
University of Wollongong University of Wollongong

Research Online Research Online

Department of Computing Science Working
Paper Series

Faculty of Engineering and Information
Sciences

1984

Ratpas documents Ratpas documents

Michael P. Shepanski
University of Wollongong

Follow this and additional works at: https://ro.uow.edu.au/compsciwp

Recommended Citation Recommended Citation
Shepanski, Michael P., Ratpas documents, Department of Computing Science, University of Wollongong,
Working Paper 84-5, 1984, 31p.
https://ro.uow.edu.au/compsciwp/52

Research Online is the open access institutional repository for the University of Wollongong. For further information
contact the UOW Library: research-pubs@uow.edu.au

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Research Online

https://core.ac.uk/display/36990628?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://ro.uow.edu.au/
https://ro.uow.edu.au/compsciwp
https://ro.uow.edu.au/compsciwp
https://ro.uow.edu.au/eis
https://ro.uow.edu.au/eis
https://ro.uow.edu.au/compsciwp?utm_source=ro.uow.edu.au%2Fcompsciwp%2F52&utm_medium=PDF&utm_campaign=PDFCoverPages

RATPAS DOCUMENTS

by

Michael Shepanski

Department of Computing Science

University of Wollongong

Preprint No. 84.5

Submitted in partial fulfillment of the requirements
of CSCI 321 Softward Project at the University of
Wollongong in 1983

===
P.o. Box 1144, WOLLONGONG.N.S.W. 2500 Australia

Tel: (042) 270859
Telex: 29022

PART 1.

PART 2.

INDEX

A Tutorial Introduction to
Ratpas

Design of a translator of
Ratpas to Pascal

p.2

p ~ 18

Ratpas Documenls

Michael Shepans#Ci

Software Projec~

University of Wollongong
Department of Computing Science.

This is a collection of papers related to the Ratpas programming language and
Its first Implementation. The language was created by Paul Bailes of the University of
Wollongong In 1982 and Is now implemented on the UNIX" operating system by trans­
lation Into Pascal.

The first paper is "A Tutorial Introduction to Ratpas ", which serves to introduce
Pascal programmers to programming in Ratpas as quickly as possible. It only
attempts a brelf sketch of the language. so users who require a more rigorous specifi­
cation are directed towards the second paper. "The Ratpas Report" which gives a
more complete description. The third paper. an entry for the UNIX programmer's
manual. gives details of how to invoke the translator. and lists the discrepancies
between specification and Implementation. This completes the user documentation.

The fourth paper. "Design of a Translator from Ratpas to Pascal", describes the
rationale of decisions that went Into the design of the translator. This is intended to
give systems programmers an understanding of the concepts which the design embo­
dies and the reasons for the code assuming the form that It does. so that any modifi­
cations can be made In this perspective.

Since Ratpas Is stili an active research topic. the language for which the transla­
tor was designed is not the same as that described in the latest reports by Bailes. The
implemented language is that which was current at the lime when the project was
begun. This is midway between that introduced in Bailes' •'A Rational Pascal" as it
appeared in the University of Wollongong Computing Science Department preprint no.
82/20. and that described in the edition yet to be published. In areas of confusion. the
definitive reference Is The Ratpas Report.

"'LNX Is a Traden'larkof Bell Laborataies.

-2-

A Tutorial Introduction to Ratpas

Michael Shepanskl

Software Project
University of Wollongong

Department of Computing Science

ABSTRACT

Ratpas [lJ[2] is an Introductory language. For this reason. most
instruction on the use of the language will usually be done concurrently
with the teaching of fundamental concep1s of computer programming.
Rather than attempting such an ambitious pedagogical exercise. this
document addresses the more modest task of introducing Ratpas to
those already familiar with programming in Pascal [3]. It may. therefore.
be taken as a guide for Aatpas instructors. .

Getting Started
The simplest Ratpas programs are those without declarations and with no control

structures except for a sequential composition of statements. These can be written
simply by listing the statements. one after another. There Is no need for any semi­
colons. begins. ends. program headings or full stops. For example. this is a simple
Aatpas program:

write ('hello everybody')
write (' this is my first Ratpas program') ,
writeln wrlteln ('and programming in Aatpas is FUN:)

Note that it's bad practice to put more than one statement on a line; we just did it to
show that you can if you really want to. A corresponding Pascal program would be:

program HelloWorld <Input. output);

begin
write ('hello everybody');
write (' this is my last Pascal program')
writeln; wrlteln ('and programming in Ratpas is FUN.')
end.

The statements of the program have not themselves changed; it is usually so that Rat­
pas is the same as Pascal except in declarations and that it requires you to leave out
bits of syntax that Pascal demands.

Declarations
Doing anything more challenging than writing out sequences of messages

requires the use of declarations. The biggest change in this regard is that. in Ralpas.
declarations go after statements. Also. the polley of eschewing syntactic detail is car­
ried on to declarations: there are no headings like const or type. and of course no
semicolons.

A constant declaration is formed by simply writing the name of the constant fol­
lowed by an equals-sign (' =') and the value it Is to have. The same thing applies for
types. except that Instead of a value. a type description goes after the equals-sign. To
declare variables. write the name of the variable. then an equals-sign followed by the
word var. then the type that the variable is to have. (e.g. 'x =var Integer'. which you
would read as 'x is a variable of type integer').

Therefore. a simple interactive Aatpas program might look like this:

-3-

writeln ('Hello, what Is your name ?')
readln (name>
writeln ('How old are you. '. name>
readln (age)
write ('You know. '. name. '. I think ')
writeln (date - age. ' was a good year for humans. ')

name = var string
age = var O..maxlnt
date = 1983
maximum_string_length = 60
string = array n..maxlmum_strlng_lengthl of char

There a couple of additional points you may have noticed in this example. First.
the declarations occur in a haphazard order. The fact is. when you are writing a list of
declarations to go with a Ratpas block. you can write them down in any order you like.
Second. one of the Identifiers is rather long and contains the underscore character.
You can always use identifiers like this in Ratpas. and It is a good Idea to do so rather
than using unreadable acronyms and abbreviations.

In Pascal. itls permissible to declare any number of variables by listing them all.
separated by commas. on the left-hand side of a var declaration. You can do exactly
the same thing in Ratpas. but you can also do It with constants and types. e.g.

a. b. c =.5
x, Y = set of char

has exactly the same effect as:

a=5
b=5
c=.5
x =set of char
y = set of char

Procedures and Functions
The Ratpas syntax for declaring procedures is very different --much simpler-­

from that of Pascal. For example.

write_results (I = val integer. x. y = val rea/) =
t
wrlteln ('And the answer is...:)
write (I. ':', x. ','. y, '.')
}

declares a procedure write_results which takes two value parameters and performs
the Indicated statements. All of the formal parameters must be declared with either
the keyword val (as shown) for value parameters. or the keyword var (as In Pascal) for
reference parameters.

The same Is true for function declarations. The only difference (since Ratpas has
no keywords function and procedure) is that functions are declared with a result
type. and return a value of that type. e.g.:

factorial (n : integer) : integer =
t
if n =0

return 1
else

return n " factorial (n-1)
}

The if-statement will be explained shortly - the things to notice are:

-4-

(1) The result-type Is declared after the formal parameters. just as in Pascal.
(2) Rather than assigning to the function-name. the value to be returned is Indi­

cated by an explicit return statement. This statement not only defines the
value that results from the function being called. but also forces the function
to stop Immediately to return that value.

(S) The syntax of the function call is the same as in Pascal.
The latest Ratpas dialects (those post-dating the design of the current imple­

mentation) have abandoned the return statement altogether. and follow the Pascal
convention of assigning to the function name and continuing execution. A convenient
side-effect of the current implementation strategy is that assignments to the function
name are permitted. 50 you have the choice.

An additional feature of Ratpas is the so-called simple-function. This is just a
convenient way of entering functions that do not involve any significant processing
steps. but are just shorthand for expressions. They correspond to FORTRAN's
statement-functions. Instead of writing:

cotangent (theta =val real) : real =
(

return cos (theta) I sin (theta)
1

write:

cotangent (theta =val real) : real =
cos (theta) I sin (theta)

In general. a function whose body is just an expression with no braces is a short
form for a function whose body (Inside braces) is simply'a return-statement with that
expression.

As was noted before. declarations occur after statements. This applies. not only
to the Ratpas program in which functions and procedures may be declared. but also
within the functions and procedures themselves. For example. a Ratpas program to
print cotangent tables may be written as follows:

for I ;= 1 to max
wrlteln <I. cot (I»

cot (degrees = val Integer) : real =
(

r := radians (degrees>
return cos (r) I sin (r)

r =var real
radians (l = val Integer) : real =

(

return I * pi/laO

pi =3.14159265358
)

)

i = var integer
max =360

Ratpas Program Structure

This last example Illustrates another Important property of Ratpas; Unlike Pascal.
Ratpas programs of any length very quickly assume a highly structured hierarchy of
procedures and functions. This Is due. not only to the desirability of structured pro­
gramming. but also to Ratpas' lack of begins and ends.

-5-

Each Ratpas block can be either a sequence (one or more) of simple statements
(procedure-calls. assignments. etc>. or a loop with a simple-statement body. or a
conditional statement with only simple statements at each alternatIve. This means that
sequences of loops and conditionals. or loops and conditionals over sequences. or
nested loops and conditionals cannot be done 'in line'. and must be factored Into
procedures. which can be nested to any depth.

Differences In Statement Syntax.
As already Illustrated. Ratpas for- and while -loops differ from their Pascal coun­

terparts in that there Is no keyword do. Conditional statements differ more substan­
tially. The full form of the Ratpas if is like this:

If exprn,
stmt,

elif exprn2
stmt~

elif exprn3 .t:

stmt3

else
stmtn

which is equivalent to Pascal's:

If exprn, then
stmt,

else if exprn2 then
stmt2

else if exprn3 then
stmt3

else
stmtn

The else-part (i.e. the word else and the statement following it> may be omitted, as
may be any of the elif-parts,

The Ratpas-equivalent of Pascal's case statement is still more different. In place
Of:

case exprn of
const-list ,:

stmt,:
const-list2:

stmt?:
.t:

const-listn:
stmtn

end

write:

switch exprn
case const-list,

stmt l .
case const-7/st2

stmt?
'"

case const-listnstmtn

-6-

Skip, Abort and Goto
Ratpas does not have an empty statement in the style of Pascal's. The equivalent

construct Is skip, which does nothing when executed.
More significantly, Ratpas does not have a goto statement. Other than return.

the only unstructured branch available in Ratpas Is abort. This statement. when exe­
cuted. simply causes the program to stop. Of course. since there are no explicit goto
statements. there is no need of label declarations.

Other Differences between Ratpas and Pascal
There are three other areas in which Pascal and Ratpas are different.
Firstly, In Ratpas expressions. the lowest priority is given to the or operator. fol­

lowed by and, then not. and then then the other Pascal operators. This means that
the Ratpas expression

o <= I and I <n or a[l] = ' , or not flag

means:

«0 <= l) and (i <n» or (am = ' ') or (not flag)

Secondly. Ratpas record types have a different notation, following the trends of
the above syntactic changes. Fields are declared with the equals-sign rather than the
colon. as In variable declarations, and the syntax of variant records corresponds to
that of switch statements above. A typical Ratpas type declaratiOn might be like the
following:

list = •record
mark = 0 ..3 .
switch atomtag = boolean

case true
car. cdr = list

case false
prname = alfa

end

This example illustrates the other difference between Ratpas and Pascal; it is not
necessary to declare extra types to avoid self-reference. As long as types are not
declared to contain themselves. and If all the types they reference are declared some­
where in scope. then the declarations are legal.

REFERENCES
[1] P. A. Bailes. A Rational Pascal. University of Wollongong Computing Science Dept.

preprint no. 82/20.
[2] M. P. Shepanskl. The Ratpas Report, "The Ratpas Documents". University of

Wollongong Computing Science Preprln1.
[3] K. Jensen and N. Wirth. The Pascal User Manual and Report, second edition.

Springer-Verlag 1978.

-7-

The Ratpas Report

Michael Shepanski

University of Wollongong
CSCI321 - Software Project

ABSTRACT

In A Rational Pascal [1]. Bailes put forward the rationale for a new pro­
gramming language. for which an Informal description was provided.
This Report serves to amplify that description in a more formal --albeit
less tutorlat-- fashion.

1. Program Structure and Scope Rules:
Ratpas Is a language for the expression of the creation of algorithms. A complete

Ratpas program represents a history of programming refinements. such that each
operation is either primitive or defined by another such refinement. The executable
commands which thus refine a task are together called a statement. A statement will
usually use names for data types. variables. constant values. expressions or other
tasks which belong to it. The Information which gives meaning to these names (also
called Identifiers) Is provided in declarations. and a statement together with its
declarations Is called a block. A Ratpas program Is one instance of a block.... i.e.

program -) block
block -) statement declaration'"

In addition to the statement using some identifiers and the declarations declarIng
some. the declarations may also use identifiers (the meaning of 'declare' will be
explained by enumeration in section 5. Any occurrence of an Identifier. other than a
declaring occurrence. is a use of that identifier).

Because the refinement of tasks is hierachical. the construction of a block is
necessarily recursive. This is embodied in certain declarations (see sections 5.6 &
5.7) containing blocks.

The scope-of a declaration is the set of uses of identifiers which are bound to that
declaration. Scope is defined as foJlows:

For any block B containing a statement S and declarations 0,. 02' OS.··· On":

(a) Any use in S of an identifier declared by some OJ is bound to the declaration Or

(b) Any use In some 0b'of an identifier declared by some 01 is bound to the declara-
tion 0i' unless it is ound in some block contained In OJ'

(c) Any use which is bound to any declaration 0i is said to be bound in B.

It is illegal for any identifier to be bound to more than one declaration. It is illegal for
any Identifier in a program not to be bound at all, unless It Is a predefined Identifier. In
which case it assumes its predefined meaning (see section 6).

2. Statements:

A statement is a construct which iterates an action. or chooses among actions. or
performs a sequence of actions. A single action Is the simplest executable command.

statement -) conditional I loop I compound

This syrrts< 1Ue. cnj ahers thrwghcXJl the repat. use the 1'l'lBf8£1'lQlJBQe desaibed In~A .
f\tX all (j these declaratloos nea1 be pesent In the teet (j the bkX:k; there rr&f be irrpldt declcra­
tions which also I'llJ'I't)er arro'lQ the q, i.e. fer val~ - see SEOlons 3.2 & 5.4.

-8-

2.'. Conditional Statements:
Conditional statements choose and execute one action from a set

conditional -> If-statement I switch-statement
If-statement -) If If-branch (elit If-branch)k

[else action]
if-branch -) expression action
switch-statement -) switch expression

(switch switch-branch)k [default action]
switch-branch -> canst-list action
consHlst -) constant (. constant>J<

The if-statement with branches <e, a,>. <e~ 3 2>.... <e3 a3> evaluates (see section
4) e,. then e2 and so on until some el evaluatesto fhe intrfnsfc Boolean constant true.
Then 3. is executed. However. If no e. evaluates to true then, if there Is an else,the
action lollowlng it is executed. otherwise no action is taken. It is illegal for any of the
expressions to evaluate to any type other than Boolean.

The switch-statement with branches <I, 3,>. <1 2 3 2>.... (13 3 3) evaluates Its
expression and determines whether Its value is equal to any constant in any II' If it Is.
then al is executed. If it Is equal to none of the constants, then if there is a default
then tne action following It Is executed. otherwise no action Is taken. The expression
must evaluate to a scalar type other than real, and all of the constants must be of that
same type.

2.2. loop Statements:

Loop statements perform an action repetitively.

loop -> while-loop : repeat-loop : for-loop
While-loop -> while expression action
repeat-loop -> repeat action until expression
for-loop -> for identifier := expression

(to : downto) expression action

A While-loop evaluates its expression. If it does not evaluate to a Boolean, the
expression is illegal. If it evaluates to false, nothing is done. If it evaluates to true.
the action is executed, and the while-loop is executed again.

The statement

repeat <a> until <5>

executes a. then executes the statement:

while not «5» <a>

The statement

for (i> := <e' > to <e2> a

evaluates the expressions eland e2, and assigns the value of e1 to the variable i (see
section 3.1). If this value is greater than e2 (according to the '>' operator for the types
Involved>. then I Is assigned the value of e2. Otherwise, a is executed, followed by the
statement

for <I> := succ «el» to <e2> a

The statement

for <i> := <el> downto <e2> a

evaluates the expressions eland e2, and assigns the value of e 1 to i. If this value Is
less than e2 (according to the '<'operator for the types involved), then I is assigned
the value of e2. Otherwise, a is executed. followed by the statement:

-9-

for <i> := pred «e1» downto <e2> a

It follows from these definitions that in any for-loop. the identifier must be bound
to a variable declaration (see section 5.3) with a type which is in the domain of the
functions succ and pred, I.e. a scalar type other than real. and that the e)(pressions
must be of types which are the same as the identifier's type, or of which the identifier's
type is a subrange.

Moreover. if the execution of a alters the value of i. or the the value of the evalua­
tion of either e1 or e2. then the result is undefined.

2.3. Compound Statements:

compound -> action+

A compound is executed by executing each of its actions in textual sequence.

3. Actions:
An action is a step in processing which does not. a priori, involve any control

structure.

action -> skip I abort I assignment I
procedure-call I return-action

The action skip does nothing.
The action abort causes execution of the entire program to cease uncondition­

ally. breaking any promises this report may have made about the behaviour of what­
ever statements are pending.

3.1. Assignment AC1ions:
An assignment action assigns a value to a variable.

assignment -> variable := expression

A variable is an expression which designates a storage location's identity. rather
than its contents.

variable ::.> identifier selector"
selector -> [expression (, expresslon)-] I

. identifier I ..

Furthermore, a variable must satisfy the same type rules as it would to be a legal
expression. The variable and the expression must be of the same type. or one a
sUbrange 01 the other, or one real and the other either integer or a sUbrange thereot

If a variable has selectors which contain expressions, these are evaluated before
the assignment is done.

The effect of the assignment statement Is to ensure that next time (dynamically)
the variable Is evaluated as part of an expression, its value will be that which was
assigned.

3.2. Procedure Calls:
A procedure call executes a named statement. possibly with parameter substitu­

tion.

procedure-call -> identifier £actual-parameter-llsll
actual-parameter-Ilst -> (expression <. expression)'" J

The identifier must be bound to a procedure declaration <see section 5.4)-*, Iff

~ for calls c:i prOOeflnedJY~. \WIich behave quite(jfferently, see~

- 10-

there is no actual parameter list then there must be no formal parameter list in the
procedure's declaration. If there Is an actual parameter list. Its expressions must be
the same in number and types as the formal parameters in the procedure declaration.
Where there are var parameters in the tormal parameter list. the corresponding
expressions in the actual parameter list must be variables (see section 3. D.

To execute the procedure call. the block in the procedure. modified as follows, is
executed:
(1) For each val parameter p of type 1. the declaration

<p> :::: var <1>

is added to the block's declaration list and. before execution of the procedure's
statement. p is assigned (see section 3.n the value of the evaluation of the
corresponding actual parameter.

(2) For each var parameter in the formal parameter list. the corresponding actual
parameter has any contained expressions evaluated and replaced by the con­
stants resulting from their evaluation. This modified actual parameter is substi­
tuted for all Occurrences of the formal parameter in the procedure's statement.
with these exceptions: .
(a) Identifiers' occurrences In the substituted actual parameters retain the bind­

Ings of their occurrences In the procedure-call.
(b) Where a for-loop variable is replaced by an actual-parameter which con­

tains selectors. the resulting statement is legal despite the constraint that a
for-loop variable be an identifier.

Where the call Is of an intrinsic procedure. the rules for number and types of
parameters. and the operations which will be done to them. depend on the procedure
(see section 6). .

3.3. Return Actions:

return-action -> return expression

A return-action evaluates its expression and returns its value (see seetion 5.5>

4. Expressions:
An expression is a rule by which a value can be computed from constants and the

values of variables. using standard operators and named functions.
Ratpas expressions are very similar to the expressions in Pascal [2) (more pre­

cisely. the input strings in the category named· 'expression' in Pascal syntax rules).
The only difference is that Ratpas gives lower priority to logical operators. Although
the set of syntactically correct strings is extensionally the same, this semantic change
is readily expressed by the following, changes in syntax:

expression -> disjunct (or dlsjuncO­
disjunct -) conjunct (and conjuncO­
conjunct -> [not) nonlogical-expression

, Nonlogical expression' represents the same syntactic category as [2)'s 'expression'.
with the following modifications:
(1) Any production which generates something containing the symbols or. and or

not. is excluded.
(2) Any pattern including the name 'expression' is understood to refer to the defini­

tion above.

The function of all the operators. including or. and and not. is retained in type.
value and domain.

- 11 -

5. Declarations:

A declaration determines how a set of Identifiers may be used in all occurrences
which are bound to that declaration according to the scope rules (see section n.

declaration -) constant-declaration I type-declaration I
variable-declaration I procedure-declaration I
fu nctlon-declaration

5.1. Constant Declarations:

constant-declaration -) IOllst =constant
IOlist -) identifier (, Identlfler)J<

A constant declaration declares the Identifiers to the left of the '='. so that every
bound occurrence will evaluate to the value specified by that constant. Constants are
as specified under the name' constant' In [21.

5.2. Type Declarations:

type-declaration -) IOlist =type

A type declaration declares the identifiers to the left of the . ='. so that each
represents the specified data type. If the type is not a simple identifier. then the iden­
tifiers represent a type different from those bound to any other declaration whose type
Is not an identifier. If the type Is an Identifier. then the identifiers on the left-hand-side
are Interchangeable aliases for that type. In any case. they are interchangeable
aliases for each other.

Types are as specified under the name 'type' In [21, with the exception of record
types, where the following syntactic changes apply (preserving semantics in the obvi­
ous ways):

el} The production

record-section -) field-Identifier
(, fleld-identlfierpc ; type

is replaced by:

record-section -) field-identifier
(, field-identifier) * = type

(2) The productions

field-list -) fixed-part; variant-part
fixed-part -) record-sectlon_ (; record sectlon)-

are-replaced by:

field-list -) fixed-part variant-part
fixed-part -) record-section'"

(3) The productions

variant-part -) case tag-field =type-Identifier of
variant (; varianU-

variant -) case-label-list; (field-list)

are replaced by:

variant-part -) switch tag-field type-identifier
varian....

variant -) case case....:labeHlst field-list

- 12-

5.3. Variable Declarations:

variable-declaration -) 10list =vaT type

A variable declaration declares the identifiers to the left of the' =' to be variables
of a given type. so that each may be assigned values. be passed as a var parameter.
and occur In expressions. evaluating to the last assigned value.

5.4. Procedure Declarations:

procedure-declaration -> identifier £formal-parameter-listl
={block}

formal-parameter-Ilst -> (formal-parameter-group
(. formal-parameter-group>'")

formal-parameter-group -) formal-parameter
(. formal-parameter)'" =(varlvaJ) formal-type

formal-parameter -) identifier
formal-type -> identifier .

A procedure declaration declares the procedure identifier (the first Identifier In
the declaration) to be a name for a statement with declarations. i.e. a block. The type
of a formal parameter is the type specified in Its formal parameter group. Formal
parameters In a group which contains the keyword val are referred to as va/­
parameters; those in a group which contains the keyword var are referred to as var­
parameters.

Within the scope of the procedure identifier. calls may be made according to the
semantics given in section 3.2.

5.5. Function Declarations:

functlon-geclaration -> general-function-declaration I
simple-function-declaration

general-function-declaration -) identifier
(formal-parameter-listl : functype ={block}

simple-function-declaration -) identifier
(formal-parameter-lIst) : functype =expression

funetype -) Identifier

A function declaration declares the function identifier (the first identifier in the
declaration) to name a computational rule which yields a result

If an identifier is declared by a general function declaration. then any bound use
in an expression (see section 4). possibly followed by an optional parameter list is
called a function call and Is evaluated by executing the statement contained in the
function-declaration's block. under the same substitutions and restrictions as tor a
procedure (see section 3.2>' until a return-action is executed. Then. regardless of any
statements pending. execution of the function terminates and the returned value is the
value of evaluation of the function call. However. if one function'S execution involves
evaluating a function call which activates another function's execution. a return action
will only terminate execution of the function most recently begun. It Is Illegal for a
function to terminate without executing a return action.

Simple function declarations are a concise alternative form for functions which
would only contain a return action. The declaration

<1> <p> : <t> =<e>

for some Identifiers f and t. some expreSSion e. and some p which Is either empty or a
formal parameter list. Is equivalent to:

<1> <p> : <t> ={return <e> }

- 13-

6. Intrinsic Identifiers:

The set of predefined. or Intrinsic Identifiers is the same in both content and
mean ing as that in [21.

7. Notation:

ThIs section refers to the structure of language elements and the typographical
rules for entering them.

7.1. Identifiers:
An identifier is any string of letters. digits and the underscore character (' _')

which Is not one of the reserved words in appendix B.

7.2. Keywords and Special Symbols:
The symbols italicised in all this report's syntax rules. and those in the cited rules

of [2]. are represented by the sequence of characters of which they are composed.

7.3. Numbers and Strings
Numbers and strings are represented the same as specified in [2].

7.4. White Space
Any number of spaces. tabs and advancements to new lines may be inserted

betweer:J Identifiers. keywords. special symbols. numbers and strings. They may not
be inserted between characters of any identifier, keyword, special symbol or number.
Strings may not be broken across lines. At least one space. tab. change of line or
comment (see 7.5) must be inserted between identifiers, keywords. numbers and
strings whenever its absence would yield an ambiguous sequence.

7.5. Comments
At any place where white space is permitted. the special symbol '("". followed by

any sequence of characters. followed by the special symbol '''')'. is permitted. pro­
vided the sequence of characters does not include the special symbol' "')'. This con­
struction has no effect on the meaning of the program.

7.6. Miscellaneous
Any sequence of characters which is not permitted by sections 7.1 ... 7.6. is illegal.

REFERENCES
[1] P. A. Bailes. A Rational Pascal University of Wollongong Computing Science Dept.

preprint no. 82/20.
[2] K. Jensen & N. Wirth. The Pascal User Manual and Report second edition.

Springer-Verlag 1978.

- 14-

Appendix A - Metalanguage Used in Ratpas Syntax Rules
Ratpas syntax rules are always written as a name. followed by the symbol '-)'.

followed by a pattern. The name represents a category of input strings which are
recognised as some meaningful component of the language. and the rule means that
the strings In that category are those which match the pattern. 'Match' is defined as
follows:

(1) An italicised string is matched only by occurrences of that string.
(2) A name (not italicised is matched by any string In the category which the name

represents.
(3) The juxtaposition of two patterns is matched by the juxtaposition of any string

which matches the first with any string which matches the second.
(4) Two patterns with a '" symbol between them are matched by any symbol which

matches the first. and are also matched by any symbol which matches the
second pattern.

(5) A pattern followed by the symbol ':I<' is matched by any <possibly empty) concate­
nation of strings. all of which match the pattern.

(6) A pattern followed by the symbol •+' is matched by any nonempty concatenation
of strings. all of which match the pattern.

Where ambigUity arises in the application of these rules. parentheses (' ('. ') ') are
used in the usual way.

- 15-

Appendix B - Reserved Word List
abort and array case default div downto elif end file tor if in mod nil not of or packed
record repeat return set skip switch to until val var while

RP (1) UNIX Programmer's Manual nr (1)

NAME
rp, rpl. rplx - Ratpas-Pascal translator

SYNOPSIS
rp [-11 name.r [-f filename 1
rpl [-I] name.r [-f filename]
rplx [-I] name.r [-f 1i1ename 1

DESCRIPTION
Rp translates the program In the file name.' leaving the Pascal code In the file name.p.
The Pascal code can be further translated and executed using pi and px. or with pix.

Rpl performs a complete translation from Ratpas to Pascal interpreter code. invoking
both rp and pl. and postprocessing the latter's diagnostics to make them correspond
more closely to the Ratpas source. Rplx does all this and Immediately executes the
Interpreter code for' 'load and go" Ratpas.

The '-I' option causes a program listing during translation. The '-f' flag permits a
nominated list of filenames to be Included In the program heading of the resulting
Pascal program. This list should Include the names of all 1lIes (other than the stan­
dard Input and output) to which the source programs refers.

Input file
Pascal equivalent of fIIe.r
Interpreter code output (,pi and ,pix only>

(2)

FILES
fIIe.r
flle.p
obj

SEE ALSO
pi (1)

px (1)

, 'The Ratpas Report" - unpublished report available in the Wollongong University
Computing Science Department

DIAGNOSTICS
Rp recognises and attempts recovery from lexical errors and a few semantic errors ­
those involving circular declarations.

Errors detected during parsing are output with a listing of the line and a flag indicating
the point of the error.

The first character of each error message indicates its class:

F Fatal error; translation cannot proceed.
E Error; no code can be generated.
w Warning - a potential problem.

No recovery is attempted after syntax errors. and most semantic errors are passed on
to the Pascal implementation. The resulting diagnostics diagnostics are amiss in that:

(1) The Identifiers have mutations. generated by rp to eschew underscores
and avoid clashes with Pascal keywords.

The line numbers bear no resemblance to those of the errors In the
Ratpas source.

Rpl and ,pix trap the Pascal implementation's diagnostics and make an effort to
reverse these effects. but are not always successful - see ' 'BUGS" below.

AUTHOR
Michael P. Shepans~.

BUGS
Default cases are not supported.

7th Edition local 1

RP (1) UNIX Programmer's Manual AP(l)

The . -1' option should not be needed - filename information is deducible from the
source code. Moreover. filenames are restricted to legal Pascal identifiers. rather
than to the wider class of legal Ratpas Identifiers.

There is no recovery from syntax errors.

Those errors which are caught by the Pascal Implementation produce diagnostics
which are often confusing. Although rpi and rpix attempt to· strip out line number
references. some are left and the algorithm for restoring identifiers is easily confused
by string literals.

7th Edition local 2

- 18-

Design of a Translator of Ratpas to Pascal

Michael Shepanslcf

CSCI 331 - Software ProjeC1.
Department of Computing Science.

University of Wollongong.

ABSTRACT

Ratpas £ll. [2] Is a programming language which embeds the semantics
of Pascal [3] in a new syntax. This report first observes the key differ­
ences between Ratpas and Pascal. and proceeds to examine their
implications for a translator. This Is done to sufficient depth as to con­
stitute both a design and a guide for those who wish to enter into the
source code.

8. Preamble.
The translator is to embody a mapping between the input space of legal Ratpas

programs and the output space of legal Pascal programs: in particular. to maintain
semantic Invariance. Both the input and output spaces are complex and consist in a
large number of dimensions. Fortunately. the spaces are Identical In so many of these
that the semantic Invariance of most dimensions is maintained without transformation.
It is only those which differ significantly that bear on the translation task. and hence
provide a rationale for design decisions.

9. Some Observations.
Ratpas differs from Pascal In six principal ways:
(1) There is less syntactic detail: In particular no semicolons.

(2) In each block. declarations occur after the executable statements.
(3) There are no keywords 'const'. 'type'. etc. to help classify declarations.

(4) In each block. declarations can occur in any order.
(5) Rules for Inter-related type declarations are less striC1.

(6) Identifiers may contain the underscore character.

(7) There are severe restrictions on the complexity of control structures allow­
able in a statement.

Of these. all but the last dictate approaches in the design of the translating process.

9.1. The Lack of Syntactic Detail.
Wirth [3] employed semicolons in Pascal to delimit logically separate program

parts --especially statements-- in a way which is readily recognised by the parser
(and perhaps also by the programmer). Not only semicolons. but also the keywords
'do' and 'then' serve to separate a construct ending with an expression. from the
beginning of another statement. Moreover. the keywords 'const'. 'type'.. procedure'
and 'function' are director symbols which inform the complier of the construct that is
about to be parsed. In short. syntactic detail allows Pascal programs to be parsed
deterministically top-down.

Ratpas. however. has a more austere syntax which can only be parsed bottom-up
(this point is formally undecidable. but the difficulty of writing an LALR(l) grammar -­
see below-- strongly suggests that top-down parsing would be extremely difficult In
particular that there Is no LL<l) grammar). Fortunately. there is a bottom-up parser­
generator.. yacc' [4]. available. Yacc will generate parsers for any language for which
an LALRCl) grammar is supplied. Yacc requires a sequence of production rules. and
code to be executed as each rule is reduced. It has value-stacking facilities which
make It particularly easy to build semantic trees.

- 19-

Nevertheless. the Ratpas syntax is such that its obvious grammar. obtained by
using non-terminal symbols for all the constructs that are meaningful to the Aatpas
programmer. Is not LALR<l). It is possible to write an LALR<l) grammar. but it must be
allowed that parser actions will not all be semantically meaningful. and any . semantic
tree' which Is built will not faithfully reflect the structure of every construct in the
source code.

9.2. The Placement of Declarations.
In each Ratpas block. declarations occur after the executable statements. This

means that no type- or scope-checking can be done at each use of an Identifier.
because the declarations which would make the use legal have not yet been pro­
cessed. In practice. this is not important because Ratpas identifiers can simply gen­
erate Pascal Identifiers. so it can be left to the Pascal implementation to check the
consistency of declaration with use.

Even so. the placement of declarations is still problematic because the object
code has to be generated the other way around. Consider. for example. the pathologi­
cal Ratpas program:

procl
proc1 =(

proc2
proc2 =(

proc3
proc3 = (

proc4
proc4 =(

proc5
proc5 =(

skip
)

1
1

}
}

which corresponds to the Pascal program:

- 20-

program pathological <input. output):
procedure procl:

procedure proc2:
procedure proc3:

procedure proc4:
procedure proc5:
begin
end:

begin
proc5
end:

begin
proc4
end:

begin
proc3
end:

begin
·proc2
end:

begin
procl
end.

In this example. executable statements are generated In the order opposite to
that in which they were read. Where such wholesale reshuffling of text is necessary.
three classes of solution present themselves:

(1) The translator makes N passes through the source-file (or temporary files.
or pipes). where N is dependent on the program being translated.

(2) Random access tiles are used.
(3) A structure is kept In memory. which can grow large if the translation task

grows large.
The first of these is not preterred on the grounds of simplicity and efficiency. It is

noted. however,that a completely general translator should take this approach.
The second possibility Is rejected because It would be non-portable and. in atl

likelihood. quite complex.
Remark 1: In the search for an LALR<l) grammar. the following Investigation

was pursued: All the right-hand sides ot productions were reversed. with a view to
writing a scanner which would read the source program character-for-character
backwards (possibly via a lower-level routine which would read block-for-block
backwards. releasing a character at a time). It is interesting that this approach. if
successful. would have simplified the translation of the above program. Unfor­
tunately. though. there are other examples in which 1ranslation is more than just
reversal. and so this would stili not afford a one-pass solution. The Investigation
was abandoned because Ratpas is less susceptible to LARU1) grammars than i1
is to LALR(l) ones. End of remark ,.

The. third approach is accepted as an imperfect but workable solution. Since
yacc parsers are adept at building trees. and a tree can be made amenable 10 all the
declaration-sorting required (see sections 2.3 and 2.4). the parser will build a seman­
tic tree which will be traversed later in such an order as to produce the Pascal code.

9.3. The Anonymity of Declarations.

Ratpas declarations are not tagged by illuminating keywords such as . const' .
. type'. . var' or . procedure'. As already noted. this makes parsing more difficult.
However. where this becomes crucial is In declarations like

- 21 -

a, b, c = d

which, depending on context (the declaration of d) could declare types or constants.
A necessary condition for a grammar to be LALR(l) is that It be context-free, so if

a construct of this kind is to be reduced to a declaration, it can only be to one sort of
declaration. Rather than reducing all such constructs to type-declarations or all to
const-declaratlons, and coercing their Internal representations afterwards, a more
honest approach is to permit, for internal use only. a new class of declarations:
renames. Thus. the Internal representation (the semantic tree) is to contain six kinds
of declaration: 'canst'. 'type'. 'var'. 'procedure'. 'function' and 'ren' (for
, rename'). After the tree is built. but before it Is output its renames must be elim­
Inated', This is done by obtaining all necessary context Information from the tree. and
then replacing each rename by a const- or type- declaration as appropriate. The
algorithm for doing this is discussed in section 6. '

Remark 2: There is a different approach. which was considered at one
stage: If a symbol table was structured so that the semantic subtree for each
block referenced all occurrences of a given identifier through a common
character-pointer. then a rename might simply change the character-pointers
corresponding to the identifiers on the left-hand side. to point to the Identifier on
the right-hand side. This would effect a textual substitution. and no Pascal
deClaration would have to be generated in lieu of the rename. This approach was
abandoned becaus~ it would be too difficult to prevent users from atlaslng not
only types ~d constants. but variables. procedures and functions as well. End of
remark 2.

Remark 2a. It was conS,ldered that Ratpas should boast a new feature. per­
mitting the aliasing of variables, procedures and functions. Discretion was
thought the better part of valour. End of remark 2a. '

9.4. The Ordering of Declarations.
The declarations in any Aatpas block may be entered in any order. In Pascal.

they must be generated in the sequence:

const
type
var
function/procedure

This means only that the semantic tree should keep separate lists of these
declarations for each block. More on this in section 4.

More importantly. const and type,declarations must be generated with a certain
ordering. so that no identifier is declared before those which on which its declaration
depends. The const and type declarations must. therefore. be reordered. This is
done after the renames have been eliminated. but before the tree is output. The algo­
rithms are discussed In section 7.

Procedures and functions also have interdependencies. but this Is easily over­
come by Pascal's forward declaration feature. Forward declarations can be gen­
erated for every procedure and function before any procedures or functions are them­
selves output.

9.5. The Relaxa1ion of Type-Dependency Restrictions.

Pascal has a rather obscure set of restrictions for type-declarations which refer
to each other. For example. this Is legal:

- 22-

type
list = •node:
node = record

head: integer:
tail: list
end:

But this Is not

type
list =•record

head: integer:
tall: list
end:

Ratpas requires only that the definitions be non-circular. and that all types used
must be either primitive or declared somewhere within scope. Thus

list = • record
head =Integer
tall =list
end

is legal. but

list = record
head =integer

. tail =list
end

is not.
The restrictions of Pascal are overcome by creating extra declarations wherever

any nested structure is involved. Thus the legal Ratpas declaration shown above
might. as an intermediate measure. generate:

type
Yl =record

t1ead : Integer:
tail: list
end:

list = ·Yl:

Of course. this creation of extra declarations must be done before they are re-ordered
on dependencies. In fact. it need not be done as a separate pass. but can be accom­
plished during parsing so that all these artificial declarations appear in the semantic
tree from Its creation.

It is noted that creating extra declarations so liberally does much more than is
necessary. The size of both the semantic tree and the generated code would be
reduced if more intelligence were employed in deciding when to generate and when
not. However. the above strategy is simple and has a high probability of correctness.

9.6. Underscores In Identifiers.
Ratpas identifiers are arbitrarily long sequences of letters. digits or occurrences

of the underscore character (' _f). that begin with either a letter or an underscore.
The version of Pascal which forms the output space (see [3]) permits identifiers. also
of any length. but without underscores. .

The conversion could be accomplished either through a symbol table. (which
could map Ratpas identifiers into something like ("L00001". "L00002".... }). or by a
one-to-one function from one set into the other. using a deterministic algorithm with
no table. The latter alternative Is preferred because:

- 23-

(1) It Is simpler. not requiring any new data structure.
(2) When the object Identifiers are seen by a human. e.g. In error messages

from the Pascal implementation. the correspondence can be more
readily perceived. particularly If the conversion algorithm Is written so as
not to alter Identifiers more than necessary.

(3) Possibly these error messages could be trapped by another process
which would reverse the transformation. This Is easier and more portable
if a conversion table does not have to be passed between processes.

However. a mapping function alone is Insufficient, because Ratpas and Pascal
share a set of predefined identifiers. and care must be taken to ensure that they are
not altered during translation. Therefore, a table will be needed, but It will be a simple
static table of exceptional identifiers. which requires no runtime maintenance and may
appear In any number of processes without runtime communication.

10. Conclusions So Far.
The translator is to center Its attention on a data structure called the semantic

tree. and will do Its processing In four stages:
(1) Make one pass through the source code. creating the semantic tree.

(2) Traverse the semantic tree. eliminating all record of rename-declarations.
(3) Traverse the semantic tree, topologically sorting const- and type-

declarations of each block according to their Interdependencies.
(4) Traverse the semantic tree. generating Pascal code.

Stages 2. 3 and 4 could perhaps be integrated into one traversal. but It is thought
worthwhile to keep this modularity. at least during program development

Surprisingly. not much has been said yet about the task of actual translation of
statements from Ratpas to Pascal. In fact. this is one of the simpler jobs. and is
largely done in pass 1 (see below). Most of the difficulty of translation is in stages 2
and 3. and in pass 1 preparing the data structure to make these stages possible.

11. The Semantic Tree.

Syntactically. a Ratpas program is an Instance of the block construct. which also
occurs in procedures and functions. Therefore. the semantic tree of a Ratpas pro­
gram will be of a general structure used for representing blocks:

The semantic tree for a block will consist of the semantic tree of the declarations
local to that block. and a representation of the Pascal text of the executable statements
of the block.

Note: Representations of Pascal text are explained more fUlly later on. For
the moment, the word 'picture' will be used to denote internal representations of .
Pascal text. for reasons which will be revealed in section 4.2. End of note.

The semantic tree of a set of declarations In a block is. in some respects. a
symbol-table local to that block. To avoid confusion with the symbol table described In
section 9. however. It will be referred to as the semantic tree of a set of declarations.
It consists of six lists of declarations' semantic trees: I.e. those belonging to consts.
types. vars, rens, procedures and functions.

The semantic tree of a constant declaration consists of a list of constant­
Identifiers belonging on the left-hand side. at most one Identifier on which the
declaration depends. and a picture qf the right-hand side.

The semantic tree of a type declaration consists of a list of identifiers· belonging
to the left-hand side. a list of type-identifiers on which the declaration depends, arid a
picture of the right-hand side.

The semantic tree of a variable declaration consists of a list of identifiers belong­
Ing to the left-hand side. and a picture of the right-hand side.

The semantic tree of a rename declaration consists of a list of identifiers on the
left-hand side, and an identifier which belongs on the right-hand side.

- 24-

The semantic tree of a procedure or function declaration consists of an identifier
for the name of the function. a picture of the other information which is to be output
when the procedure/fun.ctlon header is printed. and the semantic tree of the block
which is contained In the procedure or function. The semantic tree of this block Is.
recursively. of the form just described.

A tree of this form. once created. furnishes stages 2. 3 and 4 with all the informa­
tion they need. In order to implement this. however. it Is necessary to further examine
the data types list and picture.

11.1. Lists.

The Aatpa.s translator abounds with linear lists. Declarations contain lists of
identifiers. the semantic. tree contains lists of declarations and there are other other
lists yet to be seen (see sections 5.2.1 and 9). .

The implementation language (C [5» does not support lists as primitive data
types. so they must be Implemented. However. if lists of every required type were to be
Implemented by a dedicated set of functions. then these functions would Increase the
size of the translator by no small amount. Therefore. it is proposed that a set of gen­
eric list macros be written which will perform the standard list functions on any desired
type. How they are to be written Is rather fiddly. and depends upon quirks of the C
macro processor. Nevertheless. their performance may be succinctly specified thus:

For any type-identifier t occurring in the translator. the call:

L1STGEN (t);

will permit iist operations to be done on that type throughout the C source file in which
the L1STGEN occurs. In particular. lists of t's may be declared with the pseudo-type­
identifier:

listof (t)

The function

nil (t)

returns an empty list of t's. and the pseudo-functions

cons (1. i. I)
car (t, J)-

cdr (1. J)

perform the normal operations on an Item i and list I. where t Is. again. the Item
type. A list can be tested for emptiness by comparisons with nil <t>. Moreover. car
(1. f) and cdr <1. I> can be used as Iva lues • i.e. the objects of assignment.

11.2. Pictures.
it has been observed (section 2.1) that the Ratpas text is to be parsed bottom-up.

and that the reductions will not always be In semantically useful steps. Moreover. It Is
the task of the parser to do translation of executable statements and other parts which
do not have to be reshuffled by stages 2 and 3. What then. does this suggest regard­
ing requirements of the representation of Pascal text being constructed?

The bottom-up phenomenon suggests that It will be necessary to create elemen­
tary representations (say. for Pascal tokens>. and also possible to construct a larger
representation out of smaller ones. However. since the order In which these construc­
tions are done is virtually meaningless. It is thought prudent to be consistent and not
make this Information available outside the module which manipulates these struc­
tures.

It is for this reason that they are called pictures - a picture 15 not to be con­
sidered as a smaller semantic tree. but rather as an image of a sequence of tokens.
similar to text on a page. which would have to be re-parsed If it were to to be under­
stood. The only means of examining a picture Is by sequential traversal of the tokens
out of which it is constructed.

- 25-

Therefore. pictures are encapsulated with access through only the following
functions:

pie (s)

cat (pl. p2. p3....pn. Q)

traverse <p', 1)

The function pic (s) returns a picture of the character string s. The function cat (pl.
p2. p3....pn. 0> returns a picture of the concatenation of the pictures pl. p2. p3•...pn
(the 0 is needed for implementation reasons. since the function takes a variable
number of parameters). The function traverse (p. f) calls the function f once for each
token In the picture p. taken in sequence. At each call. the appropriate token (charac­
ter string) is passed as an argument to t.

These fu'nctlons serve all the requirements that the translator has of pictures.

12. The First Pass.
The first pass of the Ratpas translator Is to read the Input text and build a seman­

tic tree of the form described In section 4. and with the constraint that none of the
type-declarations will have nested structure.

12.1. The Scanner.
In order to read the text. it will be necessary to employ a lexical analyser, or

scanner.
The Interface between the scanner and the parser Is quite strictly defined by the

properties of yacc. and requires that the scarlner be called as a function which returns
the next token on the the input. Where more Information Is required (e.g. It It Is Insuffi­
cient to determine that a token Is an identifier. the parser must be told which ide'ntif­
ier). the convention will be maintained that the scanner will not attempt any translation.
but will supply the token as read.

The interface between the source-file and the scanner must be such as to satisfy
the following reqUirements: .

(1) The scanner can • push back' up to two characters of input which are not
white space (this follows from an examination of the regUlar expressions
of numbers).

(2) The current line of text Is available to be printed together with error mes­
sages.

The simplest way to supply these facillties 15 to have a module which buffers a
line. and releases It one character at a time. This input-buffering module will give
access to the line directly. I.e. by allowing other modules to use its name (this is

, necessary for sophisticated error-message output>. but will provide the functions:

, getch 0
ungetch (c)

echo 0

to get the next character (replacing the buffer if necessary). to push a character back.
and to print out the current line respectively. Where possible. the discipline of only
accessing the line through these routines will be maintained. In any case. the input­
buffering module (in particular its internal routine for refreshing the buffer) will com­
pletely own the real input stream.

12.2. The Parser.

The semantic tree consists principally of pictures and declaration records. In the
yacc environment. it is easy to construct pictures as rules are reduced. and to make
the pictures reflect the comparatively trivial syntactic changes needed to effect much
of the translation. For example. Ratpas has a syntax-rule:

- 26-

whlle-stmt -) while exprn action

Since the parser operates bottom-up. the expression and action will already have
been processed and will have made their pictures available. Therefore. on reducing
this rule, the parser must just concatenate:

(1) A picture of the Pascal keyword ' while'
(2) The picture of the expression, which has already been constructed
(3) A picture of the Pascal keyword 'do'
(4) The picture of the action. which has also already been constructed.
and the picture thus formed will be automatically stacked and made available to

the rule by which the whlle-stmt is further reduced. This mechanism can be similarly
applied to all the simple syntax changes, and even to semantic change. Le. inserting
parentheses in expressions to reflect the difference in operator hierarchy.

12.2.1. Parsing Declarations.
Producing the semantic tree of declarations (see section 4) Is more Involved. In

constant declarations and renames. the information needed for the record is all
Immediately available in the tokens from which the declaration Is reduced.
(Remembering that constant-declarations and renames (see section 2.3) are to be
parsed as completely separate nontermlnals. the grammar for the right-hand side of
constant-declarations must be framed so as to avoid producing single identifiers).

01 all the different kinds 01 declaration record. types are probably the most diffi­
cult to create. The left-hand side identifiers are immediately available. and it is possi­
ble for a picture of the right-hand side to be made available by creating pictures as
types are reduced. It is necessary to construct. as the right-hand side is parsed. a list
of all dependent types. This list cannot be global because types can be nested.
Therefore. each rule will stack a list of identifiers on"which It depends. Since the pro­
ductions must return both a picture and a list of ide"ntlflers. and since yacc only per­
mits a single result to be stacked. all the rules which produce types. or parts thereof.
must consistently stack a pair - which can be implemented in a list. Moreover. since
type-declarations and ren-declarations are distinct. the grammar for the right-hand
side of a type declaration must produce all Ratpas types except lone identifiers; the
rules must be drafted carefully to enforce this.

The parser must also adhere to the constraint that the tree produced will not
represent types with nested structure. In order to accomplish this. each time a struc­
tured type is parsed. an artificial type-declaration is created. and the pair returned is
as though the Invented type-Identifier had occurred In place of the structured type, In
order that It be possible to 'create' declarations like this, at places in the grammar"
other than the productions of declaration-lists. it Is necessary that the semantic tree of
the current set of declarations be available for additions at all times. Because
declarations can be nested. these semantic subtrees must be kept In an explicit stack
(which can be implemented in a list>. The stack will be pushed at the start of each
biock <It could be pushed at the start of each declaration-part. but this point is harder
to recognise syntactically). and popped at the end of each block.

Var-declaratlons are simple to parse. once types have been handled. For pro­
cedure and function declarations. also. the information needed for the declaration
records will all be readily available on the parsing stack.

13. The Second Pass.
The second pass of the translator must purge the semantic tree of all rename

declarations. It does this at the root level of the tree (for declarations in the outermost
block>. and then recursively applies the mechanism to ail the blocks in the functions
and procedures declared in that block.

At each block. the algorithm is of the following general form:

- 27-

while there are renames left:
for each rename:

try to eliminate it.

where 'try to eliminate It' means to search for the right-hand side identifier in all the
const- and type- declaration lists in the current block. and then in successive parent
blocks; if this identifier is found. then the rename will be replaced by a const- or
type-declaration accordingly (i.e. It will be deleted and an equivalent declaration of the
nominated type will be added to the current block). The 'for each rename:' loop must
detect the condition that a complete scan of the renames is made without any pro­
gress. If this occurs, then none of the right-hand sides is known to be either a type or
constant. so either the declarations are circular or a necessary Identifier is unde­
clared. so an error Is recognised.

Afterthought: Since it is necessary to chase declaration-lists in successive .
parent-blocks (to reflect scope-rules). these parent-blocks must be referencable.
The second pass could keep an explicit stack of pointers to roots of trees and
sUbtrees. but It should be simpler to alter the parser so as to provide a parent­
link in the semantic subtree of each block. End of afterthought.

14. The Third Pass.
The third pass must reorder the const- and type- declaration lists so each

declaratIon occurs before all those which depend on It. The traversal strategy will be
the same as for pass 2. I.e. top-down. At each subtree, the following algorithm will be
performed:

while there are canst-declarations in the unsorted constant list
for each const-declaration in the unsorted constant list

attempt to move It into the sorted constant list.
while there are type-declarations in the unsorted type Iis1:

for each type-declaration in the unsorted type list
attempt to move it into the sorted type list.

Here. attempting to move something into a particular sorted list means searching that
sorted list and successive corresponding parent lists for each identifier on which i1
depends; if it is found. then that declaration Is moved into the sorted list. In each
case. a check must be made that a traversal of an unso~edlist is never completed
without any progress. just as in the second pass.

15. The founh Pass.

The fourth pass must write out the Pascal program corresponding to the semantic
tree. This is. for the ·most part. a simple top-down traversal; at each block. the
declarations are printed out In the !'rder .

canst
type
var
procedure forwards
function forwards
procedures
functions

(for debugging purposes. the fourth pass migh1 also write any rens which are left). and
then traverses the picture of the block's body. Some inde.ntatlon can easily be pro­
vided. e.g. printing each procedure/function at one tab-stop further than its enclosing
block. Formatting pictures Is a more serious matter ([6]), since they do not provide
any semantic structure. Here. all formatting must be done at a lexical level. e.g. by
recognising semicolons. .

Before any code is written out. Pascal requires a program heading. which is 10
contain a program name (an identifier with no semantics attached) and a list of all

- 28-

variables of type 'file' used by that program. The program name is easily created.
either from information available to the translator at Invocation or from more arbitrary
sources. The list of file variables is somewhat harder and will. in this Implementation.
not be tackled adequately. Rather. the user must supply this information explicitly.
either by editing the object program or. preferably. supplying the list to the translator
on invocation. The second alternative is preferred. with the understanding that the
filenames 'input' and' output' will be taken as default

16. The Symbol Table.

The design. to this point. Is workable and a translator could be Implemented
Without the need of a symbol table. However. since for each Identifier occurrence in
the output text a character-string Is to be stored in the semantic tree. and since many
of these will be the same in content. it would be wasteful of storage.

Therefore. a symbol table should be constructed. which contains a common copy
of every Identifier (both users' identifiers and generated ones). Then. every time a
Pascal Identifier is generated (either In the routine that translates Ratpas identifiers. or
in the routine that generates unique ones for type declarations). a search Is made of
the symbol table. If the Identifier already exists. then the symbol-table entry is used to
reference It. If not. it Is inserted.

Since the symbol-table Is only a store-saving device. It will be oblivious to scope
rules and It need not carry any Information except the characters of which identifiers
are composed. Nonetheless. this approach does have the advantage that. in passes 2
and 3. where searches are done to locate Identifiers In the semantic tree. comparis­
ons need only be done by character-pointer. not character for character.

The symbol-table implementation need only have one primitive. a function

insert (s1rlng>

which stores a given character string 'f It is new, and in any case returns a pointer to
the common copy.

For sake of simplicity. Implementation will be via a fixed-size hash table. with
each position referencing a list of clashing Identifiers.

- 29-

REFERENCES:

[1] M. P. ShepanskL The Ratpas Report, submitted to P. A. Balles, University of Wol­
longong Computing Science Dept. August 1983.

[2] P. A. Balles. A Rational Pascal, University of Wollongong Computing Science Dept
preprint no. 82/20.

[3] K. Jensen and N. Wirth. The Pascal User Manual and Report, second edition.
Springer-Verlag 1978.

[4] S. C. Johnson. Yacc: Yet Another CompiJer Compiler, Computing Science Techni­
cal Report No 32. 1975. Bell Laboratories Murray Hill. New Jersey 07974.

[S] B. W. Kernighan and D. M. Ritchie. The C Programming Language, Prentice-Hall.
Englewood Cliffs. New Jersey (1978).

[6] P. A. Balles and A. Salvadorl. A Semantically Based Formatting Discipline for Pas­
cal, to appear In "Software - Practice and Experlence-.

	Ratpas documents
	Recommended Citation

	tmp.1283923750.pdf.WE6Su

