and the design strategy. along
with the software used in the design, will
be discussed.

R e LR T o STt i |

UNIVERSITY OF

WOLLONGONG
LIBRARY

January 1985

P.O. Box 1144, WOLLONGONG. N.S.W. AUSTRALIA

telephone (642)-270-859
telex AA29022

Preprint No 85-8

THE UNIVERSITY OF WOLLONGONG

DEPARTMENT OF COMPUTING SCIENCE

A CAMBRIDGE RING NODE CONTROLLER

Paul C. Bunn

Department of Computing Science
University of Wollongong

Abstract

This report gives a discussion of the
design of a peripheral controller chip to
interface a Cambridge Ring Node to a
MC68000 host machine using VLSI tech-
nology. The design of such a chip involves
following a design strategy. The strategy
used identifies what the interface should
be capable of doing. developing a func-
tional description of the interface, mapping
the interface onto silicon and finally verify—
ing the design. The characteristics of the
interface and the design strategy. along
with the software used in the design. wilil
be discussed.

January 1985

P.O. Box 1144, WOLLONGONG. N.S.W. AUSTRALIA

telephone (042)-270-859
telex AA29022

A Cambridge Ring Node Controller

The Department of Computing Science
University of Wollongong

- Paul C. Bunn

Acknowledgements

1 would particularly like to thank my two supervisors, Dr. Richard Hartley for the
many hours of entertaining discussions on a wide variety of subjects and the router and pla
logic programmes which he wrote, without which the project would have never been
completed on time and Mr. Phillip McKerrow for his excellent supervision and valuable
suggestions on the different ways of approaching the more difficult aspects of the project.

There are quite a number of people that were involved at some stage during the
project particularly John Fulcher, Gary Kelly, Ross Nealon and Michael Milway. I thank
you all for your patience and advice.

1. Introduction

This report gives a discusslon of the design of a peripheral controlier chip to
interface a Cambridge Ring Node to a MC68000 host machine using VLSI technology.

The design of such a chip invoives following a design strategy. The strategy used
identifles what the interface should be capabie of doing. developing a functional
description of the interface, mapping the interface onto silicon and finally verifying the
design.

The characteristics of the interface and the deslgn strategy along with the
software used in the design will be discussed in the following sections.

2. The Problem

The problem is to design a peripheral controller chip using VLS| design tech-
niques. which will interface a Cambridge Ring Node to a host machine, such that the
host machine can initiate transmission and reception of data to and from the network
via the ring node efficiently. There should be three data transmission modes, status
handshake, interrupt driven and full duplex DMA. The target machine chosen for the
interface is the MC68000.

2.1. The Interface Hardware

Before discussing the characteristics of the controller chip it Is necessary to
understand the capabilities of and the differences between the hardware that is to be
interfaced. This section discusses the Cambridge Ring Node and the MC68000
hardware.

2.1.1. The Cambridge Ring

The Cambridge Ring is a local area communications system. it is a passive ring
network based on the empty slot principle. The ring is simply a single cable loop to
connect peripherals to a computer. Each peripheral on the ring communicates with
other devices by sending a 'mini~packet’ containing addressing information and data.
For a typical ring configuration see Fig. 1.

Terminal |
Diso J /\‘7\

Terminal
Mudtiplexor

I‘Iodém

-
—-——

Figure 1. A typlcal Cambridge Ring configuration.

The peripherals interface to the ring through a 'ring node’. The ring node has an
asynchronous bus as does the MC68000. The requests to send and recelve data to
and from the network are given to the ring node. The ring node has two data transmis-
sion reguest signals, one for reception of data (the read strobe), the other for
transmission of data (the write strobe). When data is to be transmitted to the network
the transmit signal must be asserted. Similarly, to receive data from the network the
reception signal must be asserted. Another signal of Importance that the node has, is
the Node Read or Write Acknowledge Signal. This signal is asserted by the node to
Indicate to the device that the ring nade is ready to. continue with the current opera-
tion.

There are two other handshake signals that are necessary to make correct data
transmissions and receptions. These transmit done and receive done signals indlcate
to the device whether the current receive or transmit operation Is complete. Thus a
device can monitor these signais to determine when a data transfer is complete and
therefore when to start the next data transfer (see Fig. 2 for receive request and
" transmit request timing diagrams).

The ring node also has an internal set of registers. These are accessed by read-
ing or writing to the node. The correct register is selected by placing the appropriate
address on the address bus.

The ring node has two signals which enable two error conditions to be monitored
by the interface chip. The first error condition uses the Transmit Error signal which
indicates that the last mini-packet transmitted was corrupted. The second errar condi-
tion uses the Transmit Clock signal which can be used to count the number of
transmission retries that have been Initiated for a single transmission and therefore
can detect unsuccessful transmissions (see Fig 3 for ring node interface). For more
details on the Cambridge Ring Network see The Polynet network manual [1).

T RO

ECHO:N ‘L T
00:P-0T:P i O 1)
oo:P-m:P———'—-‘@ - -
Yo o ?'B ECHO:N ——"‘/——

l b |18
RON:N

TON:N }

el [0

RTPO:N ffm
RTP1:N r

Figure 2. a) Node recelve request timing dlagram. b) Node transmit request tim-
ing diagram.

read gtrobe
WT -,
write 2trobe ’ +

ECHO €
read or write acknowledge
TON <€ Ring
tranzmit done Node

ROIN £
read done

RING

TCLK €

tranamit clock
TERR € >

trangsinit ercor
Mini Packet o———

Statuz Signals

Figure 3. Cambridge ring node device interface.

2.1.2. MC68000 Hardware

The MC68000 is a 16 bit state of the art micro-processor. It has 32 bit registers
and versatlle address modes. The bus structure Is asynchronous with a 24-bit address
bus and a 16-bit data bus.

The MC68000 has a priority driven Interrupt structure which allows any device to
speclfy an interrupt vector number from which the MC68000 caiculates the address of
the Interrupt service routine. If the priority of the pending interrupt is greater than the
current processor priority, the MC68000 will start up an exception processing
sequence (See MC68000 Advanced Information (2]). Figure 4 shows the interrupt ack-
nowledge timing diagram. The interrupt acknowledge consists of two parts, these
being the Vector Number Acquisition and the Stack and Vector Fetch. '

RIW \ / \
otAck . __/ \ / \
oeote———_ ") G
Feo-FC2 X 7 N
IPLO-IPL2 ' X
Last Bus Cycle of Instruction Stack IACK Cycle Stack and

{Read ot Write) PCL _} (Vector Number Acquisition) | Vector Fetch |
I‘—————""cssp) e > >

* Although a vector numnber is ona byte, both data strobes are asserled due to the microcode used for exception processing. The pro-
cessor does not recognize anything on data lines D8 through D16 at this time.

Figure 4. MC68000 Interrupt Acknowledge timing diagram.

For device addressing the MC68000 has four handshake signals. The first, the
Address Strobe, indicates to the device that there is a valld address on the address
bus. Secondly. the Lower Data Strobe indicates. depending on the state of the
Read/Write signal. that data may be placed on or latched from the data bus. The
Read/Write signal indicates to the device what the current processor cycle is. The
fourth signal, Data Transfer Acknowiedge. indicates that the data transfer Is com-
pleted. When the processor recognises DTACK during a read cycle. data is latched
and the bus cycle is terminated. When DTACK Is recognised during a write cycle. the
bus cycle is terminated. (see Fig 5 for MC68000 interface).

AS
addresa atrobe

LIS €
lovrexr data strobe
W £
read/write atrobe

DTACK
data transfer acknowledge

AN

MC68000

Figure 5. MC68000 device interface.

Another device compalible with the MC68000, which makes data transfers to and
from a device faster is. the MC68440 Duai-Channel Direct Memory Access Controller
_(DDMA), The MC68440 will perform memory-to~memory, memory-to-peripheral and
peripheral-to~peripheral data transfers. It has an asynchronous bus structure compa-
tible with the MC68000 microprocessor. The DDMA has two separate device interface
channels which have three channel-specific signals and two shared signals. The
channel-specific signals are the DMA request. DMA acknowledge and the device
ready signals. The shared signals are the Data Transfer Complete signal and DMA
done signal (see Fig. 6 for MC68440 Interface).

¢ REQO

DMA requesat

. ACKO €
Channel 0 DMA sckrowledge

PCLO
\\ device ready

DTC
data tran;;er complete 11C6 8440

DONE &
DMA complete
 REQ1 3
J DA request

ACK1 €
DA scknowledge

PCL1
device ready

L

Channel 1

A

Figure 6. MC68000 deceive Interface.

The DDMA is used in cycle steal mode. To Initiate a cycle steal transfer the DMA
Request signal must be asserted for two falling edges of the DDMA clock, When the
request is acknowledged by the DDMA the request line must then be released. (see
Fig. 7 for cycle steal timing diagram).

SO §) 52 S3 54 sk 50 87 S0 S) 52 83 S4 56 SO S7
CLK

BR /
:{d /

BCATK ey
AVAT { D § e X -J
K e\ / N~
REO '
AR e\ /
REO N~/
ACK1 N
L [— N) W o

'
!1———- Chennel © ——P|<—2 Clocks—b;i_—- Channel 1 —b‘

In this exampte, CHO is using burst requests and is al prionty 1, CH1 is using tycle steal requests and is at priority 0.

Figure 7. MC68440 DMA request timing dlagram, Channel 0 is using burst and
channel 1 Is using cycle steal.

2.2. The Interface

The Interface chip must co-ordinate data transfers between the ring node and
memaory using three devices (shown in Fig 8) such that the programmer can Initiate
data transfers easlly and effectively.

The Interface chip must be flexible In Its data transfer modes and should aiso do
transmlission error checking. The error checking utilises the transmit error and
transmit clock signals of the node. Error checking wlll make data transfers more reli-

able.
| PE3230 ll PE3230]

Ring Nede

Ring Nede

RING

160000 I
[—‘Lm"" Heder
Addrass Uus

) _J

-

e
Dola Bus

D T0 [/
CitHeuoook HGU440

Figure 8. Typical ring configuration encorporating the interface chip. -

2.2.1. Data Transfer Modes

The data transfer modes chosen are status handshake, Interrupt and DMA driven
data transfers. These transfer modes are discussed in the following sections.

Status Handshake should be the simplest of all three data transfer modes. To
access an internal reglister or initlate a data transfer by the ring node, the node must
be addressed explicitly through the interface chip. To initiate data transfers using
status handshake a ring node address should be placed on the lower two bits of the
address bus. The state of the MC68000°s Read/Wrlte signal will determine the direction
of the data transfer i.e. whether receive or transmit.

The next mode is interrupt driven data transfers. The Interface chip should have
four different types of interrupts. Two of these interrupts should be mini—packet receive
and mini-packet transmission interrupts. The other two interrupts should be the
transmission error interrupts. Each interrupt should have a priority associated with itin
respect to the other three. The order of priority is receilve , retry time—-out, transmit
error and transmit interrupt.

The interrupt request should be made by simply asserting an interrupt request
line and the response to the interrupt acknowledge signal asserted by the host
machine should be compatible with the standard MC68000 interrupt acknowledge
cycle. The MC68000 acknowledge cycle requires an interrupt vector number to be
placed on the data bus. Internal to the interface chip. the upper five bits of the vector
number should be software preset to allow flexibllity of the position of the interrupt rou-
tines in the host machine. The lower three bits of the vector number are specified by
the type of interrupt that has occurred (refer to diagrams of register contents in
Appendix 3 of the Users Manual.

The third data transfer mode takes advantage of the MC68440 DDMA. When using
the DDMA to make a data transfer the interface chip should controt transmission and
reception of data to and from the ring node without interrupting the processor. After
the DDMA and the interface chip have been correctly set up. the interface chip shouid
automatically generate DMA and node data transmission and reception requests to
transfer data to and from the host machine and the network. When DMA data transfers
are In progress the data transfer interrupts should be automatically disabled so that a
transfer interrupt does not occur (N.B. the error interrupts are not disabled). This will
allow the interface chip to interrupt the processor as soon as the node is ready to
transfer data when a DMA transfer is complete. Note that when doing DMA transfers
the interface chip will allow the programmer to access the node’s internal registers
and will also allow the programmer to initiate a recelve or transmit request. The
hardware does not stop the programmer doing this.

During any DMA transfer it is necessary for the interface chip to address the
node. For this reason the interface chip must have the address of the node stored
internally. This means that the address bus far the node must run through the inter-
face chip so It can be muitiplexed with the internally stored address during DMA
transfers to select the node.

The Error Checking should be interrupt driven or flagged. These two error condi-
tions make up the other two interrupts. Transmit error is set whenever the transmit
error signal Is asserted by the node. The transmit time-out error involves counting the
transmit clock and comparing the number counted with the preset maximum number of
retries. When this number is reached the error Is set.

To control the interface chip. and its data transfer modes.four internal registers
are required. The first register should store the current node status. that Is. the values
of the transmit and receive done signals, values of the mini-packet status signals and
two error condition flags. The second register should be reserved for the control of
the data transfer modes. The DMA and interrupt data transfer enable bits and the
address of the node (which are needed during DMA transfers). The third register
should be reserved for the two error condition interrupts and the upper five bits of the
interrupt vector number. The fourth should be used to specify the maximum number of
retries before a transmit time—out error is set.

-8 -

in summary, the interface chlp should aliow data transfers In three different
modes, Status Handshake, Interrupt and DMA transfers. These may be combined to
meet differing host machine configurations. To accompany the data transfer modes
there should be three registers for the Internal control of the Interface chip and one to
store the current node status. There should also be two error conditions that the
Interface chip should detect. transmit and transmit time-ocut errors.

3. Functlional Description

The Interface chip can be divided inio separate functional blocks (figure 9). These
blocks are the interrupt handling, address handling. transmit retry counting. DMA
reception and transmission, address multipiexing, status handshake and interface
control, and the registers.

ADDRESS INTERRUPT DHA
DECODING CONTROL MULTIPLEXOR
DILA READ REGISTERS
DI1A TRANSMIT DECREMENTER

Figure 9. The functional representation of the Interface chip.

The address decoding functlonal block (figure 10) determines whether the
interface chip Is addressed or if the ring node Is addressed. If the interface chip has
been addressed then the address decodlng must determine which of the Internal
reglsters Is being addressed and whether It is belng written or read. If the ring node Is
being addressed the address selects the node. The address functional block must
indicate to the status handshake and Interface logic what has been selected. It must
also determine when an Interrupt acknowledge is asserted and enable the appropriate
Interrupt vector number onto the data bus.

AQ S USE——

7 o,)) ——————> txiey
address line 0 determine if if chip selected tri state enable
chip selected determine which —_—
. . 3

Al s or node internsl register read reg 0 enable

addresa line 1 selected iz selected
rien
read reg 1 enable

A2 ———

address lite 2 rZen

read reg 2 enable
detertnine if read or write

A3 —3] L T3en

address line 3 from register read reg 3 enable

b—————3 wlen

C81 write reg 0 enable
chip select 1

wlen

write rég 1 enable

C}S;Z Toct 2 it interrupt acknowledge
chip gelec co s i b—————— waen
then chip iz gelected write rég 2 enable

N,

1ACK 2 — hien
;éxjt:;f)m étdgé hold rég 0 enable
AS 3 > hlen
addresg strobe hold reg 1 enable
e : — hl2en

o ‘ if 1 regiater is not hold 16g 2 enable

—— —rpa

read/write strobe se.lef:te.d ensure that > wcheel
it iz in hold gtate chip selected

LDg ——— nodsel

lovrer data atTobe node selected

Figure 10. The address decoding functional block.

The interrupt functional block (figure 11) determines when an Iinterrupt shouid
be set. If more than one Interrupt condition arises, the Interrupt logic must determine
which interrupt has the highest priority., and then set it. When the interrupt ack-
nowiedge is asserted the lower three bits of the interrupt vector number must be
ready to be placed on the data bus.

The Interrupt functional block is also affected by the DMA functional block.
Whenever a receive or transmit DMA transfer Is initiated the corresponding interrupt is
Inhibited until the DMA transfer is complete.

-10 -

rxen

read intexrupt enable

txen

transmit interrupt enable

riryen

retry time out enable

txen

rtryto
retry time out

rdn
read done

tdn

transmit dore

telk

transmit clock

terr

tranemit exrrox

bix

DHMA block transmit

interrupt

brx

DMA block receive

interrupt

N
v
determine if an interrupt > irq
> haz been enabled interrupt request
N
_ > radmao
| it a receive of tranamit disable DIA transmit
transmit error enable irderrupt haz been enabled
. delermine if it has been
4 blocked > err
transmit error
>
determine the priority of
> each of the interrupts N 40
intexrupt vector no. bit 0
2 ifen interrupt condition
ariges sgsert the IRQ 2ignal
2| and determins the lower 3
bits of the interxupt vector \ 41
N, : 7
7] nwanber and be ready to interrupt vector no. bit 1
place it on the dats buz
when IACK ie esserted
>
> d2
if 8 transmit error occurs interrupt vector no. bit 2
hY digable DIIA transinit

iack

interrupt acknowledge

Flgure 11. The interrupt functional block.

The transmit retry counting functional block (igure 12) consists of three
sub-sectlons, the transmit time~out register, the down counter and the comparator.
The value in the retry time-out register must be used to reset the down-counter latch
when the current transmlssion is complete. The down-counter must decrement the
value in the latch whenever sixleen retries have been counted for the current
transmission. When the value in the down-counter latch is zero the comparator must
set the retry ime-out signal to the Interrupt functional block.

TDN
Transwdt dove

TCLK
Transmit clock

if the node iz transmitting then
dearement the value in the decrement
latch every tithes TCLK ig asgerted
aixteen times.

if the value it the latch i2 zero

then azgert the retry time-out
zignal.

if TDN iz azserted cezet the vsiue

it1 the 1steh to the value stored

in the decrementer register.

—————SRTRYTO

Betry Time-out

Figure 12. Retry counting functional block.

-11 -

The DMA functional block (figure 13) consists of two parts, the DMA recseive and
DMA transmit loglc. This section handles the handshake bstwaen the DMA controller
and the ring node. One part handies the racelve data transfers and the other handles
transmisslon data transfers, The recelve logic is much the same as the transmission
logic except the transmission loglc walt for DTACK to be asserted by the memory.

if DMA transmit enabled then
block the trananit interxupt
when the twode iz vesdy to
tranamit denerate a DITA
request on REQO

when DTACK iz agzerted by
the methory denerate 8 hode
transamit request

whet the transmit request is
acknowledged assert the device
ready signal (PCLO)

when DMA iz DONE unblock
the tranemit interrupt and

reget the DMAT bit in the
central register

ACKO >
DMA acknowledge

DTC >
data tranasfer complete
DONE >
DA done

LDS >
lovrer data gtrobe
DTACK >
data transfer
acknowledge

ECHO . >
nnde read or write
acktwwledge

TDN - >
transtmit dote

RDN >
read done

DRX >

DIA receive enable

DTH

DMA transmit ensble

if DITA receive enabied then
block the receive interrupt

when the node has latched a
mini-packet generate a DIfA
request by asserting REQ1

when the DMA contreller assexts
ACK1 denerate a node READ

request

when the READ request is
acknowledged azsext the device
ready gignal {(PCL1)

when DA is DONE unblock the
receive interrupt and reset the

DIAR bit in the control register

> REQO

DI1A request 0
> PCLO
device ready

> REQI
DM A request 1
2 PCL1
~device ready
> RD
node read request
> WT

node write requeat

> BTX

7
block transmit interrupt

> BRX

7
block receive interrupt

> RSDMAR
reget DIIA receive

N

2 RSD1
reget DITA transmit

Figure 13. DMA functional block consists of two sections the DMA recelve and
DMA transmit functional block.

The status handshake and interface control functional block (figure 14) is.
rgasonably simple and is responsibie for asserting the Data Transfer Acknowledge

Signal.

nodeel
twde gelected

N

cgel
ohip soleoted

s

A Y

if chip ig gelected then
enisble DTACK pad and then
aggert DTACK

LIS
lower data ztrobe

W

read/write atrobe

N

ECKO.
twde read or write

7

N

AS
scknowledge strobe

DTACK
data transfer acknowledge

if node is selected then
enable DTACK ped

> ENDACK
enable DTACK pad

hY

detertiine if read or write
requert ig generated

whett ECHO i2 aggerted
aggert DTACK

node write re&uest strt}gg

N

> RD
node read reqguest strobe

Flgure 14. Status handshake and Interface control functional block.

a)
PROCESSOR - RING NODE RECEIVE/TRANSMIT HANDSHAKING SEQUENCE

PROCESSOR INTERFACE NODE

1. Processor Asseris AS

2. Processor Aserts LDS o
3. Interfsce initates

Node transmission.
4. Node asserts ECHO
5. Inlerface asserts
DTACK

b) PROCESSOR - INTERFACE CHIP READ/WRITE HANDSHAKE SEQUENCE

PROCESSOR INTERFACE

1. Processor Asseris AS

2. Processor Asserts LDS 3 Interface Asserts

DTACK
€) DMA-NODE DATA TRANFER HANDSHAKING SEQUENCE
Receive
DMA CONTROLLER INTERFACE CHIP NODE

1. Tranmission Complete

2. Initiate a DMA request RDN asserted

3. Acknowledge Request asser{ REQ!

ACK 1 asserted 4.Generate & receive

request assert RD
5. Assert ECHO

6. Assert DMA device ready

PCL1
7. DMA complete assert

DTC.

DTACK

DMA-NODE DATA TRANFER HANDSHAKING SEQUENCE
Tranamit
DMA CONTROLLER INTERFACE CHIP NODE

1. Tranmission Complele
TDN asserted

2. Initiate 8 DMA request

3. Acknowledge Request assert REQO

ACK 0 asserted 4.Generate atransmit

request assert wWT
5. Assert ECHO

6. Assert DMA device ready

PCLO
7. DMA complete assert

DTC.

Flgure 15. Handshaking for-a) Status handshake transfers. b) Read/ Write
Interface chip, ¢} DMA transters

Figure 16. a) DMA recelve state machine, b) DMA transmit state machine, ¢}
Status handshake and interface control stale machine.

{Lus>

= STATS.DTL.ECHOIN)

(JoeD

TES) { walt Stote)

vies)

{DHAIN>
[block ra interrupts }

STAF[I '

QNN
{ esserl NEQY)

ACK 1)
{ nssert DMACYE
disussert REUI)

{ ussert L:N)

{BTEY
{ disvssert HD:N }

Wrey
{ remove DMACYC)

{DUHEFLAG)
[resut dime \n reg }

SiaTEs)

KLDE)

{ unblock rx Interrupls)

FLAG = DURE + DUNEFLAG.LDS)

STATE O

{DHALUT

{ block tx Interrupts }

{TON:P STATE | }

STAT

(uTAuo@E\TE 3)

{DTACKY

Lrey S5TATES

DTT>

OTE |

CACK O

TATEG
Te)

CTON:ND

{ assorl NEUQO)

{ ussort DHACYC
disagsarl REQO)

{ Woll Stato)
{ nsserl WT:N)

{ disussart WT:N }

(remove DHACYC }

oo (Jomarer)

{os>

(PCLO = STATS:OTCSECHO:N)

QDUNEFLAG)

{ roset dma out rey }

{ unblock Ux Inlerrupis)

{ DUREFLAG = DONE + DONEFLAGLDS)

(WT:N =
(no:N

{ ENDTALK =

{D5n/WesTATEZ)
T)B A/W STATE2)
{ DTACK = ECHU:NsSTATE2:[D53TATE!)

STATE2 + STATEI)

—DUNEFLAU

|o’6‘nz‘ FLAL

...'|2_

The multiplexor is a 4 by 2 to 1 muitiplexor.it has one Input control signal that
determines If the DMA address Is jammed onto the address bus. This signal is
asserted by the DMA logic when the node Is addressed for a data transmission.

The last functionai block conslsts of the other registers. The functions of these
were discussed earlier. :

External to the interface chip are the data bus Interconnections. The ring node
data bus Is external to the Interface chip. This bus has a bi-directional buffer which
controls the direction of the data transfer. This was made external to reduce chip area.
Data on the bus Is of no Interest so with respect to the Interface it is better if It Is exter-
nal.

3.1. External Timing

Another Important stage In the functlonal speclfication Is the checking of the
event sequence during a particular data transfer. These sequences were checked by
drawing the timing dlagrams for the interface chip with the constraints of the external
hardware placed on it. The bus handshaking for the data transfer modes are shown in
Figure 156 with the chip and node access and the interrupt acknowledge handshaking.
Timing dlagrams for these sequences can be found in the Interface chip users
manual.

3.2. State Diagrams

The DMA., status handshake and Interface control functional blocks are low level
handshake sequencing logics (or sequential machines). These are known as finite~
state machines and consist of a flnite number of states with ‘rules’ for transitions
between the states.

The DMA functional block Is really two separate state machines. These state
machines keep track of the current state in the DMA and data transfer handshaking.
These two machines are quite similar except that the DMA transmit state machine
walits on DTACK to be asserted by the memory before allowing the cycle to compiete.

The status handshake and interface control state machine is reasonably simple.
Its task Is to assert DTACK when either one of the Interface chip’s internal registers Is
accessed or during a status handshake data transfer. These state machines are
shown in figure 16a, 16b and 16¢.

4. Chip Design

The design of the chip really consists of mapping the functional description onto
silicon. However, before proceeding it Is necessary to formulate a layout strategy. The
strategy used In this design is the same as that used in PLAs. All control runs at right
angles to data (Fig. 17 iliustrates this strategy). This allows data to travel in one direc~
tion in one layer and-data to travel in the other direction In a different layer. Thus con-
trol can elther affect data or 'pass over it'.

Control

Lata

N
V4

N/

Figure 17. The layout strategy. Data runs at right angles to control.

Keeping this strategy In mind, the leaf cells developed for each functional block
should reflect this. In the following sections each functional block will be discussed [n
terms of its "slilicon representation’.

Figure 18. The logical representation of the state machines, a} DMA receive, b)
DMA transmit. ¢) status handshake and interface control.

rstole0 = rslole0 «DFAIN + rstote6s LD5;
rstale} = ratote0°DMAIN + rstate]« RDN:P;
+ rstateS+DTC DONEFLAG;
rstate2 = rstalel « RDN:N + rstate2+ACKI;
rslale3 = rslate? *ACK1;
rstated = rslate3 + rstated-UTC,
rotateS = ratuted +JTC + rstole5+07C,
rstate6 = rstateS5-DTC BONEFLAG + rstate0*LDS;

BRX = rslote0+UMAIN + rstotels RON:P +
relate! « RDN:N + rstute2* ACKI +
rslule2+ ATKY + rslute3 +
rstate4+0DTC + rstated . UTT +
rstote5-07C + rstute5<DTC +
retateSs DTC+DONEFLAG + rstoteds LUS;

REQT = rstale! *RON:N + rslate2+ACKI;

DMACYC = ratute2+ ATK] + rstote3 +

rstated.DTC + rstoted.DTC +
rstate5-DTC;

RO:N = rstute3 + rstoted+UTC;

PCLI = rstotede UTCECHO:N + rstute5: 07T

RSDMAR = rslale5 « DTC- DONEFLAG;

DONEFLAG = DONE + DONEFLAG-LDS;

&) stote = stote0-DMAGUT + state7- (D% +
stalel = stole0-DMAOUT + state| sTON:P
+ stole6DTC+ DONEFLAG;

stute2 = state! «TDN:N + state2+ACKO;
stute3 = slate2+ ACKU + state3°DTACK;
gtaoted = slute3DTACK;

slule5 = sluted + stateS<DTC;

sluteb = stuteS5-UTT + state6+DTC;
stote? = stute6-DTC+» DONEFLAG

+ stale? LDS;

BTX = sloleQ«DMAOUT + slatel - TOND +
statel « TUN:N + state2+ ACKO +
state2+ ACKU + stote3+DTACK +
slate3*DTACK + stated + state5:
DTC + state5+DTC + state6+0TT +
atlole6G+0TCy DONEFLAG + stalebe
DTC + slule7 + LDS;

REUO = slulel +TON:N + state2+ ACKO;

DMACYC = stule?2+ACKO + state3-DTACK +
stole3 DTACK + stated + stateS5:
DTC + stoteS+UTC + state6+DTC;

WT:N = sluled + slute5.DTC;

PCLO = state5 - DTC.ECHON;
RS0MAD = slule6+-DONEFLAGDTC,

DONEFLAG = DONE + UONEFLAG-LDS;

€) stuleU = (iiGUSEl - Ehipsel + statel.iodsel +

stote2.chipsel) reset

statel = (stateO.nodsel + statel-nodsel).reset
stute2 = (stuleO+chipsel + state2s+chipsel)sreset

WT:N = [D3A/We9TATEZ
RD:N = (D3 R/® STATEZ

DTACK = ECIUNSSTATE2.LUS5TATE!

ENDTACK = BTATE2 + STATE}

- 13 -

The Interrupt functional block and address decoding tunctional blocks are
Implemented using Programmable Logic Arrays (PLA). A PLA was chosen since the two
sections are simply combinatoric logic and therefore are suited to a PLA. A PLA Is also
saslly modlfled and regular in shape and complies to the averall layout strategy. The
logic for a PLA (see Appendix 2) is passed to a loglc simplification programme ‘simpl’.
Simpl produces as output, input to ‘plalog’ which generates a truth table to be used
as input to “plagen’ (simpl’, *simpl2’ and ‘plalog’ were written by Dr R.| Hartley).

DMA recelve and transmit and the status handshake and interface control
functional blocks consist of three state machines. The best way of Implementing state
machines in nMOS technology Is with a PLA. The three state machines are shown in
Figure 16. If these three state machines are examined carefully It can be seen that
there are quite a number of common Inputs and outputs. Therefors, if these state
machines are merged into one PLA only one signal line is needed for a common sig-
nal, thus eliminating a large amount of routing.

The state machines must be converted from their graphlcal representation Into a
logical description suitable for Input into the logic simpilfication programmes. To do
this each state machine Is considered separately. The flrst step is to give each state a
binary representation which Is unique In the minimum number of bits possible. The
logic for each state and the logic for state transitions is then extracted from the
diagram. Each logical description Is shown in figure 18 (see also Appendix 2). These
logical descriptions are then merged into one logical description keeping the state bits
of each separate.

- 8o far all the functional blocks have been Implemented using PLAs. However a
PLA cannot be used as a reglster. The register cells need to readable and writabie
and sit neatly on the data bus. Further, these register cells must comply with the
overall layout strategy. The best approach is to firstly consider the register in a func-
tional form and then proceed to the layout detalis later. Figure 19 shows a functional
representation which allows the register to stack such that control runs a right angles
to data. Thus each register conslists of the correct number of reglister celis stacked
harizontally.

¥ oL L
R 0 A nf
I G T 1 E }
4 F < H i a !
DATA BUS R -

i
wwry sl wreird e arehe] cvwiar] i ey
Magagy] nqapt | canage] e | sanagy| Loy} sanegy| mgan

Figure 19. Functional representation of a register.

As shown In flgure 19 the reglister can be dlvided Into three parts, the ioad control
multiplexor, the basic storage latch and the write data bus logic. The foliowing sections
will discuss each of the registers.

The node status register simply stores the current values of the ring node sig-
nal discussed eariler and the error flags. Therefore no multiplexor is required and the
basic register celi with the write bus logic Is needed (note the write bus is a pull up
bus). The circuit dlagram is shown In figure 20.

]4

g, CLOCK @, CLOCK WRITE |

LMEUT A 4

[£ PULL UP
OUTEUT o J

A

=

Figure 20. Clrcult d‘lagram tor the node status register.

The control register has to latch the value that is written to It from the Input data
bus. Therefore the register must recycle the value stored, and must be able to load a
new value. The DMA control bits In this register must be capable of being raeset by the
DMA logic. To satisfy this the registers must have two different multipiexors with reset
and six without. Figure 21 shows the clrcult diagrams of the two register cells that
make up the controf register.

HOLD RESET LA @, CLOCK §,CLOCK WRITE1
INPUT A 5 4
—1 i o
QUTFUL
4:1 J
19 | 1
h . |
il r’ u 1
L 4:1
(a)
HoLD LA ©, CLOCK §,CLOCK WRITE1
INPUT A . 4+
+—1 E‘Q PULL UP
QUTEUI

}%
A

r.ﬁ_

(b)
Figure 21. The two register cells that make up the control register, a) register
with reset and b) register without reset. '

- 15~

The interrupt vector register Is a read/write register and no bit is reset by
internal logic as In the control register. Therefore., only a simple multiplexor is
required that will aliow the register to be loaded and recycle the stored value. However
since the upper five bits of the register stores the upper flve bits of the intarrupt vector
number, it must be possible to enable these flve bits without enabling the lower three
during an interrupt acknowledge cycle, To mest this criterla the register must have two
write control lines to the upper five bits (see Fig 22 for circult dlagrams and Fig 21b).

HOLD LA @, CLOCK §, CLOCK WRITE! WRITE 2

INEUT A . 4

+— li[,; PULL UP

-gﬁ“_
¢ L ?_Er—»

QUIFPUT

L

Filgure 22.0ne of the two register celis that make up the interrupt register, note
the two output bus pull downs,

The counter register Is a normal read/write register. The value in this reglister
must be used to reset the decrementer latch. Therefore the muitiplexor must facllitate
this (see Fig 21b for circuit diagram).

The decrementer consists of three parts, the latch. the comparator and the
decrementer. The latch must be situated next to the counter register’'s muitiplexor so
that it can be reset. The decrementer must be situated next to the latch so the values
In the latch can be decremented. For these reasons the best approach to the design
of the decrementer Is to design it so that It will fit across the data bus with the other
reglsters. The comparator should also be designed in thls way since it must detect
when all the values in each of the elght latches are zero.

The latch must be decremented every ttime TCLK Is asserted for each transmis-
sion and be reset when the transmission is complete. The logic to count TCLK, to reset
the decrement latch and set the retry-time out signal was implemented with a PLA,
The logical representation Is shown In Appendix 2.

: The functional block specifications must now be piaced on silicon. The functional

blocks cannot be randomly placed since they need to be routed together and to the
input and output pads. To have a reasonably good guide of the placement of each
block a fioor plan must be developed.

The floor plan must show the relative sizes of each of the functional blocks with
respect to the others. The positions of the input and output pads must also be decided.
Figure 23 shows the floor plan for the Iinterface chip. A major part of the floor plan Is
taken up by routing channels which shows the proportion of routing that has to be
dons. All the functional blocks were placed so that the routing could be done automat-
lcally.

Since the distance from the contral PLA (l.e. interrupt and address PLAs) to the
DMA and status handshake PLA and the distance from the end of the data path to the
pads Is considerable, buffers are encorporated to drive the signals through the full
distance of the wire. This makes the considerably faster and more efficient. At thls
stage the routing of power and the clock should be considered. As can be seen In Fig-
ure 23, Vdd and Vgnd are diametrically opposite each other. This allows Vdd and Vgnd
to run to all parts of the circuit without crossing each other. Simllarly with the clocks,

LDS | AS [tack]cszlcstr] a3 | A2] a1 | Ao
ADDRESS PLA ROUTING CHANNEL
PHI2
- RETRHY ADDRESS '
Ry] DECUDING
COUNTER | | NTERRUPT CONTROL GND
PLA PLA M
PLA i
DTACK
AO:P
PHI SIGNAL ROUTING CHANNEL Al:P
A
D7 SUPERDUFFER DLOCK 8 A2:p
2 A RUUTIMG CHANNEL T
D6 T 0 I | A3p
U B REGISTER N
A U G
e T _
b3 B | F AND TERR
U F DECREMENTER
G N E
D4 3 .
FI G R ULULK TCLK
5
0
D3 U IRQ
T ROUTING CHANNEL
D2 | RTP:
N n !
6 0 A -
D1 0 RTP:
U U 0
T CONTROLLER ;
D | BPA
°1 N PLA ! _
G N
G Ytpn
RESET
VDD ROUTING ROUTING [INVERT] ADN
ACKOlACK | DTC |DUNE{ECHU| WT | AD [PcLolPCLt{REQO REQ1

Flgure 23. Floor plan for the interface chip.

]6.

the pads for Phil and Phi2 were placed opposite each other.

Before the floor plan Is complete the positions of the registers and decrementer
in the data path must be declded. Varlous signals must be routed from the register to
other functional biocks, therefore adequate space must be left between the varlous
registers so that these signal can be routed. Not only do signals have to be routed
from the reglster cell but they also have to be routed from the control sectlon across
the data path to the DMA and status handshake section. Figure 24 shows the block
diagram for the data path.

C D I C N
1] E N 0 0
U C T N D
N R E xr T R E R
TE E R g R E E
E 5 1 R g 0 G s G
R E U 1 L 1 T 1
“ N P 3 g A 5
LT T T T T T T
E E E E u E
R R R R 5 R

Figure 24. Block diagram of the data path.

The floor plan Is a major part of the whole design process. A badly designed fioor
plan will make the routing difficult and thus increase the amount of time spent on the
layout.

The last important stage that must be considered before the final detalls of the
layout can be completed is the internal timing sequences. These sequences are
Important since It is essential that data arrives at its destinatlon at the right time and
on the right phase of the clock. Figure 25 shows the internal timing diagrams for the
interface chip. The method used in this diagram Is the same as that used by Hartley
[4]. The timing sequences are expressed using modified petri-nets. The harizontal
lines are the events, the green line represents phil and the red line phi2, The length
of the blue line indicates the reiative time taken for the signal to reach It destination.

MhE e

°"‘_"Pz

PEcODE

Ov“\(, L\P
LATCH RFGTSTERS

pPECoDgE

O{IcLl'P
Figure 25. Internal timing diagram for the interface chip.
Now that the positions of the functional blocks have been finalised so too can the

layouts for the various functional blocks. The layout for each of the above functional

blocks is shown in figure 26. These layout are arranged to refiect the floor plan and

shown the relative sizes of each functional block. The routingl between the func-

tional block was done automatically using a routing programme written by Dr

R.| Hartley. '

Before the design can be fabricated it must be verified using software tools. The
PLA were easy to verify using a programme ‘simul’ which allows values to be assigned
to the inputs of the PLA and shows the outputs. The address decoding. interrupt,
DMA-status handshake and interface control PLAs were verified using this programme.

Verifying the PLAs by themselves does not give complete verification that they will
work since the have to work when connected to the. pads. clocks and power in the
actual circuit. Not onily do the PLAs have to verified under these conditions but this is
also the case with the register block and decrementer must be. When the layout was
completely finalised the programme ‘unswim’ was used to simulate the whole inter-
face chip from the pads.

5. Design Procedure
The design procedure used consists of twelve important steps. These are:

- specification

- functional description

- external timing dlagrams

- state diagrams

- layout strategy

- sllicon representation of functional blocks

]8.

~ floor plan

- final layout of functional biocks
- layout composition

- design rule checking

- functional block simulation

- complete layout simulation

The specification is a description of what the capabllities of the interface chip
should be. The specification covers the data transfer modes and the error conditions
that shouid be considered along with the hardware interfaces. The detalls of the inter-
nal register contents and addressing conslderations are also declded upon. Externail
bus connections also need to be considered since It should be decided If the various
buses really need to run through the interface chip.

The functional description addresses the individual functions of the interface
chip. For each Indlvidual function a functional representation is developed and is
expressed in a diagram. The interactions between these functional blocks are also
constdered. It is Important that the functional separation is clean and logic in the indi-
vidual! functional block Is in its simplest form. This means any control sequences must
be Identified and represented as state dlagrams.

Befare the functional design can be mapped onto silicon it Is necessary to have
some sort of layout strategy that guides the way in which sach functional description
is mapped onto silicon. The layout strategy should also dictate how the silicon func~
tional blocks are put together. It Is Iimportant that the strategy is well understood and
that each functional block complies to the strategy.

Once the layout strategy has be decided upon the individual functional blocks can
be mapped Into their silicon representation. The approach taken in this design was
to identify combinatoric logic and state machines and Iimplement them with PLAs which
proved to be a good idea. The only other considerations were the registers. The regis-
ter cells must comply with the overall strategy and be easlly butted together to give a
neat register. The individual register cells were first represented in a block form
showing the paositions of the input and output signais. After the block representations
are finalised the internal circuitry is specified.

Now that a relative Idea of the shape and size of the Individual functional blocks
siticon representation has been gained a floor plan needs to be drawn up. The floar
plan should consist only of blocks representing each of the functional blocks and their
relative sizes. The functional biocks should be arranged so that they comply to the lay-
out strategy. Not only should the position of the internal functional block be decided
upon, but also the routing of the signal between them and most importantly the routing
of the two phase clock. Vdd and vVgnd. The position of the functional blocks decides
the position of the input and output pads. Obviously, if a signal to a functional block
comes from or goes to a pad then it Is desirable for that pad to be as close as possi-
ble to the functional block to make routing easler and reduce delay times.

Now that the position of the functional blocks relative to each other is defined,
which therefore defines the position of the input and output signals for each functional
block. the final layout for each of the functional biocks can be decided upon. Each of
the state machines and combinatoric logic blocks are easily generated with their input
and output signals In the right places since they are PLAs and are automatically gen-
erated from a logic specification. However, the register cells, decrementer and muiti~
plexor are different. These need to be considered carefully, the layouts for each of
these should take up as little area as possible. The layouts are first represented as
stick diagrams and are the drawn as complete layouts. These layouts are then mapped
into the layout language BELLE as separate definitions.

Once all the layouts for the functional blocks have been completed all that
remains Is to connect them together. The composition of the layout Is relatively
straight forward. The approach taken Is firstly to lay the bottom row of pads. then the
left side pads followed by the state machine PLA and the data path, The data path and
state machine PLA were routed together and then to their pads. When this was com-
pleted the rest of the pads, counter, address and Interrupt PLAs were laid and then

.-.]9_

finally the multiplexor.

After the layout had been completed it was then tested for design rule violations
with the design rule checker. Any design ruite violations are fixed with the graphics
editor.

The next step was then to simulate the pleces. This step should have been done
before the layout composition. The reason it was not done at this stage was because
the software was not avallable for use. If the simulation was unsuccessful then the
functional block was corrected with the graphics editor.

When all the pieces simulated successfuilly the whole layout was then simulated
from the pads to ensure that all of the routing was correct. If any mistakes were
encounted then the mistakes were fixed using the graphics editor.

6. Software Tools

There are a number of software tools that were used in the composition of the
Jayout. The tools consisted of CSIRO’s VLSI software. developed during the CSIRO VLSI
programme. PLA logic simplification and simulation programmes and routing pro-
grammes developed by Dr. R.I Hartiey for this project. Graphics editor and verification
tools at NSW JMRC were also used In the later part of the design.

The CSIRO VLSI design suit conslists of a layout language BELLE, a CIF file sum-
mary programme for use with BELLE called GETSYMBOL, a PLA generation pro-
gramme PLAGEN and a CIF plotting programme VIEWCIF. BELLE proved to be very
useful. It is a reasonably powerful layout language for describing leaf cells. It is a
language which is embedded in pascal and therefore has all the programming con-
structs that that pascal offers (see Appendix 3). All the leaf cells for the layout are
described in BELLE. The difficulty arises with BELLE when the leaf cells have to be
merged Into the complete layout. This was solved by the development of a router which
was intergrated into BELLE by Dr. R.l.Hartley. GETSYMBOL Is more or lass part of
BELLE.

The PLA generation programme, PLAGEN, proved to be useful since the PLAs
are automatically generated free of design rule errors. This saves vast amounts of time
and allows the PLA to be easlly modified without much worry. There are however, a
number of undesirable features with PLAGEN. The low level PLA specification, i.e a
truth table, can lead to incorrect specifications for large PLA's, due to the number of
1's and 0’s that are needed to specify the PLA (see PLAGEN users manuab. This
problem was solved by Hartley by developing the PLA logic speclfication programmes
simpl and PLAlog. These take a high level description of a PLA and produce a truth
table sulitable for input to PLAGEN (see PLA tutorial). PLAGEN also produces a stan-—
dard PLA and does not allow for the user to easily specify different input and output
pull up ratios to cater for large delay times across the and and or planes in large PLAs.
Another feature which Is undesirable concerns the fact that when PLAs become large
PLAGEN does not change the metal thickness for Vdd and GND power lines. These
features could be easily encorporated in PLAGEN without too much worry and hence
produce better PLAs.

VIEWCIF Is a necessary piece of software. without which the design could not be
checked visually.

Simul the PLA simulation programme was very useful. It enabled all the PLAs to
be verified before they were finally encorporated into the layout.

The software used at JMRC conslisted of a design ruie checker. a graphics editor
and a simulator. The design rule checker, Irc. identifled design rule violations that
went unnoticed during visual checking. Lrc proved to be be very useful since It
detected a number of errors. The graphics editor KIC was also very useful since it
allowed all the design rule violations to be fixed quickly. The simulator unswim used to
simulate was fairly effective. It was not excessively slow and gave good results. The
only undesirable feature is Its input format. The input Is specified with 1's and 0’'s
which are used to indicate a signals’ state. This becomes confusing and messy with
large simulations. The interface could probably be improved by either developing a
simulation language or some sort of graphics Interface that allows timing diagram like

20

specifications.

Generally, | found the software to be reasonably adequate but BELLE became
more and more tedious as the layout grew. The routing. PLA iogic and PLA simulation
software was particularly useful. For a layout of this size. a good graphics editor and
simulator are essential from the start.

7. Testing

After the chip has been fabricated It is necessary to test that it will function
correctly. Firstly, the CRM68000C users manual in Appendix 3 should be read. The
simple operations should be tested first. An Important point to note is that the inter-
face chip should always be reset by asserting the RESET signal before each test. This
will ensure that all the state machines are In their inltial states.

The first function to test is writing to an Internal register of the interface chip.
The control register would be the best, just be sure not to enable interrupts or DMA,
just set the Node address . If this seems successful then read from the register and
compare it with the value stored. If this works then do it with the interrupt register and
the counter reglister. The Node Status reglster Is read-anly so just read it.

The next function to test is Initiating a data transfer by the ring node. using status
handshake driven data transfers. Test both transmit and recelve operations (see Users
Manual Sect. 2.1).

The next function to test is the Interrupts. Firstly, determine the position of the
Interrupt vector addresses (see MC68000 Advanced Information). Next, store up the
five most significant bits of the interrupt vector address in the five most significant bits
of the interrupt vector reglister (see user manual Sect. 2.1). Next, enabie the interrupt
control bits in the control register. The Interface chip will then interrupt when a packet
Is latched into the node or If the node is ready to Initiate a transmission.

If the MC68440 Dual-Channel Direct Memory Access Controller Is available then
test the DMA transfer modes. To do this the correct address to access the node must
be stored in the four most significant bits of the contro! register. Then enable the DMA
data transfer bits in the control register. Next initialise the DMA controlier so that it wiil
transfer x bytes from a given memory location to the transmission channel. This will
test DMA transmission. To test DMA reception initialise the DMA controller such the x
bytes is transferred from the reception channel of the DMA controlier.

If all these modes of operation function correctly then combine the different
transfer modes. For example, transmit data using status handshake and receive data
using DMA, receive data using interrupts and transmit data using DMA (see also Sect
2.1 in the Users Manual).

The final checking necessary consists of testing the two error conditions. These
must be tested in two ways, firstly by, simply reading the node status register (see Sect.
7.1 in the Users Manual) and secondly with the interrupts enabled (see Sect 7.3 in the
Users Manual). To test the mini—-packet corruption error hoid the TDN pin high and
pull the TERR pin low. Similary to test the retry time-out error, load the counter regis—
ter with ane and hold the TON pin high and pull the TCLK signal low sixteen times.

As far as baslc error checking goes this is about it. More complicated data
transfer mode switching and special case testing should be done.

Conclusion

The design approach used in the design of the interface chip proved to be rea-
sonably successful. Starting with the development of a functional description, and then
verifying the functional description by drawing the timing diagrams is a good method
of verifying that the design. when implemented, will work. Choosing a layout strategy
and developing an internal timing model for the layout is essential. The composition of
the layout is particularly dependent upon the software tools and hardware avallable. A
good graphics editor, layout language. router. PLA generator and simulator are about
the minimum software requirements needed to design a reasonable chip. A good
graphics computer or CAD system would not go astray.

i

il

---------- ~

li—oc == = s o = i
o [
t. Computing Sclience.
Ivarelty of
e d ,4:
x i » i 4
| = 5
e
\
By A
ol
e P,
e /’
— = - s !
T i ! |
i {i B
— ‘\ h il b f

Figure 26. The interface chip layout.

REFERENCES

()
@
€))

4
6))

Logica VTS Limited (1981) Cambridge Ring Network Manual
Motorola (1983) MC68000 16-8it Microprocessor, Advanced Information

Motorola (1984) MC68440 Duai-Channel Direct Memory Access Cantrolier,
Advanced Information

Hartley.R.l. (1983) Z-80 Muitiplier Chip

Mead, C. Conway. L. (1980) Introduction to VLS! Systems 1st ed. Addison-Wesley
Inc. Phillippines.

Appendix 1
Layouts of standard cells.

REGCELL VLSI Leaf Cells REGCELL

NAME ,
regcell ~ general purpose reglster cell

DESCRIPTION ,
Regcell 1s a general purpose static register ceil which is Phi1-Phi2 clocked, It is
designed so the Input can be muitiplexed. Thus the register can have many Inputs
form a number of sources one of which must be the register itself, since the value in
the register must be recycled. The reglster cell has two buses, the input bus and the
output bus. The output bus must be a pull up bus since the write logic Is dependent

upon this.
LAYQUT
N/ |]
\/i
L | JT A5 1
C {] X X =
]
C & I
r E f e
> N
[[il
. Ty : T 1
X

7th Edition visl cells

REGCELL VLS8! Leaf Cells REGCELL

CHARACTERISTICS
size: 72 by 47 Lambda.

inverter raitios:
inverter 1 4:1
inverter 2 4:1

bus pull down ralto: 2:1

input capacitance:
7 square Cg.

resistence of bus pull down:
8 square Rg
TESTING
Fully simulated with unswim 2,0 and design rule checked with irc.

AUTHOR
Paul C Bunn
University of Wollongong

tn Edition visi cells 2

DECREMENTER VLSI Leaf Cells DECREMENTER

NAME
decrementer - rippie carry decrementer

DESCRIPTION
Decrementer Is a rippie carry decrementer. lts Is designed to be compatible with
regcell. An appropriate multiplexor should be designed to interface the decrementer
to the register cell or latch. It is important to note that buffers shauld be placed
between each decrementer cell since the time taken to ripple accross the can data
bus is quite substantial espically for more than about 4 bits.

LAYOUT
L =1
X S X X X J AT N

DECREMENTER VLSI Leaf Cells DECREMENTER

CHARACTERISTICS
size: 91 by 47 Lambada.

inverter raitios:
inverter 1 4.1

Input capacitance:
7 square Cg.

TESTING
Fully simulated with unswim 2.0 and design rule checked with /rc.

AUTHOR
Paul C Bunn
University of Wollongong

7th Edition visi cells

1 Jll ...l l] J 1
g LEE, SR 11 N J
= d) i
| R TR | || |8 1 ; -
L5 8 || e oo
D TR u T hm. | [| L m i IR X |
=[] lm,__u:.-.hn.Hmna i =] .n_m;wm‘ b? mmw
o ! w , _“N (AN O 1 .»,_w A 1R O D I8 O O
=] 3 : = 5] — o = o 1
{ I 1 1 1 L1
Eu I 1 1 11
= = =

Appendix 2
Logical descriptions of PLAs.

Interrupt PLA logic.

%input

rxen /* receive interrupt enable */
rtryen /* retry checking interrupt enable */
txen /* transmit interrupt enable */
terren /* transmit error interrupt enabie */
rtryto /* retry time out */

rdn /* receive done */

tdn /* transmit done */

teik /* transmit clock */

terr /* transmit error */

brx /* DMA block receive interrupt */
btx /* DMA bilock transmit interrupt */
lack /* interrupt acknowledge */

intl /* Interrupt state bits */

int2

Int3

int4

Y%output

int4

int3

int2

intl

irg /* interrupt request */

rsdmao /* reset DMA transmit bit */

err /* transmit error */

do /* interrupt vector number bit 0 */
dl /* interrupt vector number bit 1 */
d2 /* interrupt vector number bit 2 */

Y%specification

intl = —rdn.rxen.-brx;

int2 = rtryto.rtryen;

int3 = -tclk.—terr.terren;

int4 = -tdn.txen.—btx;

Irg =Intl +int2 + int3 + int4;

d0 = -lack.int3.—int1.-int2 + -iack.int4.-int1.~-int2.-int3.
d1 = -jack.int2.-int1 + -lack.Int4.~int1.-Int2.-int3;
d2 = -lack.int1 + —lack.int2 + —lack.int3 + —lack.int4;
err = -tclk.~tarr;

rsdmao = int3.-int2.-int1;

Address decoding PLA logic.

%input

a0 |, _ /* address line 0 */

al /* address ling 1 */

az /* address line 2 */

a3 /* address line 3 */

csl /* chip select 1 */

cs2 /* chip select2 */

lack /* interrupt acknowledge */

as /* address strobe */

w /* read/write address strobe */

ids /* lower data strobe */

%output

trien /* tristate pads enable */

roen /* nodes status register read enable */
rien /* control reglster read enable */

réen /* interrupt vector register read enable */
r3en /* decrementer register read enable */
wlen /* control register write enable */

w2en /* Interrupt vector register write enable */
w3en /* decrementer register write enable */
hOen /* control register recycle enable */

hlen /* interrupt vector register recycle enable */
h2en /* decrementer register recycle enable */
chsel /* chip selected signai */

nodsel /* node selected signal */

%definitions

csel = -as.csl.-cs2.a2.a3;
nsel = -as.cs1.~cs2.-a2 + -as.cs1.-cs2.-a3;
reg0 = csel.—al.—al.-ids;
regl = csel.a0.-al.~Ids;
reg2 = csel.—al.al.-lds;
reg3 = csel.a0.al.-ids.
readOen = reg0.rw;
readlen = regl.rw;
read2en = reg2.rw;
read3en = reg3.rw.
writeOen = reg0.-rw;
writelen =regl.-rw;
write2en = reg2.-rw;

‘Y specification

rQen = readOen.
rlen = readlen;
r2en = read2en;
r3en = read3en:;
wlen = writelen;
wien = writelen;
w2en = write2en;
hOen = -writeQen;
hlen = -writelien;
h2en = -~write2en;
trien = csel.rw.~lds + -lack:
chsel = csel + ~iack;
nodsel = nsel;

Counter PLA Logic

%inputs

tdn /* transmit done */

tcik /* transmit clock */

x0 /* count state bits */

x1

x2

x3

oldtdn /* tdn flag */

oldtclk /* tclk flag */

% output

oltctko /* tclk flag */

oitdno /* tdn flag */ _

x30 /* count state bits */

x20

xl1o

x0o

resetc /* reset decrementer latch */
count /* decrement decrementer latch */
chold /* hold decrementer latch */
% definitions

cnt = oldtclk.—tclk;

Y%specification

x00 = =x0.cnt + x0.—cnt;

x10 = =x1.x0.cnt + x1.-(x0.cnb;

x20 = =x2.x1.x0.cnt + x2.—(x1.x0.cnb.

x30 = ~x3.x2.x1.x0.cnt + x3.—-(x2.x1.x0.cnt).
count = x3.x2.x1.x0; '
oltciko = tclk:

oltdno = tdn;

resetc = oldtdn.—tdn;

chold = -(x3.x2.x1.x0);

Appendix 3
Interface chlp user manual.

CRM68000C Users Manual

Paul C. Bunn

Department of
Computing Science
University of Wollongong

CRM68000C Users Manual

Paui C. Bunn

Department of
Computing Sclence
University of Wollongong

1. Introduction

The CRM68000C Is a peripheral controller chip designed to interface a Motorola
68000 host machine to a Logica Polynet Cambridge Ring Node. The CRM68000C arbi-
trates data transfers between the Cambridge Ring Node and the host machine utllising
the following features:

- an 8 bit data bus.

- flexible data transfer modes
* status handshake transfers
* {nterrupt driven transfers
* Direct Memory Access transfers

- four on board registers
* Node Status register
* Control register
* Interrupt Vector register
* Transmission Time-out register

- transmission error checking

- transmission retry checking

- reasonable transfer rates (yet to be determined)

- a programmable interrupt vector address

~ programmable ring node address for DMA transfers

2. General Operation

The purpose of the CRM68000C is to make the control of data transfers between
the host machine and the Cambridge Ring Node faster and easier. To do this the
CRM#68000C has three separate data transfer modes and two different error condition
interrupts. These features enable compatability with different host machines (see Fig.1
for typical system configuration). This section discusses the three modes of operation
and each of the two error conditions.

2.1. Modes of Operation.

Status Handshake is the simplest of all the three modes. When using this mode
of operation the ring node must be addressed explicity through the CMR68000C to Ini-
tiate a data transfer. To initiate a receive operation by the ring node one of the three
ring node addresses must be placed on address lines AQ and Al (see Sect 4.0) and
the Read/Write (R/W) signal asserted (note: this Is achieved by a simple processor
load from the address of the I/O register). When the node has serviced the receive
request the CRM68000C will assert the Data Transfer Acknowledge (DTACK) signal to
indicate to the processor that data is present on the data bus and the cycie may be
terminated. Figure 2 shows the sequence of events between the processor and the

CRM68000C when using status handshake.

Using Interrupt Driven data transfers the CRM68000C will interrupt the processor
when the ring node Is ready to transmit or receive data. When the CRM68000C has set
an lnterrupt the processor will acknowledge the Interrupt and the CRMG6B000C will
place an appropriate interrupt vector number(see Sect. 3.0) on the data bus as with all
interrupts. The interrupt vector number is used to indicate which interrupt was set. The
M68000 uses the interrupt vector number to calculate the interrupt vector address of
the appropriate Interrupt handler for each interrupt (for interrupt vector numbers see
Table 1.). Figure 3 shows the sequence of events for a transmit interrupt.

Direct Memory Access transfers are the fastest of all transfer modes. After the
DMA controller and the CRM68000C have been initialised. the CRM68000C and the
DMA controlier will arbitrate data transfers between the ring node and the host
machine. The CRM68000C has two DMA channels. one is for the control of data
reception and the other for data transmission (see Fig.4). The DMA controller compati-
ble with the CRM68000C Is the Motorola 68440 Dual Channel Direct-memory Access
Controlier. :

For machines that do not have a DMA controlier the CRM68000C can be conflig—
ured so that both handshake and interrupt control can be used to transfer data. For
example, transmission of data can be interrupt driven and reception of data
handshake driven. This means that the CRM68000C will interrupt the processor when it
is ready to transmit data and to receive data the CRM68000C must be explicitly
addressed using a processor read.

The CRM68000C can deal with machines that have a DMA controller with onily one
channel. For example: the DMA controller could be interfaced to the reception chan-
nel of the CRM68000C and data transmission could be controlled in either handshake
or interrupt mode. This means that the DMA controlier will handle alt receive data
operations and the CRM68000C will interrupt the processor when the ring node Is
ready to transmit data. N.B. When one data transfer direction is under DMA control,
the programmer must ensure that node accesses Involving data transfer in the other
direction do not interfere with DMA operations. The address of the register to/from
which DMA transfers are taking place is automatically selected by the CRM68000C,
protecling the channel against address changes, but not against changes to the
register contents.

The fiexibility of transfer modes allows the ring mode to be driven in different
ways, so that it is easy to interface it to most systems using the CRM68000C.

Retry Checking allows unsuccessful data transmissions to be detected. The ring
node wili continue sending the same mini-packet until it is acknowledged by the desti-
nation node. The number of transmit retries, before the CRM68000C wiil set a transmit
time—out interrupt, can be specified using the interrupt time—-out register (this register
counts in quantum of 16 retries thus the value in the register must be muitipilied by 16
to get the actual number of retries).

When transmit error Interrupt is enabled the CRM68000C will set the transmit
error interrupt when the ring node asserts transmit error signal (TERR).

3. Interrupt Vector Numbers

The interrupt vector number is an eight bit number. The upper five bits are speci-
fled by the value stored in the upper five bits of the interrupt vector register. This gives
the user the abllity to select the vector number base value under programme control.
The lower three bits are specified by the interrupt that occurs. Table 1 summarises
the interrupt vector numbers and the priority of each interrupt, where 3 Is highest
priority and 0 Is the lowest priority.

interrupt Vector

i Interrupt priority 50 D1+ D2 !
, Recewe - A
N [] : ' ; !
iTrans. Time-out ; 2 ;0 . 1 . 0 ,
; e : ; ;
i Trans. Error o L
; i IS i i
'Transmit ! 0 YOt 0 4 0
1 ' f H H i
1 Spurious X L0 o b
] v N ! E :

X : not applicable.

4. Aodressing Modes

There are two addressing modes. The tirst involves addressing the ring node's
registers through the CRM68000C, the second invoives addressing tne CRM68000C’s
internal registers. When addressing either the CRM68000C or the ring node poth CS 1
and CS2 must be asserted. Address lines A0 ang Al are used to determine wheltner
the ring node or the CRM68000C has heen selected. Address lines A2 ang A3 are
used to determine which ot the internal registers ot the CRM68000C are 10 be
accessed. Table 2 summarises the various addressing modes.

Table 2: Addressing Summary

. i Address { _Internal Register ;
ibevice "A3 1A2 (Al ! AD i
' Node RS i
) c1 o bx o box ! :
; R A S S ;
{CRM68000C ; 0 , 0 , 0 , O ;Node Status i
i {0 ;0 0 ;1 ;Control ;
i t0 10 ¢+ 1 ¢ 0 1linterruptvector i
i {1 0 10 } 1 31 |TransmitTime-out i

X : not applicable.

5. Dala Bus Opcration

The most important point to note about the gata bus organisation s that the dala
from the node does not go through the CRM68000C put 1s controiled by a bi~
diractional butfer external to both the ring node and the CRME8000C. The direction ot
the butfer is controlled by the state of the Read Strobe (RD) signai ot the node. The
butter is normally set in the write direction but s reversed when RD s assertea.

6. Signal Description

This section contains a briet description ot the input ang autput signals. inciuded
at the end is @ summary describing the electrical characteristics ang active states of
each signal.

it is important 1o note that the terms assertion ang deassertion will be used 1o
indicate a signais’ state. Assertion is used to indicate that a signat ts driven active ang
deassertion is used to indicate that a signal is driven tnactive. The signal summary
describes the asserted states for each signal.

6.1. Signal Organisation

Some related signals can be grouped and each of these groups is discussed in
the following paragraphs.

6.1.1. Ring Node Signals

Read Done (RDN) is an input to the CRM68000C and is asserted (ow) Dy the ring
node to indicate that the last recelve operation by the ring node ts compiete and
another may be initiated.

Transmit Done (TON) is an input to the CRM68000C and is asserted (low) by the ring
node to indicate that the last transmit by the node is complete and another may be ini-
tiated.

Node Read Request (RD) is asserted (low) by the CRM68000C to request a read
operation by the ring node.

Node Transmit Request (WT) is asserted (low) by the CRM68000C to request a
transmit operation by the ring node.

Node Acknowledge (ECHQ) is asserted (low) by the ring node in response 10 a read
or write request to indicate that the pending operation may go ahead.

Node and Mini—packet Status Signals (BPR RTP0 RTP1); BPR is the broadcast
mini-packet signal. It is asserted (low) by the node to indicate that the iast mini—packet
received was a broadcast mini-packet. RTP0 and RTP1 are node status signais (see
the Polynet Ring Node manual (1).

Node Address Lines (NAO-NA3) are outputs from the CRM68000C and are used to
seiect the ring node’s internal registers during all data transfers.

6.1.2. Processor Signals

Address Bus Lines (A0-A3) are inputs to the CRM68000C from the host machine and
are used to select either the ring node’s or the CRM68000C’s internal registers.

The Daia Bus Lines (DO-D7) are used to read and write to the internal registers of the
CRM68000C.

Lower Dala Stirobe (LDS) is asserted by the processor to indicate data i1s present on
the lower eight bits of.the data bus (D0-D7).

Address strobe (AS) is asserted (low) by the processor to indicate that a valid
address is present on the address bus.

The Interrupt Request and Acknowledge (IRQ. IACK) signats are the interrupt con-
trol signals. IRQ is the interrupt request and is asserted (low) by the CRM68000C. For
an interrupt request external hardware is required If the CRM68000C is to be intertaced
with the M68000. The extgrnal hardware should handle the priority of each peripheral
which is daisy chained along a priority line.interrupt Acknowledge (IACK} 1s asserted
by external hardware when the appropriate set of function codes appears on the tunc-
tion code control lines of the M68000. (See M68000 Advanced Information (2))

The Data Transier Acknowledge (DTACK) signal is bi—-directional; it indicates that a
data transfer is complets.

The Read/Write Strobe (R/W) is an input to the CRM68000C and defines the current
data transter as a read or write cycle.

6.1.3. Direct Memory Access Channel Signals

The DMA Request (REQ1,REQQ0) signals are asserted (low) by the CRM68000C o
-request a data transfer between the ring node and memory (the request generation is
cycle steal for the M68440), REQO is a request to the DMA contraller to place aata on
the data bus for the current transmit operation. REQ] is a request to the DMA con-
troller to read data from the data bus for the current receive operation.

The DMA Acknowledge (ACKO.ACK1) signals are asserted (low) by the DMA controlier
to indicate to the CRM68000C that data is being transferred in response to the previ-
ous request. ACKO is asserted in response to a DMA transmit request and ACK1 is

-5~

The Data Transfer Complete (DTC) signal is asserted (low) by the DMA controlier to
Indicate that the data transfer is complete and the data has been successfully
transferred.

The DMA Done (DONE) signal is asserted (low) by the DMA controller to indicate that
the data transferred is the last In the biock. This occurs when the DMA controllers
internal transfer count register Is decremented to zero.

6.1.4. General

The Two Phase Clock (PHI1,PHI2): the first and second phases of a non-overlapping
two phase clock, and generated from the M68000 processor clock. These signals must
be generated externally, this allows for flexibllity when testing allowing frequency and
mark—space ratlos to be counted.

The Chip Reset (RESET) Is asserted (ow) to reset the CRM68000C. It places all the
internal logic into its Inltial state but does not reset the register contents.

The Chip Selects (C51.CS2) when both are asserted select the CRM68000C.
vdd fis the positive supply which Is five voits.(see Secl.9)
Vgnd is the ground connection pin.(see Sect.9)

Table 3: Signal Summary.

| Funct. | signal | direction] active | driver | pin |
| group | name | | state | type | number|
| Chip Sei.] CS1) in [high | T 14 7T
	€S2	in	low		15
Node	TDN	in	low		44
	WI,RD	out	low		37,38
	RDN	in	low		43
	EcHO	in	low	l 36	
	TCLK	in [low		2	
l	TERR	in	low	l 3	
!	BPR J in	low	{ 45		
	RTPO ! in l low	I 46			
	RTP1 ! in	low		47	
Processor	A0-A3 I in	high		10-13	
	NAO-NA3	out	high		7-4
	DO-D7	in/out	high/low	tri-state	29-22
l	1DS l in	low		18	
]	AS	in	low		17]
	IRQ	out	low]	48	
	IACK ! in	low	[16		
	DTACK	in/out	low	tri-statel 20	
	R/W	in	high/low]	19	
pma	REQO	out	low		41
l	REQ1	out	low		42
	ACKO,ACK1] in [low		32,33		
	PCLO,PCL1	out	low		39,40
	DpTC	in ! low		34	
	DONE	in	low	l 35	
General	pHI1,PHI2	in	high/low]	[21,9	
	RESET	in	low		30
I | | | | 8,31]
' | | | | |

Vgnd,vdd ; in

7. Registlers

This section contains a description of the CRM68000C’s internaj registers and the
control bit assignments within each register. There are tour eight-bit registers. in each
register summary any bit not used is filled with a "0’. Following this 1s a table sum-
marising various characteristics of each register.

7.1. Node Stalus Register
The Node Status Register contains the current status of the ring noge at
any given time.

bit'7 6 5 4 3 2 1.0
tIRQ|zero/ ERRIRTP1]RTPO}BPR]RDN] TDN |

TUN.RDN.BFR.R1FP0O.R1P1: These have the same detinitions as n the signal
description.

err: when asserted (high), indicates that there has been a transmit error.

Zero Count: when asserted (high), indicates that there i1s @ time—out intarrupt.

IHQ: when asserted (highy, indicates an interrupt request has been generated.

Register Address: A3=0, A2=0, Al1=0, A0=0.
Operations: Read only.

7.2. Gontrol Register

The control register is used to set up the different modes or operation,
DMA and interrupt.

bit 7 6 5 4 3 2 1 0
[NA3INA2INATINAO] TXEN]RXEN]DMAT| DMAR]

DMAR: With the DMA Receive bit (DMAR) asserted thigh) , the CRM68000C will
change the control of received data transfer, trom status handshake (o
ODMA control. Data Is than transferreg directly into memory ot the host
machine via the DMA controller. On compisetion ot the DMA transfer DMAR
is automatically deasserted (low). The side etfect ot setting this Dit s, the
receive interrupts will be disabled until the DMA receive transter 1s com-
pleted. :

DMAT: with the DMA Transmit bit (DMAT) asserted thigh), the CAM68000C will
change the control of data to be transmitted by the ring node trom status
handshake to DMA control. Data is then direclly transterred irom the
memory of the host machineg via the DMA contrgller to the node. On com-
pletion of the DMA transfer the DMAT will automatically be geasserted. As
with DMAR the side effect of setting this bit is, the transmit interrupts will
be gisabled until the transfer is completed.

RXEN: With the Read interrupt bit (RXEN) asserted (high), the CRM68000C wili
interrupt the processor whenever a mini—packet arrives and thus should
be read and DMAR is not asserted.

TXEN: With Transmit interrupt bit (TXEN) assertad (high), the CRM68000C wili
interrupt the processor whenever the node is tree to service a transmis-—
sion and DMAT is not asserted. Note. It there is no more data 0 pbe
transmitted this bit must be deasserted.

NAO-NA3: These bits specify the node address required tor a DMA transters.

Register Address: A3=0, A2=0, A1=0, A0=1.
Operations: Read/write.

7.3. interrupt Vector Register

The interrupt vector register controls the two error interrupts and sets the
upper five bits of the interrupt vector register.

bit

7 6. 5 4 3 2 1 0
livzlivelivs|iva]iv3[0|RTEN] TERREN]

TERHKEN: With the Transmit Error Enable bit (TERREN) asserted (high) the
CRM68000C wiil interrupt the processor whenever the ring node getects a
transmit error.

RTEN: With the Transmit Time Out Error bit (RTEN) assertea (high) the
CRM68000C will interrupt the processor whenever the numbper Of retrigs 1or
the current transmission exceeds sixteen times the number stored In the
Transmit Time-out Register.

IV3-IV7: These bits specify the most significant bits ot the interrupt vector
Number (IV3-IV7), the lower three bits (V0-IV2) ot the interrupt vector
number are specified by the type of interrupt that occurs.

Register Address: A3=1, A2=0, Al=1, A0=0.
Operations: Read/Write.

7.4. Transmit Time-out Reglister

The Transmit Time-out register (8 bits) sets the number of transmit retries before
the CRM68000C will set a transmit time-out interrupt (one bit is equivalent to six—
teen retries).

Register Address : A3=0, A2=0. A1=1. A0=1.
Read/Write.

Table 4. Register Summary.

i _Register name Operations Address (A3 A2 A1 AQ)

'Node status read only 0000 f
; Control read/write 0001 '
: Interrupt Vector read/write 0010 '
! Transmit Time-out ___read/write 0011 !

]0

8. Dala Transfer Modes: Timing Details.

This section contalns the Timing diagrams for each data transfer mode. Along
with these are the normal processor read and write timing diagrams which show the
detalls for a write to a CRM68000C internal register. These timing diagrams are not
precise, they are meant to show only the sequence of events that occur. More precise
timing diagrams will be produced when real-time measurements can be made.

‘]‘l

8.1. Processor Read Timing Diagram (odd byte read from the CRM68000C)

This timing dlagram lllustrates the sequence of events when an internal register
is read.

90 31 52 53 54 55 56 37 S8 S9 S0

N

AS
AN /
cs\ yd AN
o N /
R/W
. LDS

s b“\\ /’“’]/’

e /]

DTACK \

DO-7

_]2..

8.2. Processor Write Timing Diagram (odd byte write to the CRM68000C)

This timing diagram illustrates the sequence of events when an internal register
is written to.

50 S§1 92 33 94 359 36 H¢? 38 59 IO

LDS //\
REG .

ENABLE /
CHiP

SELECT

DTACK

/

DO-7

]3

8.3. Processor Read Timing Diagram (odd byte read from the ring node)

This timing diagram lllustrates the sequence of events when the ring node is
addressed via CRM68000C for a receive operation,

90 951 352 33 354 S5w Sw 59 36 3¢

Jaoe I / ﬁ/i
o KC—:ﬂ\ / ﬁ/

|
A

TACK b,\/ \
DO-7? / “\
N

RDN:H : /

-14 -

8.4. Processor Write Timing Diagram (odd byte write to the ring node)

This timing diagram iliustrates the sequence of events when the ring node is
addressed via CRM68000C for a transmit operation.

90 31 52 53 J54 9w 9w 39 9§96 397 38 59 S0

cLoOCK

AO~AT :

NG
_ -
R/V ‘__ﬁ{J\

b [N

SELECT e >
/

wT:H

7
bo-7 / N
N\ S

- 15 -

8.5. DMA Recelive Timing Diagram
The DMA Receive Timing diagram shows the sequence of events when the

CRM68000C is controliing a DMA receive operation.

50 51 $2 53 Svw Svw Sw Sw Sw Sw Sw Sw 5S4 §5 S6 $7 SO

CLOCK
A0-a7 —< D
AS —_— —
cs51
cs2
B/
1DS
o —
ENMABLE
REG
CHIP SEL
DTACK ‘T P
DO-D7 < \ S
DHA 0UT \ (/3.1——
TDN:MW \ P
. | [N
BEQ1 j k
ACK1 — -
V4
FCL1 \] a \, ——t
iTe ~ / L
. // \) (/,J
VIN M R A
WVRITE)
Y S
ECHO:N / {
L p—
CYCLE \ l
VTACK . Van

DELAYED

-16-

8.6. DMA Transmit Timing Diagram

The DMA Transmit Timing diagram shows the sequence ot events wnen the
CRM68000C is controlling a DMA transmit operation.

S0 $1 §2 S3 Sw Sw Sw Sw SDOSD1 S4 §5 86 §7 S8 SS9 SO

AS —_—

Cs51

Ccs2

LIS

EMABLE 7\ \
REG

CHIP SEL

DTACK

f

|

A\
DO-D7 C\

DMAIN \\ /[(/’“_Joi—_——
2;_;;“ P 1 A
ACKO] \ Y
Feto \ | N—|
ITC { \ /‘—77 | \
HOHE 1 o~ (N)
LD W ’\ N \ gﬂk._.//
R — -
DA —

CYCLE

8.7. Interrupt Acknowledge Timing Diagram
This timing diagram shows the CRM68000C’s response to an IACK from the pro-

]7.

cessor via the external hardware.

94 50 96 57 390 91 32 33 54 355 96 S7? 58

=

CLOCK

AO-A7 >____<

AS yd

RIY

(D% /

DTACK /

DO-DT > Yp/
FLO-2

RXENABLE Q\\\
RDN:N @

= %

..]8_

9. Hardware Detalls

9.1. Power Supply

Vdd . +5 volts.
Vgnd. ground

9.2. Plin out

] ——1 D4

TCLK T 1 D3
TERR T 1 D2
NA3Z [—1 DI
NAZ2 [T (— DO
NAT [1 RESET
NAD —] Vdd
vgnd —— ACKO
PHIZ [1 ACKI
AQ — 1 DTC
Al — 1 DONE
Az] 1 ECHO
A3 T |crmesoooc| —— WT
CS1 | 1 RD
CS2 [1 PCLO
IACK [T 1 PCLI
AS — 1 REQO
LOS [1 REQ1
R/W [1 RDN
DTACK] 1 TDN
PHITY T 1 BPR
D7 [1 RTPO
D6 1 1 RTPI
DS] [1 IRQ

Figure 1. Typical system configuration.

8 bit data bus

Ilemory

Q mMe68000 w

meog440

CRIN68000C

1

bi—dir buf. |

Address Bus

Ring Node

Bing

Figure 2. Sequence of events during a receive operation, using status
handshake control.

ccoeol

receiv
h.h_‘_‘__ e

receive

wi

asserl D_ZLQL.A

request

=

Qooowe3 X0

initiate

receive

"‘T‘ﬁq-._qn_e_r::fio
%éﬁi;wledg Ring

- peration
|~ Teceive

initinte

= ring)

Figure 3. Sequence of events during a receive interrupt.

cooeds

interrupt

receive

"+,

;;;Emwg

acknowledge

%’F’_ interrupt

vecltor nuam.

-—_____‘__%‘—
request to

receive data

nooccoalx

;

receive
complete

7

Ring
Nnode

T
" initiate
" receive
operation

Figure 4.Sequence of events during a DMA receive operation.

set up

cocowol

w
Ppma
controller

ring node address
10X DM A transfers
M
enable
DmM
sel >

itransfer]|
DPINA

Ines8440

regmest

lacknowledge
u\%ﬂs‘x

-~

oN-N-N-E-N- R=F Ne

o redy

receive

complete
operation

4@

request
complete

: S

Ring
Node

requesti_______|
nckno%

&
ledge

Appendix 4
Software manual pages.

ait(1) UNIX Programmer’s Manual ait(1)

NAME
alt - Activate the aiternate port on the VC4404 terminals

SYNOPSIS
alt

DESCRIPTION
Alt reads a file from standard Input, turns on the alternate port on the VC4404 terminal,
writes the flie to standard output and then turns off the alternate port..

SEE ALSO
plotcif (1) belle(1), celle(1), plagen(1), getsymbol(1)

AUTHOR
Paul C Bunn
University of Woilongong

BELLE(1) UNIX Programmer’s Manual BELLE(1)

NAME
belle - integrated clrcuit mask layout language

SYNOPSIS
belle filename.bel

DESCRIPTION
Belle will generate an Intergrated circuit mask layout from the BELLE specification in
the input file and place it in filename.cif.

BELLE is the procedural integrated circuit mask layout language distributed by the
CSIRO Division of Computing Research VLS| program as an aid to designing circulits
for AUSMPC 5/82. It Is embedded In the Pascal programming language. Embedding
the language allows the power of a high level programming language to be used to aid
the description of integrated circuit mask layouts, without the need to develop an
entirely new programming language. BELLE is similar to the Simula package LAP
developed at Caitech. Because of the differences between the base languages, the
syntax of user statements is rather different.

BELLE Is composed of a set of Pascal procedures which can be used to describe the
varlous structures in a layout. BELLE generates its output in CIF (Caltech Intermediate
Form) [Hon and Sequin, 1980], which is a low level description of the circuit. CIF is the
standard data format chosen for communication of designs during the MPC.

BELLE is a leaf~cell tool. That s, it Is intended to describe the geometries of relatively
small subcircult elements. it may also be used to some extent as a composition tool to
place several cells (i.e., compose them) to generate a compilete layout.

One of the major features of BELLE is that it provides a very convenient means for
parameterising circuit components. A circuit used in one design can be used in
another by simply modifying the parameters for size, number of inputs or outputs, etc.
As BELLE modules are created by designers for various circuits it may be possible for
the design community to bulld up a library of BELLE procedures for commonly used
circult components such as memory cells, decoders, comparators, etc.

The built-in functions of BELLE are:

SETSYMNO
— Set the symbol number of the next symbol to be defined.

DEFINE
- Define a symbol.

ENDDEF
- Delimits symbol definition.

DRAW - Draw an instance of a symbol.

MX - Mirror a symbol in the X-axis.
MY - Mirror a symbol In the Y-axis.
ROT - Rotate a symbol.

LAYER

- Set the current layer.
BOX - Draw a box (rectangle).

FLASH
- Draw a circle.

WIRE - Starts the definition of a wire;
X - Add a horizontal segment to the wire.

7th Edition local

BELLE (1) UNIX Programmer’s Manual BELLE (1)

Y ~ Add a Vertical segment to the wire.
XY - Add a 45 degree segment to the wire.
DX ~ Add a relative horizontal wire segment.
DY -~ Add a relative vertical wire segment.
DXY - Add a relative 45 degree wire segment.
NODELABEL

- Label a node.
COMMENT

- Insert a Comment into the CIF.
EXISTING

- See If a symbol has been defined.
IMPORTSYMBOLS

- Read a header file containing a list of symbol names, numbers and bounding
boxes of externally defined symbols that are used by the BELLE module.

SETNOEND

- Suppress generation of the End statement in the CIF output file.
SET45

- Allows 45 degree wires.

BOUNDINGBOX
- Calculate the bounding box of a previously defined symbol.

ABORT
- Stop execution and output an error message.
POLYCUT
- Generates a Metal to Polysilicon contact cut.
DIFFCUT
- Generates a Metal to Diffuston contact cut.
BUTTCONTACT
- Generates a Poly to Diffusion contact via a Butting Contact.
SEE ALSO

BELLE users tutorial.
plotcif (1) belie(1), celle(1), plagen(1), getsymboi(1), simpl(1), simul(1), plalog(1).
The CSIRO VLS! programme.

BUGS
The BUTTCONTACT fuctions will sometimes fail to draw the Butting Contact in the
orientation specfied.

7th Edition local 2

CELLE(T) UNIX Programmer’s Manual CELLE(1)

NAME
celle - Integrated circult mask layout language

SYNOPSIS
celle [option Jfllename.cel

DESCRIPTION
Celle will generate an Intergrated circuit mask layout from the CELLE specification in
the input flle and place it In filename.clf.

CELLE is the procedural integrated circult mask layout language based on BELLE. The
only difference between CELLE and BELLE is CELLE is embedded in C not Pascal. For
a description of CELLE see belle(1) and belie(5). The advantage of celle over belle is
that celle is more that six times faster, especially for iarge layouts.

The options that celle interprets are:

-r link in the router.

SEE ALSO
BELLE users tutorial.
belle(1), piotcif (1) celle(1), celle(l), plagen(l), getsymbaol(1), simpl(1), simul(l), pla-
log(1).
The CSIRO VLSI programme.

BUGS
The BUTTCONTACT functions will sometimes fali to draw the Butting Contact in the
orientation specified.

AUTHOR
Paul C Bunn University of Wollongong

7th Edition local 1

EXTRACT (1) UNIX Programmer’s Manual EXTRACT (1)

NAME

extract - Extract symbol definitions from a ciffile.
SYNOPSIS

extract [option... 1 ciffile outputfile.
DESCRIPTION

Extract will extract symbol definitions from a CIF 2.0 ciffile.

The following options are interpreted by extract.

-3 Print a summary of all the symbol definition names and their symbol numbers
on standard output that are in the ciffile.
-C Insert a call to the extracted symbaols.
- Specify lambda for the extracted symbols.
-n Do not place the End symbol on the end of the ciffiie
SEE ALSO

plotcif (1) belle(1). celle(1), plagen(1), getsymbol(1). simpl(1}, simul(1), plalog(l).
The CSIRO VLSI programme.

AUTHOR
Paul G Bunn
University of Wollongong

7th Edition local

GETSYMBOL (1) UNIX Programmer’s Manual GETSYMBOL (1)

NAME

getsymbol — Getsymbol generates a header file from a ciffile.
SYNOPSIS

getsymbol ciffile.cif
DESCRIPTION

Getsymbol is an auxiliary programme to BELLE. It is used in confunction with the
IMPORTSYMBOLS function within BELLE. It is used to generate a header file of the
type required by IMPORTSYMBOLS. Getsymbol operates on a ciffile and produces a fiie
containing the names of all symbols. thelr symbol numbers and thelr bounding box. An
example output from getsymbol looks like:

Lambda 250

901 DIffCut -500,-500,500,500
802 PolyCut -500.-500,500.500
903 ButtCont -750,-500,750,500

The first record specifies lambda for this library.
The second and subsequent records have the format

Sym.No. Sym.Name Bounding box (lower left, upper right corners)
All Coordinates are given in hundredths of microns.

SEE ALSO
plotcif (1) belle(1), celle(1), plagen(1), extract(1), simpl(1), simui(1), plalog(1J.
The CSIRO VLS! programme.

AUTHOR
Paul C Bunn
University of Wollongong

7th Edition local 1

PLAGEN (1) UNIX Programmer’'s Manual PLAGEN (1)

NAME

plagen - PLA generator
SYNOPSIS

plagen piafile.pla
DESCRIPTION

Plagen is a program which will generate a pla in CIF code from a truth table descrip~
tton. The program Is largely interactive, from the point of view of specifying options in
the pla generation. These user supplied options will be described shortly.

The general operation of plagen is that it reads from a file pl/afile.pla and creates the
pla in a flle plafile.cif. The input file is of the form of a truth table, preceded by a line
which contains the number of Iinputs. product terms and outputs. For example, con-
sider a pla with 4 inputs, 5 product terms and 3 outputs. The input to plagen might
then be:

453

10x1 010
xx11 00x
1100 1x1
100x x01
001x 000

A single space is required to separate the inputs from the outputs for each product
term and also to separate the three fields on the first line. Generation of the pla is
then under the control of the following requested information:

symbol start number: the main symbol number of the pla is given this value and all
subsymbols are given numbers relative to this. This is needed for Belle to avoid con-
flicting symbol numbers.

subsymbol generation: suppression of cif code for the subsymbols may be achieved
for cases where more than one pla is being used. each using the same subsymbols.

pla programmed: placement of programming cells may be ommitted for cases where
only the overall size is required.

inputs/outputs: a number of obvious selections regarding clocked or unclocked
inputs/outputs and whether a finite state machine is being generated.

outputs position: the "traditional” pla has the outputs and inputs on the same side
(necessary for finite state machine generation). This flag allows generation of a pia
with ouputs on the opposlite side of the pla to the inputs.

labels: uniess specifically ommitted all inputs and outputs are labelled. For a pla with
symbol number N specified. inputs are labelled as plaNinx where x ranges from 0 to
(inputs=1), with ‘0’ referring to the left-mast input (furthest from the OR plane). Qut-
puts are labelled as piaNoutx (e.g. pla1000out3) with x=0 being the output closest to the
AND plane. All labelling is done using the 94 extension of CIF.

The cells which plagen uses to build up the pla are similar but not the same as the
standard Hon & Sequin cells distributed. The input and output drivers are the same
but programming and other cells are not. For this reason the symbol names have
been changed to avoid confusion with the other pla cells. CIF code for all these cells
is contained in the program.

7th Edition local 1

PLAGEN (1) UNIX Programmer’'s Manual PLAGEN (1)

The main symbol for the pla (which is aiways generated) has a symbol name of plaN.
where N is the symboi number specified by the user.

SEE ALSO
plotcif (1) belie(), celle(l). plagen(), extract(1), simpt(1). simui(1), plalog(V).
The CSIRO VLSI programme.

AUTHOR
Paul C Bunn
University of Wollongong

7th Edition local 2

PLOTCIF (1) UNIX Programmer’s Manual PLOTCIF (1)

NAME

plotcif - Plot a cif flle
SYNOPSIS

plotcif [option... 1 fllename.cif
DESCRIPTION

Piotcif will produce input for a Servogor 281 plotter, Tektronix 4010 style terminals,
Hewlett Packard 7574a plotter, Calcomp drum plotter and VC404, VC4404 terminais,
from a standard CIF 2.0 file. The file name must end in ".cif'. Plotcif produces GAP
output and passes It via a pipe to a nominated gap interpreter, which produces the
specific device input (default belng the Tektronix 4010 style) on standard output.

The Following options are interpreted by plotcif.
-tek Produce graphics output specific to a Tektronix 4010 style graphics terminal.

—tty Produce output suitable for the VC404, VC4404 terminals and 300 series Ballis~
tic printers.

-hpg = Produce output sultable for the Hewlett Packard 7574a plotter.
-ser Produce output suitable for the Servogor 281 flat bed piotter.
-cal Produce output for the Calcomp drum plotters.

-gap Produce GAP output.

b Report the bounding box size of the CIF tayout.

~h header.
Specify a header. The string header Iis drawn at the base of the plot along with
the currant date and time.

-t angle,x,y.

Rotate the plot angle degrees around the centre x,y.
-wxl ylxuyu.

Select a window from x/,yl to xu, yu.

The plotcif CiF parser will report any inconsistencies within the cifflle.

FILES
/usr/gap/tty standard terminal GAP interpreter.
/usr/gap/tek Tektronix GAP interpreter.
/usr/gap/ser Servogor 281 GAP interpreter.
fusr/gap/hpg Hewlett Packard 7574a GAP interpreter.
/usr/gap/cal Calcomp drum plotter GAP interpreter.

SEE ALSO
belle(1). celie(l), extract(1). plagen(l), getsymbol(1), simpi(1). simul(l)., plalog(l),
gap(l), gap(s).
GAP, Graphics Assistance Package. R.S.Nealon, University of Wollongong, preprint
80-6.
The CSIRO VLS programme.

DIAGNOSTICS
The diagnostics produced by ploteif itself are intended to be self-explanatory.

AUTHOR
Paul C Bunn
University of Waliongong

7th Edition local 1

PLOTCIF (1) UNIX Programmer’s Manual PLOTCIF (1)

BUGS
Plotcif requires the whole layout to be in memory, due to the way in which it bullds the
parse tree. Therefore. generation of plots for extremely large layouts may be slow.

7th Edition local 2

RENUMBER (1) UNIX Programmer’s Manual RENUMBER (1)

NAME

renumber - Renumber the symbol definitions within a ciffile.
SYNOPSIS

renumber [option...]
DESCRIPTION

Renumber will read a standard CIF 2.0 ciffile from standard input renumber all the
symbol deflnitions and symbol calls and with them to standard output.

The following options are interpreted by renumber.

—s number
will start the renumbering from number, the default starting value is 0.

SEE ALSO
plotcif (1) belle(1), celle(1), plagen(1), getsymbol(1)

AUTHOR
Paul C Bunn
University of Wollongong

7th Edition local 1

	A cambridge ring node controller
	Recommended Citation

	tmp.1284095578.pdf.2qg0Z

