
University of Wollongong University of Wollongong

Research Online Research Online

Department of Computing Science Working
Paper Series

Faculty of Engineering and Information
Sciences

1986

A physical schema derivation for network databases A physical schema derivation for network databases

Leszek A. Maciaszek
University of Wollongong

Follow this and additional works at: https://ro.uow.edu.au/compsciwp

Recommended Citation Recommended Citation
Maciaszek, Leszek A., A physical schema derivation for network databases, Department of Computing
Science, University of Wollongong, Working Paper 86-9, 1986, 67p.
https://ro.uow.edu.au/compsciwp/34

Research Online is the open access institutional repository for the University of Wollongong. For further information
contact the UOW Library: research-pubs@uow.edu.au

https://ro.uow.edu.au/
https://ro.uow.edu.au/compsciwp
https://ro.uow.edu.au/compsciwp
https://ro.uow.edu.au/eis
https://ro.uow.edu.au/eis
https://ro.uow.edu.au/compsciwp?utm_source=ro.uow.edu.au%2Fcompsciwp%2F34&utm_medium=PDF&utm_campaign=PDFCoverPages

A PHYSICAL SCHEMA DERIVATION
FOR NETWORK DATABASES

Leszek A. Maciaszek

University of Wollongong
Department of Computing Science

P.O.Box 1144, Wollongong, NSW2525
Australia

ABSTRACT

A methodology for the design of a physical database schema in the network model
environment is presented. The methodology is integrated with the conceptual and logical designs as
presented inter alia in the earlier reports (Maciaszek, 1986; Maciaszek et ai., 1986a). As the
physical design problem has the potential of being untractable in polynomial time; we have reduced
its complexity in two orthogonal ways: (1) by applying a theory of separability on user views, and
(2) by imposing strict ordering on design steps (with feedback). The methodology adheres to the
latest standardization efforts for the network model and is consistent with the currently most
recognized network Database Management Systems. The methodology is meant to serve as an
initial and preliminary specification for a computer-assisted design tool, which - when integrated
with other interactive tools for conceptual and logical designs - will be a component of the
Intelligent Database Design Kit (IDDK). The IDDK is being developed for network and relational
systems and is partly operational.

Keywords: H.2. Database Management; E.2. Data Storage Representations;
H.3. Information Storage and Retrieval.

Categories: Database Design, Physical Schema, Network Model.

2

CONTENTS

1. INTRODUCTION
2. BASIC TERMINOLOGY
3. GATHERING RECORD USAGE STATISTICS
4. GROSS PLACEMENT
5. FINE PLACEMENT
6. RECORD PLACEMENT
7. ACCESS PATH SELECTION
8. lNTRA-RECORD STRUCTURE AMELIORATION
9. INDEX SPECIFICAnON
10. DISC SPACE REQUIREMENTS
11. PERFORMANCE PREDICTION
12. PHYSICAL SCHEMA DEFINITION
13. CONCLUSION

ACKNOWLEDGMENTS
INDEX OF FIGURES
REFERENCES

Principle:

2

5

8
11
20
27
32
47
50
53
57
61
61
63
63
64

"A data storage description language defines how data described in a
schema may be organised in terms of an operating system independent and device
independent storage environment. Such a description is known as a storage
schema. A storage schema has no effect on the results of application programs
but only affects their performance."

Report, 1978

1. INTRODUCTION

We have been working on a methodology for database design and development. The
methodology consists of five phases: (1) conceptual design (conceptualization), (2) logical design
(or formalization), (3) physical design (or materialization), (4) application software design (or
realization), and (5) maintenance and evolution. The methodology has been partly automated in the
conceptualization and formalization phases. The prototype versions of computer-aided design tools
to derive feasible conceptual structures and convert them to logical structures for network databases
are operational. The materialization methodology, as described in this report, is manual and is
meant to serve as a blueprint for another computer-assisted design tool. An overall interactive
design support environment has been labelled as the Intelligent Database Design Kit (IDDK).
Starting from the formalization phase, the methodology is customized separately for the relational
and network databases. Figure I presents the successive stages of the first three phases of the
methodology for network databases. The three phases deal in fact with data structures of a
database, as opposed to its algorithms. The algorithm design is handled by the fourth phase and a
software conversion part of the last phase (another part addresses database restructuring and
reorganization).

3

ClO

CONCEPTUALIZATION
1,
l

1,
l
l,
1
1
l
l
l
l
1
1
1
I
1

1
1,
1

l

1

1
l
l

1
l
1
l
l,
l
1,
1
1
1
1
l
l
1

1
1
1
1
l
l
l
1
1
1

1

I

l

1
1
I

l
l

\
1
1

1
\
I
l
I
\
\

1
1
1
1
\
1

PHYSICAL
SCHEMA
DFFINTI1(J1l

M9

MIO

MI

MATERIALIZATION

._---------~~---~

- - - - - - - --I
PI

FlO

FORMALIZATION

1
1
I,
1
1

LOGICAL 1

SCHEMA 1

I DEFINmON :~ l

CONCEPTUAL I

SCHEMA :
DEFlNTI10N I

l---------------~
I Cl I

I
I
I
I
I

I
I
I

I
I

I
I

I
I

I

I

I

I
I
I

I
I

I
I
I
I

-
-I
I
I
I
I

I

-
-
-I
I

I
I

I

I

-
-
-
-
-
-I
I

-
-I
I

I

-
-
-I
I
I

-
-I

II _

------- ... _- ... _----

Figure 1. Data Structure Design Process for Network Databases.

4

A problem of physical database design (called hereafter materialization) deals with "...
finding an optimal configuration of physical files and access structures - given the logical access
paths that represent the interconnection among objects in the data model, the usage pattern of those
paths, the organizational characteristics of stored data, and the various features provided by a
particular database management system (DBMS)" (Whang et at., 1982).

In this report we refer to an important subset of DBMS's that evolved around the network
(CODASYL) database model. Network DBMS's have proved especially attractive and reliable for
high-volume production applications and have formed a de facto standard for commercial
databases. The first CODASYL specifications (1969 and 1971) have been followed, among others,
by the comprehensive report in 1978 (Report, 1978) , two reports in 1981, and most recently by
the ANSI standard draft proposal (Draft, 1985). Originally, the definition of logical and physical
structures of database were combined together in a framework of a common language called Data
Description Language DDL. However, in 1975 work began on separating logical and physical
aspects of database definition in order to achieve greater data independence. This work culminated
in the production of the appendix to the 1978 report in which a draft specification of a Data Storage
Definition Language DSDL was given. As this work has been used as a blueprint for DBMS
software development (most notably IDMS), we adhere to the 1978 DSDL defmition in this report
unless stated to the contrary (ANSI standard does not specify DSDL). We also cash in on our
experiences in using the following commercial network DBMS-s: IDMS (Cullinet product that
runs, among others, on IBM and ICL mainframes), DMS-llOO (Univac), VAX DBMS (DEC),
UDS (Siemens) and RODAN (RIAD and IBM). Finally, we have drawn on material from Draft
(1985) whenever a reference to other than DSDL interfaces has been needed.

Though we are concerned with the network database design, it is important to make the
point that much of the discussion in this report is also relevant to the relational databases. The
relational model is purely logical (if definition statements like CREATE INDEX are left aside) and
leaves the physical considerations to the database implementors, i.e. they are hidden from a
Database Administrator DBA but are inherent in a DBMS. Hence, one of the possible solutions is
to apply physical design techniques acquired in the network database context. In fact, we currently
observe a trend to implement relational database interfaces on top of the network DBMS's, e.g.
IDMSIR on top of IDMS (IDMSIR, 1984) or RDMS-1100 on top of DMS-l100 (ROMS, 1985).

A significant amount of research has been devoted to the physical design of files and
databases (a good survey of this research can be found e.g. in Merrett (1984), Teorey and Fry
(1982), Wiederhold (1983». The research to date has provided a variety of analytic, simulation and
other tools for single-file design as well as for partial and specialized aspects of multiple-file
(database) design. The usual approach employed in the developed models has been to minimize
access cost over some limited solution space. Few efforts have addressed a more realistic database
environment in which complex interconnections of data structures and access patterns have been
considered (e.g. Jain (1984) and Whang(1985) in the case of network databases). However, these
approaches again fall short of the expectations of a practically-minded DBA - the underlying
assumptions are obvious tradeoffs to their applicability. (Some not exhaustive examples: Jain
(1984) neither allows multiple storage records for a logical record nor spreading occurrences of a
record type over more than one area. Whang (1985) assumes that occurrences of all record types
are stored in one area and excludes the clustering of member record occurrences near their owner
record occurrence.) As a result of the lack of design methodologies, practicing DBAs capitalize on
experience and intuition and make their living by performing the pertinent cost-benefit tradeoffs
(more or less on a trial-and-error basis).

To the best of our knowledge, the most comprehensive and practically viable physical
design methodology for network databases has been developed within the DATAID project
(Orlando et at., 1985; Staniszkis and Rullo, 1982; Staniszkis et at., 1982; Staniszk:is et at., 1983
etc.). That methodology, though slightly outdated (it is based on the early (1971 and 1973)

5

CODASYL specifications) is attractive for a number of existing DBMS's (the methodology uses
storage formulae implemented in RODAN (RODAN, 1979». In general, the DATAID
methodology seems to be better suited for evaluation of existing databases than for designing new
systems (in particular, as far as its physical part is concerned).

This report demonstrates an independent methodology carefully integrated with the IDDK.
The methodology is meant to be practical, comprehensive, iterative, current and tractable by CAD
tools.

One of the interesting features of our methodology is that it practically applies and extends
the ideas behind the theory of separability as introduced in Whang et al. (1981) for the relational
model and extended in Whang et al. (1982) for the network model. The theory says that if certain
conditions hold the problem of designing the optimal physical database can be partitioned into
subproblems such that the techniques developed for single-file design can be utilized to solve those
subproblems. In its ultimate form, the separability property allows for reducing the global
optimization design problem to a local optimization problem. We apply the theory in stage M1 of
the methodology (Figure 1) by a vertical partitioning of design scope according to function
specifications and by utilizing so called relative design importance (RDI) of record types. In stages
M2 through M8 we extend this approach by imposing an iterative horizontal partitioning over the
vertically divided design scope. Final integration of solutions is carried out during stage M9 and
implemented in stage MlO.

2. BASIC TERMINOLOGY

The three phases of the data structure design process refer to different - though
interdependent - structuring notions. The conceptualization deals with relationships, entities and
attributes. The formalization is concerned with sets, records and data-items. The materialization
refers to areas, files, pages, blocks, storage records, etc. As far as the materialization notions are
concerned, we further distinguish between the notions of physical storage structure and physical
allocation structure. The storage structure definition is a responsibility of the DBMS and its DSDL,
whereas the allocation structure is determined according to the device and file management
provisions of an Operating System OS and its Command Language CL. Figure 2 shows the basic
derivation dependencies between the data structure notions. The definition of notions for conceptual
and logical structure is given in Maciaszek et al. (1986a). We presuppose the reader's knowledge
of terminology relevant to the physical allocation structure, as it is well explained in many
references on operating systems (e.g. Calingaert, 1982) and file management (e.g. Claybrook,
1983). On this understanding, we proceed to define the terms specific to physical storage structure
for network databases.

An fJ.If:£! is a largest named subdivision of the stored database. Its allocation structure
equivalent is called a.fi.k - a portion of external storage media space controlled as an entity by the
OS. In some DBMS-s (e.g. IDMS) the areas can be mapped on to the files in a variety of ways, in
other systems (e.g. DMS-llOO) the areas are related to the files in strictly 1:1 correspondence. At
run time, one or more areas are readied in groups called realms. Thus, the realm is a subschema
counterpart of the schema area. An area is either initialized (created) by the DBMS when it is
opened for initial load or preinitialized by means of a utility routine of the DBMS. Its size is
specified in the DSDL in the number of pages. The DSDL provides also for possible extensions
with a specified step up to a maximum size.

A J2[1g!i is a fixed-length portion of an area. Ultimately, a page becomes a unit for transfers
between external storage medium and DBMS buffer space, and it is then called a b./.Qd (physical
record). (However, exceptions are possible. For instance, a page in VAX DBMS consists of one or
more disk blocks of 512 bytes each). Thus, all pages have the same size in a given area. No doubt,

6

this is a severe restriction on the part of the DSDL in the light of complex distribution of record
occurrences belonging to many different record types and connected by a truly network blend of
CODASYL's sets. This hinders the optimization of performance, especially when several record
types are hashed (caleed) to the same area.

CONCEPTUAL
STRUCTURE

LOGICAL
STRUCTURE

PHYSICAL
STORAGE
STRUCTURE

PHYSICAL
ALLOCATION
STRUCTURE

~TIONSHIP ~~--~~----~ SET AREA FJLE- ~ ~

*
" 'is'.'. ...

" .'9. .6
~.. l

f••9.....
l' •••..• ...

~, "i'r ••l' ~ " " "
EN1TIY ----------~ RECORD PAGE BLOCK

~ " , t

" " "
ATIRIBlITE ITEM SlURAGE BYlE

RECORD

0~~~----~~~~[i]

~

*In many DBMS-s the only
option is AREA == FILE

A implies B

0~ A:J Bor A=Bor B :JA

Figure 2. Derivation Dependencies Between Data Structure Notions.

The storage area entry of the DSDL is presented in Figure 3 (Report, 1978). (A DSDL is
not discussed in Draft (1985).)

A storage record is a direct result of transforming a logical record to an actual storage
format. It includes a subset (not necessarily proper, and possibly empty) of the data items from the
logical record. It also contains all necessary pointers, record length information, and other control
data. This implies that a given logical record type may be mapped onto more than one type of
storage record. In this case, the storage records may also have overlapping (redundant) data items

7

from the logical record. All storage records related to a certain logical record are linked together,
either by direct or indirect (i.e. through an index) pointers. The storage records can only be
addressed by the DBMS, not by application programs. The DBMS is solely responsible for
resolving space allocation problems caused by the growth of storage records within a page (and,
possibly, for further splitting of storage records into smaller units).

STORAGE AREA NAME IS storage-are-name-l

INITIAL~ IS integer-l PAGES

rXPANDABLE [~ STEPS OF integer-2 PAGES

TO integer-3 PAGES]]

at least no occurrences
at most one occurrence (a or b)

at least one occurrence (a or b)
at most one occurrence (a or b)

[:]
{:}

II: "

£.AGE. .s.r..zE. IS integer-4 {CHARACTERS }

WORDS

at least one occurrence (a or b)
at most one occurrence of each (both a and b)

Figure 3. Format of Storage Area Entry.

Figure 4 represents excerpts from the DSDL entries (Report, 1978) which are relevant to the
aforementioned description of the storage record.

Access paths to storage records can be supported by indexes, which consist of pointers and,
optionally, keys. A set is a collection of schema records exhibiting some relationship amongst
them. One record from each set is designated as the owner and every other record of the set is a
member of that set. Sets are not defined as such in the storage schema by means of the DSDL, but
are materialized by pointer chains and indexes, which are explicitly declared.

Before we proceed to the next section, a caveat related to the existing DBMS products. The
notion of the storage record as described above has at least been implemented in one commercial
DBMS (VAX DBMS). IDMS and RODAN introduce instead a concept of fra~ment(segment). A
record is fragmented if there is insufficient space available to hold the complete record on a page.
The fragments are placed in more than one page and chained together. The DBA defmes a minimum
fragment length. The records are fragmentable only if declared as such. DMS-ll00 adopts still
another solution. When a record occurrence does not fit in a page, the page is compacted Records
are shifted in the page and vacant entries accumulated to make space.

We have described the basic terminology for physical storage structures. We have not
attempted to address the full DSDL (and pertinent DDL) capabilities. In particular, the entries of
interest to the derivation process of physical schema have not been demonstrated. We will introduce
them gradually in the subsequent sections of the report.

8

MAPPING FOR schema-record-name-l

{
[{~ndition-l THEN}]

STORAGE {RECORD IS} (s t orage-record-name-l) ...} ...
RECORDS ARE

STORAGE RECORD NAME IS storage-record-name-l

[
.L..INK TO storage-record-name-2 [IS {DIRECT }]] ...

INDIRECT

[STORAGE .KEX IS REOUIRED]

[{ ~ondition-l THEN }]

[DENSITY IS {QN.E. STORAGE RECORD PER integer-l PAGES }]
integer-2 STORAGE RECORD PER £AG£

INDEX NAME IS index-name-l

llSE.D. FOR storage-record-name-3 }

Figure 4. Format of Entries Relevant to Storage Record Definition.

3. GATHERING RECORD USAGE STATISTICS

The physical design process commences with the stage M1 in which the record usage
statistics are calculated. At this initial stage, the choice of the record as a measure for usage statistics
is the only practical alternative, despite the record being a logical notion. No physical notion, for
example a storage record or a page, can be used because neither is defined in this design stage yet.
From this point of view our understanding of record usage statistics, Le. as a sort of interface
between the logical and physical view of the database, verges upon the notion of access path as
defined by Katz and Wong (1982) and Katz and Wong (1983); it also resembles a logical level
traversal type of Effelsberg and Loomis (1984), a transaction definition language of Staniszkis et
al. (1982), and search strategies of Batory and Gotlieb (1982). However, and regretably, none of

(b)

9

the above notions could have been used in our model directly at this stage since the technicality of
the problem and its purpose are slightly different and not that of performance prediction (for the
time being). We merely aim at calculating a coefficient called a relative design importance of a
record in the physical design considerations.

The relative design importance (RDl) of a record is inferred from the logical record access
counts. Note that since the intra-record structures were already determined during formalization
(F3), it is easy to define access patterns of functions (transactions) to logical records. A simple
abstraction process can do this job by modifying (in fact simplifying) the function specifications in
such a way that they now traverse the logical records rather than attributes (C2). Figure 5 is an
example of "Petri-net-like" access structures of three function specifications defined in Maciaszek
(1986).

(a) (c)

(a) EMPSLROl - Determine the global number of employees and the total salary in a given
month for each department and then list surnames, first names and monthly salaries of
the employees.

(b) EMPSTFOI - Get surnames, first names, number of publications, periods of employment
and ranks of the university staff members.

(c) EMPSTF02 - Enter doctors on position of a section chairman into the Faculty Council
and list members of the Faculty Council according to the surnames, first names,
degrees, ranks, and positions.

Figure 5. Access Structures of the Three Functions: (a) EMPSLROl, (b)
EMPSTFOl, (c) EMPSTF02.

However, the access graphs of functions are not sufficient to get the logical record access
counts. Traversal techniques (search strategies) to individual records are also required to be known.
Fortunately, this task is taken care of earlier during formalization (F5). Though these strategies are
likely to be modified later in the materialization process (M4 & M5), they give a sound basis for
access counts considerations at these initial materialization stages. Four traversal techniques, i.e.
the ways of reaching a logical record in a database, are recognized here:
(1) CALCIDBKEY - uses a CALC key, database key, or currency indicator value;

(2)

(3)

(4)

10

INDEXED - uses an index defined either for a set (e.g. an ordinary or index-pointer array)
or for a record type (e.g. a B-tree).
SCAN - accesses all the record occurrences by means of pointers within a set or by means
of physical contiguity within an area.
PARTIAL SCAN - similar to SCAN but terminates as soon as the criteria of searching
(response set) have been satisfied.

In an integrated and shared database system a record can be retrieved in a variety of ways.
SCAN and PARTIAL SCAN, when based on the physical contiguity within an area, can be applied
to all database records. Member records of the sets can be always reclaimed by either SCAN or
PARTIAL SCAN or INDEXED applied to those sets. If a record has been located as CALC or
DIRECT, it can be accessed randomly. Moreover, a secondary search can be provided on some
data items of the record (usually by means of a B-tree).

In general, the CALCIDBKEY and INDEXED techniques are oriented toward the entry
point search. Thus, they mainly apply to the problem of finding an individual record fast and only
rarely are used for the set traversal (i.e. as a navigational support). On the other hand, the SCAN
and PARTIAL SCAN techniques are almost exclusively applied as the tools of a navigational
search and are concerned with the efficient processing of a subset of member records within the set,
such that the subset involved satisfies the search criteria.

Having known how an occurrence (or occurrences) of record type Ri is going to be
retrieved from secondary storage by the function Fj' the DBA is in a position to calculate the
expected cardinality (i.e. the number of record occurrences of Ri) in processing Fi' We shall call
this measure a search length SLj' In case of the CALCIDBKEY and INDEXED techniques, the
search lengths are determined for both the entry point and the navigational support In case of the
SCAN and PARTIAL SCAN, we define the search lengths in terms of navigation through either
the set or the area. However, we note an important difference between the SCAN and PARTIAL
SCAN - the cardinality of the subset records satisfying the search criteria for SCAN can be and
most commonly is greater than 1, whereas for the PARTIAL SCAN the cardinality is almost
always equal to 1 (this is caused by the very nature of PARTIAL SCAN that is normally used to
scan for a record occurrence responding to the search criteria and perhaps even being the entry
point in the next step of the function processing - when no more efficient technique, Le.
CALCIDBKEY or INDEXED, can be applied).

The following are the search length formulas for the four traversal techniques (in the case of
the CALCIDBKEY and INDEXED technique, the length of the entry point search is given on the
left-hand side of the expression and the length of the navigational search is shown on the right-hand
side):

(1) CALCIDBKEY:

1 + Po - Pb == SLj == CR(i) I 2, where:
CR(i) - cardinality ofrecords in areas in which Ri can be placed,
Po - probability of overflow of calc-chain to another page (zero for DBKEY),
Ph - probability of finding the record occurrence in the buffer.

(1)

(2) INDE)OED: (2)

HI ~ SLj == CR(i) /2, where:
CR(i) - cardinality of Ri in the database,
HI - height of the index or the number of secondary storage accesses required to search the

11

index (in fact, an assumption is made here that a master index will not require a disk
access since it will have been placed in main memory when the area is opened;
however, this gain of one access is neutralized later by a need to access the data area
after scanning the whole index area); in general, the height of an index is on the order
of G(logb CR(i»' where b is the branch factor, i.e. the number of key values in a node
(or, in the case of B-trees, one greater than the number of key values).

(3)

(4)

SCAN:

SLj == CR(i) * (1 - Pr)' where:
CR(i) - cardinality ofRi in the set or in the database,
Pr - probability that two or more record occurrences Ri are placed in one page.

PARTIAL SCAN:

SLj == (eR(i) * (1 - Pr» / 2, where:
CR(i) - cardinality ofRi in the set or in the database,
Pr - probability that two or more record occurrences Ri are placed in one page.

(3)

(4)

The stage of record usage statistics is concluded by finding the relative design
importance of record types RD1ij' This coefficient has a profound influence on the further
materialization stages. The materialization as a whole is centered around the record design (let us
recall that even sets are materialized in records). Thus, attaching design priorities to the record types
cannot be overemphasized in the process of considering design alternatives. Figure 6 presents an
example in which a tabular form is used to calculate the RD1ij of five record types Ri in the
pre-canned function environment consisting of five functions Fj. The formulas necessary to arrive
at the RDlij are also shown. RDRi stands for the relative design rank of a function and
expresses the relative importance of a function (transaction) in the set of functions under

consideration (:L RDRj ::= 1). The RDRj are calculated during stage C3 of conceptualization
(Maciaszek, 1986). They lend themselves as important factors to identify and supress the effect of
interferences among user views on the design process. They also represent a direct response to the
requirements of the theory of separability and by leading to the vertical partitioning of a design
scope make the problem tractable.

4. GROSS PLACEMENT

Two related mechanisms to control a storage scheme are recognized - gross placement and
fine placement. Gross placement is aimed at designing the areas and fine placement is targetted
towards the choice of a page in an area. Gross placement control involves a number of decisions,
that can be classified as follows: (1) record to area mapping, (2) area to file mapping, (3) area size,
and (4) page range.

The gross placement has not been treated with due attention by the researchers. Most often
this topic is either neglected or only pointed out in the methodologies (including DATAID). As an
exception we can mention the discussion in Teorey and Fry (1982) where a simplified heuristic
algorithm, partly relevant to the problem, is investigated.

12

~
0.2 0.1 0.3 0.25 0.15

Record RDI(ij)
Types Fl F2 F3 F4 F5

SL(j) 20 40 40 5
Rl RP(j) 0.3448 0.4444 0.3809 0.2500

RI(i) 0.0690 0.0444 0.1143 0.0375 0.2652

SL(j) 1 15 3 4

R2 RP(j) 0.0174 0.3333 0.0286 0.5714

Rim 0.0035 0.0333 0.0086 0.1428 0.1882

SL(j) 5 7 8
R3 RP(j) 0.0682 0.0667 0.4000

Rim 0.0172 0.0200 0.0600 0.0972

SL(j) 30 50 3
R4 RP(j) 0.5172 0.4762 0.4386

Rim 0.1034 0.1429 0.1071 0.3534

SL(j) 2 10 5 7
R5 RP(j) 0.0345 0.2222 0.0476 0.3500

Rim 0.0069 0.0222 0.0143 0.0525 0.0959

1: SL(j) 58 45 105 7 20
1:==1

1: RP(j) 1 1 1 1 1

SL(j) - average search length for R(i) in processing F(j) RP(j) = SL(j) I 1:SL(j)
RP(j) - relative priority of retrieval of R(i) with respect to P(j)
RI(j) - relative importance of R(i) with respect to P(j) RI(j) = RR(j) • RP(j)
RDI(ij) - relative design importance of R(i) with respect to all functions F(j) RDI(ij) = 1: RI(j)

Figure 6. Tabular Aid to Calculate the RDI of Record Types (example).

The task of the record-to-area mapping is clearly related to the problem of record placement
strategy (M4). It follows that the knowledge about record placement is inherent in the mapping
problem and vice versa. To resolve the conflict, an iterative reasoning must be applied. At the
outset, it should be noticed that the preliminary decisions on placement strategies have already been
taken during the phase of formalization. Those decisions were based on the access patterns of the
set of functions to the records and we can safely recognize them as a starting-point.

According to the 1978 Draft Specification of DSDL (Report, 1978), three placement
strategies are available to the DBA:
1. CALC,
2. CLUSTERED,
3. SEQUENTIAL.

The placement subentry format is demonstrated in Figure 7. A word of explanation is
necessary. The placement strategies in Figure 7 refer to the storage records. Therefore, in order to
continue to use the DSDL of 78'Report as a basis for our discussion in this Section, we have to
make clear the consequences of relating placement strategies to the logical records instead. These
consequences are not too significant (after all, in CODASYL specifications prior to 1978, the
placement strategy - called then a location mode - was aimed at logical records). In some rare
situations, the choice of placement for storage records representing the same logical record may be
made conditional on the content of the logical record. As an example, one would permit high
activity storage records to be placed using a different strategy to low activity storage records. As we
can neglect this possibility (without loss of generality), we feel free to discuss the placement

13

strategies in tenns of logical records.

[~COndition-l TIlE.N}]

[
DENSrfY IS {~ STORAGE RECORD PER integer-l PAGES}]

lnteger-2 STORAGE RECORD PERfAGE

PLACEMENT

r.GAL.G. [procedure-name-l] USING (identifier-l) 1
I CLUSTERED VIA SET schema-set-name-l I
I rEAR OWNER storage-record-name-l ...] I
~ [DISPLACEMENT IS integer-3 PAGES] ~

I [NlTH. storage-record-name-2] I
I SEOUENTIAL {{ ASCENDING } {identifier-2} ... } ... I
l DESCENDING J

WITHIN storage-area-name-l

[EEQM PAGE integer-4 :IHRll integer-5]

Figure 7. Format of Placement Subentry.

Since it is allowed for an area to contain occurrences of several record types and for
occurrences of a record type to span several areas, a potential solution space is enonnous. In fact,
the number of design alternatives is the product of power sets of the set of record types and the set
of areas minus a negligable constant to eliminate some repeating or useless combinations (such as
no record types in the area). Thus, the number of possible mappings is proportional to 0(20 *2m),
where nand m represent the number of record types and areas, respectively.

The pertinent part of the Report (1978) definition is shown in Figure 8. Surprisingly
enough, the definition is in fact an element of DDL rather than DSDL. This illustrates how difficult
it is to separate some logical and physical aspects of schema definition. In Draft (1985) an area is
no longer defined within the framework ofDDL (called a schema definition language). However,
as already mentioned, DSDL is not specified in Draft (1985) and its definition is left to the
implementor of a DBMS.

AREA OF OWNER OF set-name-l

[US ING PROCEDURE procedure-name-l]]

RECORD

WITHIN

NAME IS record-name-l

r {ANY AREA }
I {area-name-l} ...

{

I
l

[AREA-ID IS parameter-name-l 1
I
~

I
J

Figure 8. Format of a Part of Record Subentry (DDL).

14

It is not difficult to conclude that the problem of record to area mapping is not manageable
by well-known linear optimization techniques or other noniterative algorithms because of some
conflicting conditions in the implementation alternatives (e.g. a member having two owners in two
sets can only be clustered with respect to one set) and since some alternatives can override the
effects of the other design choices. In these circumstances, a solution to the problem lies in a
stepwise heuristic algorithm or, at the best, in techniques of integer linear programming such as
branch-and-bound algorithms (originally conceived as back-track programming) and perhaps also
in techniques of dynamic programming (v. Reuter and Kinzinger (1984) for some conclusions
from experiences of using heuristic and analytic methods in the physical database design).

The following more or less quantitative rules-of-thumb are formulated for our heuristic
algorithm (note that most of them tighten the solution space):
(1) Consider the relative design importance RDI of records in the process of record-to-area

mapping (Figure 6).
(2) A cluster of record occurrences consisting of an owner and member CLUSTERED NEAR

OWNER is stored within one area (though not necessarily all clusters of the pertinent set
type have to be mapped into one and the same area).

(3) Record occurrences of a particular type with PLACEMENT SEQUENTIAL are stored in
one area.

(4) It follows from (2) and (3) that only records located PLACEMENT CALC are candidates,
albeit unlikely, to be spread over more than one area.

(5) An area does not run over more than one subschema (this ensures that only a subset of
applications is affected by a failure in an area).

(6) The number of areas linked by sets should be minimized (to facilitate recovery if not for
other reasons).

(7) While keeping the number of areas as small as possible (according to our experiences more
than 15-20 areas per subschema introduces an inadmissible overhead on the part of the 1/0
transfers and memory requirements), the areas must not extend over more than one disk
volume and perhaps with the load factor not exceeding 70% (for system availability and
recovery reasons).

(8) By definition, the areas of MODE INDEX or POINTER are separate from DATA areas and
as such they can influence rule (7).

(9) A subschema includes owner record types if the pertinent member record types are of
INSERTION AUTOMATIC.

(10) An owner of singular sets is located in an area where the member record type (of one of
those singular sets) having the highest relative design rank RDR is stored.

From what has been said one can conclude that the following sets of objects are involved in
the process of record-to-area mapping:
(1) Set of record types:

R = {R1, ... , Ri' ... , Rr }
(2) Set of areas:

A = {AI' ... , Ai, ... , Aa}
(3) Set of subschemata:

X = {Xl' ... , Xi, ..., Xx}
(4) Set of set types:

S = {Sl' ... , Si' ... , Ss}'

The cardinalities of sets R, X, S as well as the mutual connections and overlappings among
those sets are assumed to be known a priori. The cardinality of A can only be determined in the
process of relating records to areas. Thus, an initial design situation can be expressed in a way
exemplified in Figure 9. The example comprises nine record types, nCR) = 9, twelve set types, n(S)
= 12, and seven subschemata, n(X) = 7. The RDI of record types and their placements are also

15

shown - C stands for CALC, V - CLUSTERED VIA, S- SEQUENTIAL. Moreover the record type
R1 is named SYSTEM, Le. it is the owner of singular sets, and the record R2 is the AUTOMATIC
member in the set type S4'

Figure 9. Initial Design Situation for a Record to Area Mapping (example).

It is our belief that the example of Figure 9 can be considered as typical for a real-life,
though scaled, design problem. Therefore the example can serve as a validation vehicle of
plausability of our rules-of-thumb. Perhaps the first observation should concern rule (5) - it can be
seen from the diagram that this rule, though otherwise justified, cannot be complied with in the
mapping process. As shown, in order to be consistent with that rule a separate area would have to
be created for each ofthe nine record types involved. Evidently this would be contrary to the very
idea of a database as opposed to a conventional file system.

However, we do not ignore the rule (5) entirely. The subschemata express collections of
user functions (transactions) and in our approach to database design the user needs are of highest
priority. A possible solution to this deadlock is to combine the rule (5) with the rule (1). To this end
we determine subschema-driven relative design importance of records XRDI by simply
adding RDI-s of all record types embraced by a pertinent subschema Xi (Figure 10).

Subschema Records in the Subschema XRDI

Xl R2, R3,R4 0.43
X2 R4, R6, R7 0.40
X3 RI, R2 0.30
X4 R7, R8 0.28
X5 R2, R5 0.27
X6 R3, R8 0.23
X7 RI, R9 0.21

Figure 10. Subschema-Driven RDI of Record Types (example).

16

As a consequence, the process of record-to-area mapping commences with the record types
belonging to subschemata of XRDI = max, unless there is a contradiction accruing from rule (9). In
our example the highest XRDI, equal to 0.43, is attached to the subschema X l' Rule (9) is relevant

for X I because the record type R2 is the AUTOMATIC member of the set type 54' Thus the scope
of X I would need to be extended by including a pertinent owner RS or else precautions have to be

taken not to run programs that store, delete or update in keys the record R2'

We are now in a position to formulate a stepwise and recursive heuristic algorithm for a
record-to-area mapping in the network database environment:

STEPI.

STEP2.

STEP3.

STEP4.

STEPS.

Draw a diagram of an initial design situation as shown in Figure 9.

Determine the subschema-driven relative design importance of record types XRDI
and sort them in a descending order XRDII' .., XRDIx' where x stands for the total

number of subschemata and XRDIi"-~ Xi (i=1,2, ..., x).

For any Xi, i=I,2, ..., x, determine the cardinalities of record types with placements:
(a) CALC - n(C),
(b) CLUSTERED - n(V),
(c) SEQUENTIAL - n(S).

If for Xi the cardinality of CALC record types n(C) $ 1, then define an area Ai as

being consistent with the boundaries of Xi, Le. Ai = Xi == {Ri: Ri E Xi}'

If for Xi the cardinality of CALC record types n(C) > 1, and all CALC record types
are owners of CLUSTERED VIA or SEQUENTIAL record types invoked within the
same subschema, then define an area Ai as being consistent with the boundaries of Xi,

Le. Ai = Xi = {Ri: Ri e Xi}'

Special cases of STEP4 & STEPS and possible iterations:

(a) If there is a reason to assign more than one area to a CALC record type as mentioned
in the rule-of-thumb (4) (e.g. record STUDENT could be scattered over two areas in
order to process separately the male and female students). Note, however, that such
situations are considered exceptional - if each record type is assigned to one area only,
then the complexity of the design problem becomes lower and it is on the order of
O(2n), where n stands for the number of record types.

(b) If SEQUENTIAL record types Rs e Xi are independently enclosed by another

subschema Xj' perhaps as the only record types in this subschema, then it is justifiable

to separate Rs out and to locate Rs in a distinct area Aj == Xj ={Rs}' The above action
is relinquished if XRDI of Xj is lesser than XRDI of Xi by an order of magnitude.

(c) If VIA record types Rv e Xi can be CLUSTERED with more than one owner record

type Ro' then consider the relative design ranks RDR of all the owners involved {Ro}
and cluster Rs with respect to the owner of the highest RDR even though this owner
could be outside of the Xi scope. Then apply the rule-of-thumb (2) and define the area

17

Aj ~ {Rv' Ro}. If the owner Ro is from outside of the Xi scope then define Ai =Xi
- Rv'

STEP6. After each decision that relates a record type to an area, modify the design situation
accordingly and repeat the steps Z - 6. Refine and verify those steps with regard to
the rules-of-thumb (6) - (10).

We believe that the disciplined approach presented above allows the mapping of record
types to areas in the least awkward and the most fair manner with respect to the whole database
user community. The following shows how this algorithm arrives at the set of areas for our
example of Figures 9 and 10.

1. The Subschema Xl has the largest XRDll = 0.43. There are three record types embraced
by this subschema Xl == {RZ' R3' R4}' and n(C) == Z, n(Y) == 1. Moreover,
rule-of-thumb (9) is relevant to this subschema since RZ is the AUTOMATIC member in
the set S3' After applying STEPS and rule (9) to the subschema X1 the defined area is
AI =: {RZ' R3' RS}' This situation is illustrated in Figure 11.

Figure 11. Design Situation After the First Iteration (Area Al is Defined).

Z. The next subschema to be considered is Xz == {R4' R6' R7} with XRDIZ == 0.40.
However, the record type R4 has already been assigned to the area A1 and a new
subschema-driven relative design importance of the remaining record types R6 and R7 is

I

equal to XRDIZ =: 0.06 + O.ZO =: 0.Z6. On this basis we rather proceed now to the
subschema with the larger XRDI (that is the subschema X3) and defer slightly

considerations concerning XZ'

3. The subschema X3 == {R1' RZ} with XRDI == 0.30. However, again the record type RZ has
already been assigned to the area AI' thus diminishing the value of the subschema-driven

relative design importance of the record types to XRDI3' == 0.05. We also note that R1 is

18

the owner of the two singular set types S1 and S12 and the only other subschema involved
is X7' Thus, per rule-of-thumb (10), we define a new area A2 = {Rl' Rg}. This
decision is even further motivated by the SEQUENTIAL placement of Rg. The design
situation is visualized in Figure 12.

Figure 12. Design Situation After the Second Iteration (Area A2 is Defined).

4. The next subschema of interest is X4 = {R7' R8} with XRDI4 = 0.28 and nee) = 1, n(V) =
1. After applying STEP4 and considering the special case (c), another area is determined A3
= {R7> Rg} (Figure 13).

Figure 13. Final Design Solution After the Third and Fourth Iteration
(Areas A3 and A4 Are Defined).

19

5. As a result, the only record type left, Le. not included in an area, is R6' Being of
SEQUENTIAL placement, the record type R6 is subjected to the special case (b) and,
therefore, the last area defined is A4 ::: {R6}' Figure 13 shows the final design solution of
the record-to-area mapping for our example.

Certainly, the problem of record to area mapping underlies the other problems of gross
placement: area to file mapping, area size, and page range. Nevertheless, we now sketch our
approach to the remaining gross placement issues.

The problem of assigning files to areas lends itself to a scheme that could be envisioned as a
one to one (onto) function. Indeed, there is no reason (except perhaps for a test database) why the
areas should not remain in the one to one correspondence to the files, albeit some DBMS's allow
areas to be mapped to files in a variety of ways. (However, such a flexibility of a DBMS can well
be deceptive and is sometimes applied just to hide away a rigid fIle placement policy of the OS (cp.
IDMS, 1982).) We strongly advocate a one to one correspondence between areas and files not only
for the sake of a design clarity but mostly in the interest of such design concerns as recovery,
integrity, concurrency, and security. For example, one to one mapping from areas to files can be
advantageous if distinct access priviledges are specified for each area and/or if applications are
restricted to certain areas to enhance performance.

Area sizes are declared in the DSDL in terms of the number of pages they contain.
However, in our systematic design approach, page characteristics are concerns of fine rather than
gross placement. Therefore, the sizes of areas can be estimated only roughly at this stage.
Feedbacks from the fine placement will permit necessary refinements in the stage M3.

The following expression is derived to approximate the size of a storage area:

(5)

where
RSi - total length of user data items in the ith schema record type assigned to area k ;
CDi - estimated length of control data items (mainly 4-bytes long set pointers) in the ith

record type;
NROi - expected number of occurrences of the ith record type in area k;
PI\: - initial packing density of area k in a percentage, if applicable.

A word of explanation on packing density. Depending on the DBMS, this factor may only
be applicable when the DBA chooses to not allow an area to be dynamically expandable from its
initial size (or if a rigid DBMS only permits static area sizes). It is widely accepted that most areas
should be 70 - 80 percent packed when they are set up, but lower densities can be appropriate for
very volatile areas to which many additions can be expected.

The packing density is often specified outside of the DSDL by means of a command
language of a database 'create-and-Ioad' utility. The area extensions, however, are usually defined
within DSDL (cp. Figure 3). Irrespective of the method of extension specification, there are
tradeoffs. Although one can start up the database with small area sizes, the automatic expansions
are prone to shortcomings with the CALC range; CALC records are likel~ to continu~ to.be
distributed only within the original space allocation for an area. A slow but contmuous detenoration
of performance can only be corrected by reorganizing and reloading the database (this problem is a
subject of the last phase of our methodology).

20

As accruing from the philosophy of our design methodology, and from the process of
record to area mapping in particular, the records will usually be allocated a full page range of their
area (cp. Figure 7). We recognize, however, three cases when smaller page ranges can be desirable
(cp. IDMS, 1982):

(1) to optimise access to those schema records in an area for which PLACEMENT
SEQUENTIAL has been chosen and sequential access is predominant for the record type at
stake (in that case a larger page size and fewer buffers may also be exercised);

(2) to simplify integrity and recovery if different record types are assigned to the same area but
the user queries are not expected to process them in the interrelated fashion (i.e. the
occurrences of different record types are not to be clustered);

(3) to apply different access paths mechanisms to two or more storage records as a result of
the fragmentation of a logical record (this could lead, for instance, to a different placement
technique for high and low activity storage records and would also benefit the dumping,
archiving and recovery processing).

5. FINE PLACEMENT

Fine placement control involves the choice of a page in the storage area. This implies a need
for the design steps to determine: (1) page size, (2) record to page mapping, and (3) storage record
to record mapping.

The size of a page, which is fixed within a storage area, is specified in tenns of characters
or words. This decision depends both on the allocation of records to the storage area and the
physical characteristics of the storage media (e.g. the capacity of a disk track). The latter aspect,
when taken to its logical conclusion, makes the discussion below more relevant for
block-addressable as opposed to sector-addressable devices.

The problem of assigning records to pages is NP-hard. Essentially, the problem is to assign
the records to the pages in such a way that the total number of pages accessed, in response to a set
of user queries with various probabilities of submission, is minimized. A recent paper by Yu et al.
(1985) describes an interesting adaptive clustering algorithm to solve this problem. Unfortunately,
under the unacceptable, for network databases, assumption of the same length for all records.
Another recent paper due to Lirov and Daunov (1985) uses simulation instead of an analytic
approach. However, the underlying assumptions are even stronger - the logical schema is "leveled"
in a hierarchical fashion such that, effectively, only CLUSTERED VIA OWNER placement
strategy is considered.

Determining a page size involves several complex parameters that in practice are tradeoffs to
each other. The most important tradeoffs are listed be1ow(cp. IDMS (1982), Lirov and Daunov
(1985), Staniszkis etal. (1983), VAX (1984»:

1A. A larger buffer pool can result in performing virtual paging of the pool (thrashing), thus
causing an additional I/O by the OS to page fault the buffer into the working set (apart from
an 110 by the DBMS to read the page into the buffer pool).

1B . A smaller buffer pool can result in more database 110.

2A. A larger buffer size allows more data to be read with each I/O. This is usually advantageous
for processing CLUSTERED and SEQUENTIAL records.

21

2B . A smaller buffer size means a larger buffer number for the same buffer pool. This increases
a chance for the DBMS to retain previously referenced records in its buffer pool for a run
unit. This, in tum, can decrease an overall number of I/O if the database contains many
CALC records.

3A. A larger page size is convenient for processing CLUSTERED and SEQUENTIAL records
(time to transfer a page tends to be small compared with the time to search the disk, which
includes queueing time, seek time, and latency). However, larger page sizes increase CPU
overhead due to looking for a requested record, searching for a free slot in the page to store
a record, or page shuffling when record size changes.

3 B . A smaller page size increases the likelihood of record fragmentation (not to be confused
with a deliberate fragmentation of a logical record to a number of storage records).

A page is a DBMS equivalent of an OS block (with the exception of VAX DBMS - v.
Section 2). It follows that pages are stored in blocks and although a block size may in special cases
exceed a page size this is of no concern to the DBMS (and to the DBA at large). Typically, a page
format is as shown in Figure 14 (cp. DMS (1984), IDMS (1980».

We propose an alternative method to handle fine placement which is tailored to the physical
storage structure (rather than to the physical allocation structure and the interfaces between storage
and allocation structures) (v. Figure 2). Therefore, we do not refer directly to such notions as
blocks or buffers. Moreover, we consider that a page size and record to page mapping are
inseparable issues and they are treated accordingly.

Our approach to record to page mapping and to selection of a page size is based on two
constraints (which are usually an implementor's recommendations):

1. The maximum page size must not exceed a disk track length.

2. The minimum page size should accomodate the largest record from among the record types
assigned to the pertinent area (plus the lengths of page header, page trailer and slots index)
and should yield an integral number when divided into the disk track length.

A page size is a function of some average "basket" of records per page, that is determined
by considering: (a) the expected configuration or pattern of records stored and processed in a
dependent or clustered fashion, and (b) the average length of records. The existence of the former
feature (i.e. clustering) establishes a 'recognizable pattern' (i.e. the physical ordering) of records in
an area. If such a pattern is not known then a trial and error extension of a multiple size analysis
technique by Oberlander (v. Teorey and Fry, 1982) is proposed. We shall call it a
'non-recognizable pattern' problem. In both cases, an average time until page overflow can be
considered as an important design hint (cp. Heyman (1982), Cooper and Solomon (1984)). In
what follows a recognizable pattern problem is discussed first.

A recognizable pattern problem will typically fall into one of the following categories:

1. There is only one record type in the area. The record size distribution is known for the
record type of variable length. If the distribution is not known' the uniform distribution can
provide a good approximation.

2. There are n record types in the area but all of them placed as SEQUENTIAL and the
loading strategy is known.

PAGE HEADER (RECORD - 0/
~

22

RECORD - 1
II.

RECORD - 2
~

RECORD - 4
~

RECOR~~ /

~ \ ""'\ /
~DTS ~ RE~ /

I \
2 1

:

L-.----..---4..~SLOTS INDEX-----...1

PAGE TRAILER

PAGE HEADER - Typically 24 - 40 bytes of control information (page
number, pointers to the beginning and end of the calc-chain(s),
overflow usage, etc.).

PAGE TRAILER - Typically 8 bytes of further control information (page
number, slots index length, page trailer length) plus
4-bytes pointers to calc-chains allocated in excess of
the first one.

SLOTS INDEX - Expandable index of typically 4 to 8-bytes entries, one
entry for each record on the page and occasionally for
records stored externally (pointer to the record, record
identifier, record size, length of the record prefix).

SLOTS FOR RECORDS - A variable number of slots holding records (or
frag~ents, or pointers), possibly followed by the free
space.

NOTE: RECORD-3 follows RECORD-4 due to updates. RECORD-4 was shifted up in the page after
some RECORD-X was physically erased (usually the record is physically erased
immediately after DELETE is executed if the DBMS knows PRIOR records to the object
record in the sets in which the object record (i.e. RECORD-X) participates, or it is
physically erased with some delay, when the set is next traversed and the necessary
areas are opened for UPDATE usage). The position of slot number in the slots index is
the same, thus the database-key of a shifted record does not change.

Figure 14. Page Format.

23

3. The member record types in the area are CLUSTERED NEAR one OWNER without
DISPLACEMENT. (The clustering with DISPLACEMENT is a non-recognizable pattern.)
An owner record type can have any PLACEMENT. The loading strategy and a distribution
of set lengths are known - especially a minimal cardinality or, better, the mode of
cardinalities.

4. This case is a combination of the last two categories. A recognizable pattern algorithm can
be applied as long as the loading strategy is clear.

S. The member record types in the area CLUSTERED NEAR k different OWNERS and the
owner record types have no overlapping page ranges. Alternatively, the member record
types in the area are CLUSTERED WITH the first member record stored (which in turn is
CLUSTERED NEAR owner) and all such "first members" have no overlapping page
ranges. For both cases, the loading strategy and distribution of set lengths are known. This
is practically a generalized case of Category 3.

The challenge now is to determine a stepwise and iterative heuristic algorithm for the above
categories of recognizable pattern problem. For simplicity we assum,e that record types are not
spread accross more than one area. As an aside, we note (and it is not suprising) that the
recognizable pattern problem reveals a consecutive retrieval property (except for Category 1 when
the object record is located by CALC). It follows, therefore, that due to the performance
characteristics of secondary storage devices the minimization of the number of page accesses
should have the higher priority than the transfer overhead. Thus, the page sizes for the recognizable
pattern problem should be relatively large.

We propose the following heuristic algorithm to choose a page size for a recognizable
pattern problem:

STEPl. Consider cardinality of record occurrences of record types NROi' Determine the modal
group of cardinality of record occurrences in the sets MROj by assuming a grouped

frequency distribution with the intervals equal to five (say). However, if the grouped
distribution is multimodal, then calculate instead an average number of record occurrences
in a set type AROj= NROm/NROo' where NROm and NROo ' respectively, are the
expected number of member (m) and owner (0) occurrences of set type (j). Define also the

lengths of records: RLi == RSi + CDi' For variable length records, an average record
length is assumed (unless there are special pros or cons regarding fragmentation, thus
justifying lengths longer or shorter than average).

STEP2. Consider the possible loading strategies. If more than one loading strategy is applicable
try and choose the one which is most attractive from a viewpoint either of loading efficiency
or record sequence as requested by some set of functions with the highest design ranks (v.
Maciaszek, 1986).

STEP3a. For Categories 1 through 3 choose the page size by adding the lengths of records in a
basket (as indicated by a pertinent Category of the recognizable pattern problem) such that
the page size is approximately equal to the mid-range between the smallest MINPS and the
largest MAXPS physically permitted page sizes, i.e.:

MR

IPS

(MAXPS + MINPS) / 2

L(i=l...n) RLi where n is such that IPS < MR

(6)

(7)

EPS = IPS + PH + PT + SI""MR

24

(8)

where:
MR - mid-range between MAXPS and MINPS,
RLi = RSi + CDi - lengths of records in the basket,
IPS - intermediate page size,
PH - page header length,
PT - page trailer length,
SI - slots index length,
EPS - effective page size.

STEP3b. For Categories 3 through 5 a page size, which is based on the sum of record lengths in
the modal or average set length, ought to be taken. The sum cannot, however, exceed the
maximum page size MAXPS, i.e.:

IPS = L (ViEMRO(j» RLi or L (ViE ARO(j» RLi

EPS = IPS + PH + PT + SI ~ MAXPS

(9)

(10)

As mentioned, for a non-recognizable pattern problem we propose an algorithm which
basically is a trial and error extension of a multiple record size analysis technique due to Oberlander
(cp. Teorey and Fry, 1982). (Note that Oberlander's algorithm was used for a different purpose;
computing the expected value of used space in each block of the database in order to get a database
size.)

There is quite a number ofpossible categories for the non-recognizable pattern problem - the
simplest case being such that there is only one record type in the area but neither the distribution of
record sizes nor the expected record size is known. Record types with PLACEMENT CALC will
dominate in this pattern. Therefore, due to the performance characteristics likely to be revealed in
such cases, the page sizes should be relatively small in order to decrease the transfer overhead.

A trial and error algorithm for a non~recognizable pattern problem is now proposed:

STEPl. Consider cardinality of record occurrences of record types in the area NROi' Assume
that the size of any record occurrence in the area is independent of its neighbours. As a
result, assume the uniform distribution of record sizes with a mean record size J.1i (i denotes
record type).

STEP2. Calculate the mid-range between the minimum page size MINPS and the mid-range of
the minimum MINPS and the maximum MAXPS page sizes, i.e.:

IPS = (MINPS + (MINPS + MAXPS) I 2) I 2 (11)

Use the intermediate page size IPS as the first approximation of a final page size.
(However, if MAXPS » MINPS or an overwhelming majority of record types are placed
CALC, an alternative method of computing IPS can be chosen, not excluding IPS =
MINPS.)

STEP3. Apply Oberlander's technique by enumerating the possible arrangements of records in a
page of IPS size. (This can be done manually with ease because the computational
complexity is here polynomial and only if the number of record types exceeds 10 (very
unlikely in practice!) or when IPS » RLi' would a computer implementation of the

25

algorithm be needed.) Determine the probabilities of arrangements Pi, i = 1,2,... ,n and
used space on the page for each arrangement USEDi' i = 1,2,... ,n. Then compute the
expected value of used space on the page by the fonnula:

(12)

Figure 15 gives further explanation by means of the example.

STEP4. Repeat STEP2 and STEP3 for IPS = (IPS - NUSED)+ minlli and for IPS = (IPS

NUSED) - minlli ' where NUSED is the length of never used space for any page
arrangement (v. Figure 15) and minlli is the minimal mean record size.

STEPS. Choose the IPS which yields the hu-gest ratio of used to unused space in a page.
Compute EPS = IPS + PH + PT + SI, where PH, PT, and SI are determined on the
proportional basis of the number of record occurrences of record types involved. Round
EPS in order to achieve an integral number of EPS on a track. /

In the foregoing discussion, we have more or less tacitly assumed the one-to-one
correspondence between a record and a storage record. Although this assumption can be expected
to hold in most realistic databases, there are a few cases where representing a logical record type by
more than one storage record type is desirable. For a particular mapping, the contents of the storage
records may be disjoint or overlapping with the logical records. The pertinent mapping is
determined based on a condition specified in the DSDL (Figure 4). In general, the mapping onto
two or more storage record types may be useful to filter out highly confidential or highly volatile
data. It will almost always penalize update operations and favour retrieval and recovery
processing.

While the assumption of equivalence of logical and storage records is slightly crude, our
stepwise derivation process and practical circumstances make it justifiable. After all, addressing the
problem now would cause a need for immediate feedback (and refinement) to most of the issues of
gross and fine placement. Moreover, there is a limit to the number of questions we can tackle at
once, and these problems about multiple storage records are not the most pressing here.
Nevertheless, we will come back to the issue in the later design stages and will emphasize feedback
requirements (Figure 1).

In the meantime, however, we would like to point out that analytical models of structuring
database records are available and are now accurate enough to be used as blueprints for the IDDK.
What remains to be done is to integrate and customize them in the overall methodology aimed
towards network databases. We believe that the main burden of this activity should rest with the
perfonnance prediction stage (M9). An overview of record structuring techniques is given in March
(1983), a structuring due to different volatility of data (80-20 principle) is discussed in March and
Severance (1977), and an impact of record segmentation on recovery processes is dealt with in
March and Scudder (1984).

26

RECORDTVPE BYTES n(R) P(record)

A 1000 200 2/5

B 1500 100 1/5

C 2000 200 2/5

MINPS = 2600 bytes
MAXPS = 9000 bytes
IPS = 4200 bytes

1 2 3 4 5 6 7 S 9 10 11 12 13 14 15 16 17 18 19

C B

iIi A A A A A A A

A A A A
B B

A A

A

BBCCCB BBC B

A A

} - NUSED

CASE 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

NEXT RECORD A B A A A C B B A A A B C A A A A A J.

IN RANDOM B C B B B C C B B B C B B B B B I

SEQUENCE C c C c c c C C C C C C (

16 24 4 & 2 4 12 3 2 4 2 12 4 2 2 8 & 4 4
P(CASE) 62 62' 125 12 12' 125 125 125 25 25 25 12 12 12 12 12 12 12 1~

USED
4 3 3.5 4 4 2.5 3 3 3.5 4 3.5 3 2.5 4 4 4 4 3.5 3.

(in thousands)

EUSED = 3500 bytes

Method of Calculation (Examples):
P(2) = P(AAAA) = 2/5 * 2/5 * 2/5 * 3/5 = 24/625
P(6) = P(ABC) = 2/5 * 1/5 * 2/5 = 4/125

Figure 15. Example of STEP2 and STEP3 of the Algorithm for
Non-Recognizable Pattern Problem.

27

5. RECORD PLACEMENT

In Report (1978) the control over record allocation was removed from the DDL (where it
was called LOCATION MODE) to the DSDL (PLACEMENT subentry - Figure 7). The main
consequence of this change is that the record placement is applied to storage rather than logical
records. With this in mind, in the gross and fine placement designs (Section 4 and 5) we assumed
the DBA's preliminary knowledge on placement strategies for logical record types. (In fact, this
knowledge is also indispensable for many formalization stages (Figure 1». Naturally, storage
record placements chosen in this stage (M4) may imply different logical record placements to those
used in the stages M2 and M3 (let alone the formalization phase). If such is a case, the design
decisions of stages M2 and M3 have to be iteratively validated and possibly modified.

The decision concerning placement of a record occurrence is based on the record's access
patterns. However, this decision has to be carefully integrated with the storing procedures of the
DBMS and the database loading strategy as determined by the user.

To store a record occurrence in the database, the DBMS first determines a target page
according to the placement strategy for the record type. Therefore, it is important for the DBA to be
aware beforehand about the DBMS operations to store the record occurrence in the page and wisely
influence the choice of the target page. In particular, the storing procedures will set and/or modify a
number of pointers in the prefix of the subject record occurrence and in the related record
occurrences. For the sake of clarity, we distinguish the following kinds of pointers:

(1) placement pointers (calc-chain or record key index pointers),

(2) link pointers (direct or indirect (storage key index) pointers),

(3) fragmentation pointers (segmentation or division pointers in the terminology of
Batory's Transformation Model (Batory, 1984»,

(4) set pointers (chain pointers or set index pointers).

Among the kinds of pointers listed above, only the fragmentation pointers are not controlled
by the DSDL statements. The placement pointers are implicitly subjected to the placement subentry
(Figure 7) and the index entry (Figure 16). The link pointers are govern by the storage record
subentry (Figure 4) and the index entry (Figure 16). The set pointers are controlled by the set
pointer subentry (Figure 17) and the index entry (Figure 16).

Calc-chain pointers originate in a system-owned record type kept in the page header. In
practice, this system record type is the owner of the special CALC set. If the hashing algorithm
randomizes to a page number, the members of the CALC set are occurrences of all the record types
that have the placement CALC. If the hashing algorithm randomizes to a slot (line) number, the
members of the CALC set are the synonym (overflow) record occurrences. (Depending on the
system, the CALC set can only have one occurrence per page or can have a distinct occurrence for
each member record type placed CALC.) In the former case, the search for a record occurrence is
entered in the owner CALC record occurrence and follows the calc-chain until the record
occurrence is located, or until a record occurrence of the same type with a higher database-key
value is located (record-not-found). In the latter case, the search begins in the slots index and
continues - if the record occurrence overflowed - in the calc-chain. In both cases, the search can
involve I/O for other pages if the record occurrences in the calc-chain overflowed beyond their
home page. It should be emphasized again that the DBA's control over calc-chain is only implicit
the CALC set types are neither declared in the DDL nor explicitly referenced in the DSDL.

28

INDEX NAME IS index-name-I

r PLACEMENT IS r~ [procedure-name-l] 1 1
I ~ USING {identifier-I} ... ~ I
L l NEAR OWNER [storage-record-name-1J ... J J

r POINTER { [E.Q.E schema-record-name-I J{IS [DIRECT] 1
I INDIRECT I
I [TO storage-record-name-2 J ... } ... } I
L J

r STORAGE KE..Y storage-record-name-3 1
I RECORD schema-record-name-2 I
I KEY schema-key-name-l I

;"1

!lSEJ2 FOR ~ ~

I
SET schema-set-name-l

I[MEMBER schema-record-name-3]
I [KEY [identifier-2] ...] I
l J

r WITHIN r storage-area-name-l [£BQM PAGE integer-l 1 1
I

~ TIill.U. integer-2] ~
I

I l J I
L

STORAGE AREA OF OWNER [storage-record-name-4] ...
J

Figure 16. Format of Index Entry.

Record key indexes support record keys defined in the logical schema by means of the
DDL. In the absence of an indexed placement strategy in Report (1978), the record key indexes are
used for the secondary (possibly order) keys. Subject to the indexing technique applied (Stage
M7), the data records mayor may not have supporting pointers (for example, to handle overflow in
a way similar to IBM's ISAM). In general, however, the question of record key index pointers in
the data records is either negligible or even not existent. As far as Stage M4 is concerned, of much
more significance is the placement strategy applied to the index records themselves (Figure 16) and
how this strategy interferes with the placement of data records (ref. Section 9).

Link pointers are incorporated in the storage records whenever more than one storage record
constitutes a logical record. Link pointers allow easy retrieval and processing of the entire logical
record. They can be either direct (thus creating a chain of storage records) or indirect through a
one-level index (that is, pointers in the storage key indexes must be direct). As in the case of the
record key indexes, the link indexes must be placed within a DBA-specified page range of a storage
area (Figure 16). (Incidentally, the same is true for the indexes supporting singular sets.)

Fragmentation pointers are not controlled by the DBA. In a practical system the records
defined as variable-length can be subjected to fragmentation. This can happen when the entire
storage record occurrence does not fit on the page and it has to be fragmented and stored on more

29

than one page. In such a case, the DBMS will place extra pointers in the prefixes of fragments in
order to chain them together. After Batory (1984), we distinguish between the segmented and
divided fragments (division, unlike segmentation, is done without respect to the data-item
boundaries). Naturally, the need for variable-length records in a database can be alleviated in the
fIrst place by the fact that the logical records can be mapped to more than one storage record.

SET schema-set-name-l

[ALLOCATION IS { STATIC }]DYNAMIC

r r INDEX index-name-l 1 1
I I r

I 1
I I

I INEXT I II I TENANT
PRIOR I II I~ r I

I
FOR ~ I IZ:T I TENANT { [RECORD I IPOINTER Ii ~ ~

I I L OWNER J I I
I I DIRECT] I I
I I schema-record-name-l { IS [INDIRECT 1 I
I I [TO storage-record-name-l] ... } ... } ... I· .. I
l l J J

Figure 17. Format of Set Pointer Subentry.

Set pointers deserve a special consideration as factors in the process of record design. They
tend to occupy the largest portion of a record prefix, and sometimes of an entire storage record.
Their role and number depend on the set implementation (Figure 17). The two set modes are
distinguished: chain and pointer-array (we prefer not to use again the term "index" for obvious
reasons; v. Section 9). In either case, an owner can contain forward (FIRST) and reverse (LAST)
pointers; the members - forward (NEXT), reverse (PRIOR), and back-to-owner (OWNER)
pointers. A set in the pointer-array mode will additionally consist of an index built on sorted
pointers (database-keys) or on record-key - pointer pairs. We call the former the ordinary
pointer-array, the latter - the keyed pointer-array. The keyed pointer-array can be, and
usually is, sorted on a record key (sort key). The pointer-array mode usually compels the DBA to
also specify the owner pointers.

The database loading strategy is another factor to be considered in choosing the placement
of record types. Ideally, the loading strategy should be envisioned or even decided upon in parallel
with the record placement decisions. Its importance cannot be overemphasized in the database
situation - the sequence in which record occurrences of various types are loaded is just as
responsible for the final distribution of records in the database as the record placement strategies
themselves. It is our opinion that the loading process is by far the most difficult and complex
activity in the database processing (in which, incidentally, UPDATE is the only valid access mode).
As such, it must be treated with due attention and supported by the DBMS LoadlUnload facility. In
the remainder of this Section, however, we only implicitly address the loading issue. An explicit

30

discussion would only be possible after giving first consideration to the loading process per se. As
this is one of the main subjects in the next design phase (realization), we choose to defer the
integration problem between the record placement and the loading strategy until our stand on the
latter issue is clearly declared and described.

We are now in a position to formulate the principles for revising our logical record
placement decisions and for specifying storage record placements. We repeat that three mutually·
exclusive strategies exist (cp. Figure 7):
1. CALC (C),
2. CLUSTERED (V),
3. SEQUENTIAL (S).

It turns out, and it is not fortuitous, that the CLUSTERED placement consists of many
options, motivated by the coherence of this placement with set definitions. The cluster of records is
chosen according to the set owner or to the first member of the set. In the latter case, the placement
of the first member mayor may not be specified relative to the owner. The CALC and
SEQUENTIAL placements are determined independently of a record participation in the sets.

'. A subconclusion is evident - the record types which are processed predominantly in a
set-oriented (navigational) fashion are candidates for CLUSTEREDplacement and the record types
exhibiting a record-oriented (entry-point) processing are placed as CALC or SEQUENTIAL.
Hence, the first problem to overcome is to determine quantitatively for each record type its
predominant usage pattern - navigational or entry-point. To this aim, we first refer back to stages
C2 and C3 of conceptualization (Figure 1) in order to consider again the function specifications and
their relative design ranks RDR (Maciaszek, 1986). Then, we refer to stage Ml in order to
reconsider the access structures of the functions (Figure 5) in terms of storage records and set
definitions. (The placement strategies in access structures of Ml are subject to modification as a
result of M4 - the modification will involve an iterative design refinement in stages Ml through
M3.) On this basis, we construct for each individual record type its usage graph as shown in
Figure 18.

SET(l

STORAGE RECORD TYPE

o
NAVIGATIONAL~
USAGE

ENTRY-POINT
USAGE

FUNCTION(1) F(2) F(3) F(K) F(K+l) F(K+2) F(N)

•

Figure 18. Graph of Storage Record Usage.

31

According to Figure 18, it is possible, that for a storage record type its occurrences are
processed by functions in both navigational and entry-point ways. These functions are indicated in
the graph by black circles - they do not contribute to our knowledge about the predominant record
usage and are eliminated in relevant calculations. The dotted circles are used for those functions that
process the record in either navigational or entry-point fashion, but in the former case they navigate
through more than one set type and in the latter case they exhibit both multiple and single record
usage. The multiple usage occurs when an entry-point search involves, in a next step, processing
of some more record occurrences of the same type. The single usage takes place in case of a search
for a single record occurrence (possibly with duplicates) satisfying particular conditions.

We formulate the following stepwise algorithm to determine the placement strategy for
storage record types:

STEPI.

STEP2.

STEP3.

STEP4.

STEP5.

Draw a graph of storage record usage for the record with the highest relative design
importance RDI (cp. Figure 6). (Several graphs may be required if the logical record is
mapped to several storage records.)

Calculate the sum of relative design ranks of functions (RDR) in the navigational usage
subtree (NRR) and in the entry-point usage subtree (ERR).'Omit the ambiguous RDRs
in the calculation (black circles in Figure 18).

IfNRR~ ERR then assignto the record type the placement CLUSTERED. OthelWise,
the placement is determined as follows: (1) compute ERRs for the multiple usage
(MERR) and the single usage (SERR) - include the RDRs of black and dotted circles
in the sums, (2) if MERR > SERR, then assign to the record type the placement
SEQUENTIAL, (3) othelWise, if MERR ~ SERR, assign to it the placement CALC.

If the record type was assigned CLUSTERED placement, a further decision is
needed as to which set type will be used for clustering. To this aim, we compute the
set-driven NRRs (SIDNRR) as the sums of NRRs of functions utilizing pertinent sets
(clearly, the functions indicated by the black and dotted circles are also considered).
The obvious implication is that the owner of the set with the largest SIDNRR is chosen
for clustering.

Repeat steps STEP1 through STEP4 for the remaining record types in the descending
order of RDIs. Continue with STEP6.

"
"
I
"

"
I'
f

STEP6. Draw a simplified physical database structure as exemplified in Figure 19 and consider
the following special cases which can require modifications and/or special detailed
approach to the placement strategies decided in STEP2 and STEP3.

(a) If a record type such as R3 is CLUSTERED VIA S2 and S2 is placed SEQUENTIAL
(or CLUSTERED) and if there exists another set type for R3 (such as Sl) present in
the R3 usage graph, located CALC and having the next smaller S/DNRR in
comparison with the set S2, then make R3 CLUSTERED VIA SI and minimize the
"side-effect" of such decision by ensuring that the owner pointers for S2 exist in R3.

(b) If a conflict arises because of CLUSTERED placement for two or more set types that
are hierarchically related, such as S2 and S3 in Figure 19, then the ideal clustering is
impossible and the pertinent placement strategies should be reconsidered (unless the
sizes of the sets are extremelly small and for example all record occurrences fit in one
page). One possibility is to change the placement of the record type such as R3 to
CALC. Another possibility is to decide which set type (S2 or S3) takes priority and
enforce the "best" sequence of records by means of a careful database loading and

32

taking advantage of DISPLACEMENT and WITHIN options of PLACEMENT
subentry (Figure 7). In either case, the decision is arbitrary.

(c) If a conflict arises because of multiple member record types in a set type such as S4
and the members are CLUSTERED VIA this set type. The conflict is even harder to
resolve if the owner record type is itself located as CLUSTERED (or
SEQUENTIAL). In fact, this situation is a special case of case (b) and should be
treated likewise.

Rl

c
R2

S

RS

'. V (S4)'.

R3

V (S2)

R6

V (S4)

R4

V (S3)

Figure 19. Simplified Physical Database Structure (example).

The special case of STEP6 exemplifies some of the design conflicts which are
unmanageable algorithmically and have to be left to an intuitive decision that can only be verified to
some extent in the performance prediction stage (M9). However, the decision -though intuitive
can be supervised by integrating it with other design parameters and objectives. Some of them
e.g. storing procedures and loading strategies - have been considered in this Section. The gross and
fine placement are other issues which are inseparable from the record placement. Hence, we
advocate throughout the iteration and integration aspects of our approach. This, incidentally, is
more of an advantage than a restriction in the light of the IDDK featuring an expert system
behaviour.

7. ACCESS PATH SELECTION

In this Section, we discuss the issues involved in deciding on the access paths for user
functions that minimize the expected number of page accesses (and, therefore, the response times).
No distinction is made between query and update functions as the latter also require to retrieve data
before modifying it. We consider functions on an individual basis as if the system was entirely

33

dedicated to the processing of the function at hand. Later, during the performance prediction stage
(M9), an attempt will be made to minimize the mean weighted response time for a workload made
up of a set of functions. (The weighted response time is expressed as the ratio between the actual
and the stand-alone dedicated response time to a function (Ferrari et al., 1983).)

In a sense, the access path selection is a recapitulation of the placement decisions taken in
the previous stages. Its aim is to advise the DBA how to design access algorithms of the application
programs (and the interactive transactions) fulfilling the functions. The algorithms are determined
based on available characteristics of logical and physical schemas, in particular - the implementation
of sets. The algorithms specification is expressed as a pseudo-code showing the sequence of FIND
commands to be·issued against the database. Figure 20 presents the SET SELECTION clause of
DDL'78 (Report, 1978). (In Schema Definition Language SDL'85, the SET SELECTION clause is .
not included, presumably removed to DSDL which, however, is not specified in Draft (1985).)
Figure 21 presents the BNF syntax of the FIND statement of DML'85 (Draft, 1985) and Figure 22
represents an example in which different formats of the FIND command are used to search the
same simple database. The example utilizes the syntax of VAX DBMS and is by no means
exhaustive (other valid FIND formats are perfectly possible). The example is meant to be
self-explanatory. It shows that the intricacy of the SET SELECTION clause and the sheer range of
FIND commands are reasons for a variety of possible access paths to execute even a simple
function. In particular, the example demonstrates that the network DBMS requires the execution of
a FIND operation: (1) the currency indicators that come from the system area, or (2) the values of
database identifiers that come from the user work area (UWA), or (3) the keeplist tables (system
area), or (4) the sequential access to pertinent areas of a database, or (5) combinations of (1)
through (4). (Incidentally, the major enhancement of DML'85 over the earlier specifications is the
introduction of the WHERE clause, which is functionally equivalent to the predicate of the selection
operator in the relational model (Deen, 1985). The WHERE clause, however, would not influence
the logic behind the FIND statements as used in Figure 22.)

SET SELECTION IS

1
I
I
I
I
I
I
~

I
I
I
I
I
I
J

1
TO I

~

I
J

CONSTRAINT

PROCEDURE procedure-name-l

STRUCTURAL

r THEN THRU set-name-2 WHERE OWNER IDENTIFIED BY 1
I data-identifier-3 [EQUAL TO I
I

{ data-identifier-4
I

L }] } Jparameter-name-2

r SYSTEM
I APPLICATION
~ .KEY key-name-l [data-identifier-l EOUAL

{
data-identifier-2}]

I parameter-name-l
l SELECTION DEFINED FOR record-name-l

BY

BY

r THRU set-name-l OWNER IDENTIFIED BY

I
I
I
I
I
I
~

I
I
I
I
I
I
l

Figure 20. Format of SET SELECTION Clause (DDL).

"",

34

<find statement> ::=
FIND

<find specification>
[<find intent>]
[<find cursor disposition>]

<find specification> ::=
<database key identifier>
<search specification>

<search specification> ::=
<search orientation>
<domain specification>
[WHERE <condition>]

<search orientation> ::=
FIRST I LAST I NEXT I PRIOR
I {ABSOLUTE I RELATIVE} <signed integer>

<domain specification> ::=
<record type domain>
<set domain>
<subschema domain>

<record type domain> ::=
<record view name>

<set domain> :: =
[<record view name>] IN <set view name>

<subschema domain> ::=
SUBSCHEMA RECORD

<find intent> ::=
FOR {RETRIEVE I UPDATE}

<find cursor disposition> ..
RETAIN ALL
<find specification disposition>

<find specific disposition> ::=
[<position number>]
[<find specific retention>]

<position number> .. -
AS MEMBER <set view name> ...

<find specific retention> ::=
RETAIN RECORD
RETAIN SET <set view name> ...
RETAIN RECORD SET <set view name> ...

Figure 21. Syntax of FIND Statement (ANSI'85).

35

./ --..........
Al B5

B2 " • A7 lit B~ Bl

B4 BB B6
__ B3 MIo A5

C2 Cl tC3 .~CB D2 C9

C7 CI0 ~ Dl Cll c5

Currency Indicators:

RU X A-B B-C A B Y D-C C D KEEPLIST

B2 B2 B2 B3 A7 B3 C8 C5 Cl D2 1 B 1 (
2 C1J
3 D2
4 D1

dhdR
Command

ecor Searc Base On
Found !current of UWA valuE

FIND FIRST A A1
FIND LAST D D 1
FIND NEXT B B10 B
FIND PRIOR C C2 C
FIND ANY B B8 B-KEY=B8
FIND DUPLICATE B Not-Found B
FIND RELATIVE -3 B B4 B
FIND +3 B B9
FIND FIRST WITHIN X A1
FIND NEXT WITHIN X A7 X
FIND FIRST WITHIN Y C2
FIND NEXT WI'l'HIN Y D2 Y
FIND FIRST WITHIN A-B B1 A-B
FIND NEXT WITHIN A-B B3 A-B
FIND FIRST WITHIN B-C C2 B-C
FIND NEXT WITHIN B-r. C2 B-C

FIND FIRST B WITHIN X B5
FIND NEXT B WITHIN X B 9 X
FIND FIRST B WITHIN A-B B1 A-B
FIND NEXT B WITHIN A-B B3 A-B
FIND FIRST B USING B-KEY B9 B-KEY=B9
FIND NEXT B WITHIN A-B USING B-KEY No-Key A-B B-KEY=B2

FIND OWNER WITHIN A-B A7 A-B

FIND CURRENT B2 RU
FIND CURRENT WITHIN A A7 A
FIND CURRENT WITHIN A-B B2 A-B
FIND CURRENT WITHIN X B2 X

FIND FIRST WITHIN KEEPLIST1 B10
}KeePlistFIND LAST WITHIN KEEPLIST1 D1

FIND OFFSET 2 WITHIN KEEPLIST1 C11

Figure 22. Example of FIND Usage.

,<.,

36

The access path selection is used here as a milestone in the verification of the physical
design in the perfotmance prediction stage. However, a number of other usages are foreshadowed.
In particular, a non-procedural query interface to the network database may be the straightforward
outcome of an efficient access path selector (optimizer). The pseudocode in which an access path is
expressed can be used as a specification method in the realization phase (application software
design). Also, the maintenance and evolution phase will take advantage of the tuning properties of
the access path optimizer.

We begin by defining an access path evaluation model. To this aim, we first distinguish the
categories of atomic access units AU and state the formulas to estimate the expected number of
page accesses for each atomic unit. Then, we show by means of an example the pseudocode
specification and the graphical notation for function (access path) representation to be used in the
selection process. The interdependence between the cost of a given strategy for evaluating a
function and the various parameters of the physical storage structure is indicated. We summarize by
giving a stepwise algorithm for access path selection. While we exploit a few important
contributions on access path selection in the network environment (Gerritsen, 1975; Dayal and
Goodman, 1982; Jain, 1984; Whang, 1985), we go beyond the previous works not only in
integrating the access path selection in an overall design methodology but also in
comprehensiveness and specificity of treatment of the subject matter.

Atomic access units are used to build up the access path graphs for the functions. Having
shown ways in which the atomic units may be connected, cost equations for the different access
paths may be obtained. Figure 23 represents the structural chart of the network database access
model. The leaf nodes of the chart correspond to atomic access units. Formulas (13) - (28) are the
analytical expressions to estimate the expected number of page accesses #P (cp. search length
notion SLj in Section 3) required for each atomic access unit. The formulas are preceded by the
definition of design parameters.

ACCESS
MODEL

Figure 23. Structural Chart of Network Database Access Model.

37

1. Cardinality infonnation (necessary to derive other parameters):

card(R)
I~I
card(S)
IS'IJ
card(A)

- cardinality of record types in the database
- cardinality of record occurrences of type i
- cardinality of set types in the database
- cardinality of set occurrences of type j
- cardinality of areas in the database

2. Statistical information:

Po

Pr

3. Size information:
EPSk

R4
ASk

PDtc

- average cardinality of member record occurrences of type i in jth set type

- expected cardinality of occurrences of ith record type in kth area

- probability of finding the record occurrence in the buffer, i.e. the ratio

between average number of records in the buffer to the expected cardinality
of records in the area
- probability of overflow of calc-chain to another page; this is a function
f(PDk)

- probability that two or more record occurrences of type Ri are placed in

one page; this is a function f(EPSk,RLi,ASk,g(R,A», where g(R,A)

expresses the mapping of record types to areas (Section 4)

- effective page size in kth area

- average length of record occurrences of type i
- size of kth area

- initial packing density of kth area in percentages (assumed to be constant

throughout the design procedure)

4. Zero-one test information:

Ofij - owner pointer test :=

ATik - area test:=

5. Selectivity information:

, if ith member record type in jth set

type has owner pointers

, otherwise

, if ith record type is assigned to kth

area

, otherwise

- selectivity of predicate P of query q when applied to ith record type, i.e.

the probability that a given record occurrence ri satisfies the selection

predicate

(1) Database-Key Access:

(13)

38

(2) Caked Access:

#P2 = 1 + Po • Pb

(3) Indexed Access:

(14)

#P3 = logblRil (15)*
b - the branch factor, i.e. the number of key values in a node (or, in the case

of B-trees, one greater than the number of key values)
* the master index is assumed to be in the main memory

(4) Owner Access:

(i) through chain:

~,, #P41 =

r1 - Pb ,if OTij = 1

~

I (#P71 + 1) * 0.5 or

l (#P72 + 1) * 0.5 ,ifOTij = 0

(16)

(ii) through pointer-array:

#P42 = 1 ~ Ph
* OTij is required to be equal 1

(5) Single Member Access:

(i) through chain:

#P51 = 1MROiji * (1 - Pr) * 0.5

(ii) through pointer-array:

(17)*

(18)

rIMROij I* 0.5

~

for ordinary pointer arrays

for keyed and sorted pointer arrays

(19)

(6) Multiple Member Access:

(i) through chain or ordinary pointer array:

#P61 ;;::: IMROijl * (0.51 SEL(Pq,Ri»

(ii) through sorted chain or keyed sorted pointer array (Pq =f(sort key»:

(20)

(21)

39

(7) All Member Access:

(i) through chain (if member occurrences of type i are clustered via the set}):

#P7l = «IMROijl * RLi) / (EPSk * PDk» (22)*
* it is assumed that the number of record occurrences ri in a page is not

restricted by means of the DENSITY clause (Figure 7)

(ii) through chain (if the placement of member occurences q is clustered via

a set other thanj (or the placement is calc or sequential):

(23)

(iii) through pointer-array:

(24)

(8) Multiple Record Access:

(i) if the records are sequentially placed:

(25)

(ii) if the records are not sequentially placed:

(26)

(9) All Record Access:

(i) if the records are sequentially placed:

(27)

(n) if the records are not sequentially placed:

(28)

We are now in a position to derive the costs of different access paths which can be used in
response to a user function. At run time, the minimal cost access path will be selected to proceed
with the execution of the function. At design time, the selection of the best path for execution must
be made possible by including all involved record types, set types and areas in the subschema
through which the function communicates with the database (cp. Section 4 and realization phase).
Technically speaking, the distinction must be made between on-line and batch functions. For
on-line functions, the logic of path selection is partly incorporated in the subschema definition by
adding to it the so called path section (Figure 24 shows an example for QLP of DMS-ll00). The
path section determines all possible paths in a desirable order (from best to worst). These paths are
used by the query language processor to generate access to database as a response to a function.
For batch functions, the logic of path selection is built into an application program. That is, the
sequence of execution of DML commands determines the database accesses.

40

/ "\ / "\ / "'I PILOT I ~CONNECTOR3 I.... I PLANE I Placement
I rAN-FLY I I PILOTED-BY I

CALC
Placement DIRECT Placement DIRECT

TYPE
'" I<'LYING-STAFF ./ LINK , EQUIPMENT

I AIRCRAFT I Placement

"- VIA ../

IDENTIFICATION DIVISION
SUBSCHEMA NAME QLPSUB IN FILE LESDBS OF SCHEMA AIRLINE
HOST LANGUAGE QLP
DATA DIVISION
DATA NAME SECTION

DATA NAMES EQUIPMENT,AKEY1,FLYING-STAFF,AKEY2,LINK
AREA SECTION

AREAS EQUIPMENT,FLYING-STAFF,LINK
RECORD SECTION

RECORDS PLANE,AIRCRAFT,PILOT,CONNECTOR3
SET SECTION

SETS TYPE, CAN-FLY, PILOTED-BY
QLP SECTION
PATH NETl

ROOT PLANE THRU PILOTED-BY TO CONNECTOR3
THRU CAN-FLY TO PILOT

PATH NET2
ROOT PILOT THRU CAN-FLY TO CONNECTOR-3

THRU PILOTED-BY TO PLANE
PATH SIMPLE

ROOT PLANE THRU TYPE TO AIRCRAFT
PATH PATHl

ROOT PLANE THRU PILOTED-BY TO CONNECTOR3
PATH PATH2

ROOT PILOT
DIRECT CURRENCY ASSUMED
AREA-NAME IS FLYING-STAFF
PAGE-NUM IS 1
RECORD-NUM IS 1
THRU CAN-FLY TO CONNECTOR3

PATH PATH3
ROOT PILOT THRU CAN-FLY TO CONNECTOR3

PATH PATH4·
ROOT PLANE FETCH NEXT CURRENCY ALLOWED

PATH PATHS
ROOT CONNECTOR3 FETCH NEXT CURRENCY ALLOWED

PATH PATH6
ROOT PILOT FETCH NEXT CURRENCY ALLOWED

Figure 24. Subschema Diagram and Definition for Query Language (QLP-II00).

41

Since the IDDK has evolved around the assumption of a pre-canned function environment
(Maciaszek, 1986), the determination of the best access paths for individual functions paves the
way for the global "optimization" consideration in the performance prediction stage (M9).

Consider the network schema, which was derived by one of the IDDK tools in Maciaszek et
at. (1986a), and is repeated here in Figure 25. Assume that the user is interested in the

"names of employees of Department of Fairyland who taught courses taken by Donald Duck
during the last six semesters".

It is clear that the schema is not particularly supportive for execution of this query.

There are many possible strategies to solve the above query depending on the way and
sequence in which the available atomic access units are utilized in building up the access path. We
compare two access strategies with respect to the following assumptions on actual data values. For
simplicity, we assume that all involved record types are placed in one area and their blocking factor
is one. Moreover, the paths through LINK05 are not taken advantage of (this virtually means that
the same set types are used in both strategies). The placements of records are evident from the
pseudocode that follows (in the syntax of VAX DBMS - cpo Figure 22). We also assume - contrary
to the fact that the access path selection is but one stage of uncompleted design process - that the
gross, fine, and record placement characteristics are not subject to changes. We now specify the
values of the parameters for path selection, the pseudocodes for the two access strategies, their
access graphs (Figures 26 and 27), and their costs.

IR 11 = 10 departments

IR21 =400 employees
IR31 = 20 semesters
IR41= 5000 students

IRSI = 500 courses
IR61= 4000 LINK03 occurrences
IR71 =4800 LINK04 occurrences (contain SEMNUM)
IR81 = 6000 LINKOS occurrences
IR91 = 40000 LINK 06 occurrences

S1 = DPRT-EMPL
S2 = EMPLOY-L04
S3 = SEMEST-L04 (no owner pointers)

S4 = SEMEST-L03 (owner pointers)
S5 = COURSE-L03 (owner pointers)
S6 = COURSE-L06 (pointer array)
S7 = STUDEN-L06 (pointer array)

MR021 =40
MR072 = 12
MR073 =240

MR064 = 200
MR06S=8
MR096 = 80

MR097 = 8

Strategy 1:

MOVE 'DONALD DUCK' TO SNAME IN STUDENT
1. FIND ANY STUDENT USING SNAME IN STUDENT

loopl (until no more LINK06)
2. FIND FIRST (NEXT) LINK06 WITHIN STUDEN-L06

~
~-

='"'~
N
~

t:1--~
~

'"'~
53
~.....
::r
~

~:::;-
~

'"'til

~
t:1
~

S-
C'
~
~

rJ2
n
::r
~

~

I IpscDB:new.log I
aATI [1./ aRTE -DPRT

~
tv

43

3. FIND OWNER WITIDN COURSE-L06
KEEP CURRENT COURSE USING KEEPLISTI

endloopl
MOVE DEPARTMENT OF FAIRYLAND' TO DNAME IN DEPARTMENT

4. FIND ANY DEPARTMENT USING DNAME IN DEPARTMENT
loop2 (until no more EMPLOYEEs)

5. FETCH FIRST (NEXT) EMPLOYEE WITHIN DPRT-EMPL
loop3 (six times)

6. FIND FIRST WITIDN KEEPLISTI
FREE FIRST WITHIN KEEPLISTI
loop4 (until no more LINK03)

7. FIND FIRST (NEXT) LINK03 WITIDN COURSE-L03
8. FIND OWNER WITHIN SEMEST-L03

KEEP CURRENT SEMESTER USING KEEPLIST2
endloop4

endloop3
loop5 (until end of KEEPLIST2)

9. FETCH FIRST WITHIN KEEPLIST2
FREE FIRST WITHIN KEEPLIST2
loop6 (until no more LINK04)

10. FETCH FIRST (NEXT) LINK04 WITIDN EMPLOY-L04
IF SEMNUM IN LINK04 = SEMNUM IN SEMESTER

DISPLAY 'EMPLOYEE IS ' ENAME OF EMPLOYEE
endloop6

endloop5
endloop2

Strategy 2: .

MOVEDEPARTMENTOFFAIRYLAND'TODNAMEINDEPARTMENT
1. FIND ANY DEPARTMENT USING DNAME IN DEPARTMENT

loopl (until end of set DPRT-EMPL)
2. FETCH FIRST (NEXT) EMPLOYEE WITIDN DPRT-EMPL

loop2 (until end of set EMPLOY-L04)
3. FIND FIRST (NEXT) LINK04 WITHIN EMPLOY-L04
4. FETCH OWNER WITHIN SEMEST-L04

if one of the six semesters then loop3 (until end of set SEMEST-L03)
5. FIND FIRST (NEXT) LINK03 WITIDN SEMEST-L03
6. FIND OWNER WITHIN COURSE-L03

loop4 (until end of set COURSE-L06)
7. FIND FIRST (NEXT) LINK06 WITIDN COURSE-L06
8. FETCH OWNER WITHIN STUDEN-L06

IF SNAME = DONALD DUCK'
DISPLAY 'EMPLOYEE IS I ENAME OF EMPLOYE]

endloop4
endloop3

endloop2
endloopl

~primary entry-point

.. ltPl

STUDENT

#P2

#P7

44

LINK03

#P8
#P9

Secondary entry-point

Figure 26. Access Graph for Strategy 1.

Exit-point

Cost of Strategy 1 (ref. costs of atomic access units AU in Formulas 13 - 28):

1.

2.
3.

4.

5.

6.

7.
8.

9.

10.

AU2
loop1

AU7
AU4

endloopl
AU2
loop2

AU7
loop3

AUI
loop4

AU7
AU4

endloop4
endloop3
loopS

AUI
loop6

AU7
endloop6

endloop5
endloop2
end

#Pl = 1

#P2 = 8
#P3 = 1 * 8 = 8
#endloop1 = 1 + 8 + (8 * 1) = 17
#P4 = 1

#P5 = 40

#P6 = 1 * 6 = 6

#P7 = 8
#P8 = 1 * 8 = 8
#endloop4 = 16
#endloop3 = 6 * 16 = 96

#P9 = 8

#PlO = 12
#endloop6 = 12
#endloop5 = 8 * 12 = 96
#endloop2 = 40 * (96 + 96) = 7,680
#Pend = 7680 + 17 = 7,697

45

Answer: Approximately 7,697 accesses are needed to respond to the query according to
Strategy 1.

DEPARTMENT Entry-point

lIP 2

Exit-point

Figure 27. Access Graph for Strategy 2.

Cost of Strategy 2 (ref. costs of atomic access units AU in Formulas 13 - 28):

1.

2.

3.
4.

5.
6.

7.
8.

AU2
loopl

AU7
10op2

AU7
AU4
loop3

AU7
AU4
loop4

AU7
AU4

endloop4
endloop3

endloop2

#P1 == 1

#P2 == 40

#P3 == 12
#P4 == 120 * 12 == 1440

#P5 = 200
#P6 == 1 * 200 == 200

#P7 == 80
#P8 == 1 * 80 == 80
#endloop4 == 160
#endloop3 == 400 * 160 == 64,000
#endloop2 = 1452 * 64000 : (20/6)

semesters == 27,878,400

endloopl

end

46

#endloopl = 40 * 27878400
1,115,136,000

#Pend = 1,115,136,000

Answer: Approximately 1,115,136,000 accesses are needed to respond to the query according
to Strategy 2.

The astronomical cost of Strategy 2 results from the fact that it is a nested approach which
although straightforward - is quite orthogonal to the schema. The deeply nested approaches tend to
exhibit exponential complexities. Hence, for example, if we allowed for owner pointers in
SEMEST-L04, then the cost of the strategy would reduce to 10,752,000 page accesses (a
significant improvement). Moreover, this still unrealistic number should be reduced by relaxing the
assumption of blocking factor equal to one. Let #Pl (#P2) be the number of one-record pages read
in the outer (inner) loop. #Pl + #Pl * #P2 secondary storage accesses are required to evaluate the
query. If, however, a main memory buffer can hold one or more many-record pages such that all
required occurrences of one of the record types can be kept in the buffer, then only #Pl + #P2
accesses are necessary. Note also that further improvements can result from some basic alterations
to the schema definition.

We conclude this Section with a list of steps of the overall procedure for access path
selection:

STEP1. Build a cost model of atomic access units.

STEP2. Based on the schema definition and function specifications, define the reasonable logical
access path strategies for evaluating the function. This has ,been demonstrated in this Section
by means of pseudocodes and access graphs, but in the IDDK environment we will provide
for a spechtl Function Definition Language FDL. The specifications in FDL will constitute
inputs to the performance prediction system (stage M9).

(As an aside, we note that our approach differs from that of the relational query
optimization which requires to generation of (rather than specification of) all access paths.
This is because the relational query languages are nonprocedural. However, our
methodology can be readily extended to incorporate nonprocedural interfaces for network
databases. This can be done by generating some (rather than all) access strategies which will
exploit the superior semantic power of the network model.)

STEP3. Augment the logical access strategies with the details of physical representation of the
database (gross, fine, and record placement). In this Section, the physical characteristics
have been considered in the pseudocode and access graphs. And again, the physical
information will constitute an input to the performance prediction tool of IDDK (Section
11). In fact, this step makes the difference between the selection and optimization models
for access evaluation. In an automated environment of IDDK, the access evaluation can be
tuned up by varying values for physical database parameters.

STEP4. Choose the cheapiest access path strategy by applying a cost model of atomic access units
to various possible paths.
Execute this step in two sub-steps:

STEP4A. Find all "redundant" paths such that these paths give rise to a network flow
problem with the identical source and sink nodes (first and last accessed record,
respectively). The objective is to minimize the flow from source to sink. That is, the
shortest path should be determined and all other "redundant" paths should be rejected
at this sub-step. In other words the problem is:
"Given a connected values graph G where the positive arc-values #P represent cost of

47

the arcs, find the cost-minimal path from source to sink."
There exist well known algorithms to solve that problem, such as the algorithms of
Dijkstra or Dantzig (Eiselt and Frajer, 1977). Those algorithms can also be used for
handling multiple sources and ITlultiple sinks by means of the concepts of super-source
and super-sink (Daellenbach et ai., 1983). Our example could be made relevant to this
sub-step by including LINK05 in determining alternate paths.

STEP4B. Find the cost-minimal access path from among all "nonredundant" paths, as
shown in our example.

Finally, we must point out that the power and pragmatism of our approach is mostly due to
its integration with the overall methodology. Since the design process starts with and is based on'
the function specifications, the conceivable access path strategies and the underlying database
structures are de facto pre-selected. This means that the unreasonable access strategies are virtually
precluded from being considered in the selection process. At this juncture it is perhaps relevant to
draw another distinction between query optimization in the network and relational settings. Let us
quote P.M.D. Gray: "In fact Codasyl databases are usually designed to have access paths (sets) that
suit common queries and one could even consider these sets as "precomputed joins" and say that
the Codasyl model is the best known way of storing very large relations ort existing hardware so as
to perform joins efficiently!" (Gray, 1984).

8. INTRA-RECORD STRUCTURE AMELIORATION

At the logical level design (formalization), the intra-record structures have been defined and
viewed as sequences of data-items (v. stage F3 in Figure 1). Apart from the elementary data items,
the group and repeating items have been allowed (cp. Maciaszek et ai., 1986a). The repeating items
could lead to variable length records. Such view of intra-record structure has been quite adequate,
since the functional content was a determinant of the design process. At the physical level,
however, the efficiency issues of retrieval and update time, and the storage space become
important. We have extensively dealt with the access considerations in the previous Section. In this
Section we refer to the techniques for refinement of intra-record structures within the boundaries of
the DSDL'78 data subentry specification. Hence, we leave aside two related issues:
logical-to-storage record mapping and transparent compression. The former have been briefly
addressed in stages M3 (Section 5) and M4 (Section 6) (see also March and Scudder, 1984). The
latter is beyond the DBA's influence as the transparent compression refers to the routines built-in
to a DBMS, which improve system performance but otherwise the database user is not affected (it
has been shown that such compression techniques reduce secondary storage requirements in typical
commercial databases by 30 - 90%; cpo Aronson (1977), Cormack (1985), Severance (1983),
Welch (1984) and others). Figure 28 presents the general format of data subentry - the last subentry
of storage record entry (Report, 1978).

The data subentry complements the transparent compression by letting the DBA define the
storage representation parameters. The parameters include: different storage formats; alignment
(synchronization); derived data items; null compaction to supress zeros, blanks, or both; implicit or
explicit sign.

Let us emphasize the importance of storage representation by means of a simple practical
example set up in the DMS-1100 environment (Figure 29). (In fact, synchronization (SYNC) of
Version 3 steps beyond the syntax of the DDL of DMS-1100, but it is allowed in the host language
environment.) It can be seen that the size of the record differs significantly for the three versions
(from 1057 to 1664 bytes). It may be of some surprise that in some situations the binary
synchronized formats (Version 3) do not offer space savings over the display (character per byte)
representations (Version 1) - in fact, in the example, the most space consuming format is the

48

synchronized one. Bearing in mind that thousands of occurrences of this record type might be kept
in the database, the space saving can be considerable. Moreover, there is no trade-off to speed. If
anything, the shortest record version will speed up processing since the computational data items
are stored in the binary format.

(level-number-l] r{schema-data-name-l} ...

~ FILLER

L .DATA ALL

r ALIGNMENT IS integer-l

I
L

r BITS
~ CHARACTERS
L WORDS

1
~

J

1 1
~ I
J J

[

EVALUATION IS ON {ACCESS [STORAGE IS [NOT] REQUIRED] }]

UPDATE

FORMAT IS

r {

UNSIGNED }
EXPLICIT

implementor-name-l

{

BINARY , }
DECIMAL [implementor-name-2]

PACKED DECIMAL

1

{~RACTER} (implementor-name-3]

implementor-name-4

integer-2 (,integer-3]

[JUSTIFIED { L EFT
RIGHT

[FRAMED integer-4

{
FIXED}
FLOAT~

I
l

[llilLL IS { literal-l
COMPACTED

}]

[= IS integer-5 { BITS
CHARACTERS
WORDS

}]
Figure 28. Format of Data Subentry.

49

Version 1:

X (4)
X (20)
X (20)
9
9(7)
9 (4)
9 (7)
9 (4)

PIC
PIC
PIC
PIC
PIC
PIC
PIC
PIC

RECORD NAME IS CUSTOMER
LOCATION MODE IS CALC HASH-CUST

IN AREAS USING CUSTOMER-NAME DUPLICATES NOT ALLOWED
WITHIN AREAS
RECORD MODE IS ASCII
02 CREDIT-ACCOUNT-NUMBER
02 CUSTOMER-NAME
02 CUSTOMER-ADDRESS
02 CREDIT-RATING
02 AMOUNT-BORROWED
02 LOAN-ACCOUNT-NUMBER
02 CURRENT-BALANCE
02 NUMBER-OF-TRANSACTIONS
02 TRANSACTIONS

OCCURS 1 TO 100 TIMES
DEPENDING ON NUMBER-OF-TRANSACTIONS
03 TRANSACTIONS-DATE PIC 9(6)
03 TRANSACTION-AMOUNT PIC 9(7)
03 TRANSACTION-CODE PIC X

RS1 = 4 + 20 + 20 + 1 + 7 + 4 + 7 + 4 + (6 + 7 + 1) * 100 1467

bytes

Version 2:

USAGE COMP

USAGE COMP
USAGE COMP

X (4)
X (20)
X (20)
9
9 (7)
9 (4)
9 (7)
9 (4)

PIC
PIC
PIC
PIC
PIC
PIC
PIC
PIC

RECORD NAME IS CUSTOMER
LOCATION MODE IS CALC HASH-CUST

IN AREAS USING CUSTOMER-NAME DUPLICATES NOT ALLOWED
WITHIN AREAS
RECORD MODE IS ASCII
02 CREDIT-ACCOUNT-NUMBER
02 CUSTOMER-NAME
02 CUSTOMER-ADDRESS
02 CREDIT-RATING
02 AMOUNT-BORROWED
02 LOAN-ACCOUNT-NUMBER
02 CURRENT-BALANCE
02 NUMBER-OF-TRANSACTIONS
02 TRANSACTIONS

OCCURS 1 TO 100 TIMES
DEPENDING ON NUMBER-OF-TRANSACTIONS
03 TRANSACTIONS-DATE PIC 9(6)
03 TRANSACTION-AMOUNT PIC 9(7) USAGE COMP
03 TRANSACTION-CODE PIC X

RS2 = 4 + 20 + 20 + 1 + 3 + 4 + 3 + 2 + (6 + 3 + 1) * 100 1057

bytes

Figure 29. Impact of Data Item Formats on Record Sizes (to be continued).

50

version 3:

USAGE COMP SYNC

USAGE COMP SYNC
USAGE COMP SYNC

X (4)
X (20)
X (20)
9
9 (7)
9 (4)
9 (7)
9 (4)

PIC
PIC
PIC
PIC
PIC
PIC
PIC
PIC

RECORD NAME IS CUSTOMER
LOCATION MODE IS CALC HASH-CUST

IN AREAS USING CUSTOMER-NAME DUPLICATES NOT ALLOWED
WITHIN AREAS
RECORD MODE IS ASCII
02 CREDIT-ACCOUNT-NUMBER
02 CUSTOMER-NAME
02 CUSTOMER-ADDRESS
02 CREDIT-RATING
02 AMOUNT-BORROWED
02 LOAN-ACCOUNT-NUMBER
02 CURRENT-BALANCE
02 NUMBER-OF-TRANSACTIONS
02 TRANSACTIONS

OCCURS 1 TO 100 TIMES
DEPENDING ON NUMBER-OF-TRANSACTIONS
03 TRANSACTIONS-DATE PIC 9(6)
03 TRANSACTION-AMOUNT PIC 9(7) USAGE COMP SYNC
03 TRANSACTION-CODE PIC X

RS1 = 4 + 20 + 20 + 1 + 3 slack bytes + 4 + 4 + 4 + 4 + (6 + 2
j

slack bytes + 4 + 1 + 3 slack bytes) * 100 1664
bytes

Figure 29. Impact of Data Item Formats on Record Sizes (continued).

An interesting feature of a database environment, not present in conventional file systems, is
the possibility to evaluate a data item value on access or update (Figure 28). This is applicable only
to the data items which were declared as being SOURCE or RESULT in the logical schema (the
value of the SOURCE data item must be the same as the value of another data item, whereas the
value of the RESULT data item is computed according to a predefined algorithm). The
EVALUATION clause not only ensures that the value of the object data item is current on each
access or update but also can ensure that the data item value will not take space (STORAGE IS
NOT REQUIRED) and will be created each time it is required. (We must note, however, that
SOURCE and RESULT clauses were dropped in ANSI'85 specifications due to implementation
difficulties (Draft, 1985).)

The storage representation yields similar benefits and disadvantages to the transparent
compression. Thus, it can reduce storage'cost, buffer requirements, and transfer time. On the other
hand, it can require additional processing time due to compression and decompression operations,
handling variable-length records and bit-level manipulations. Further research is needed to establish
an interdependence between intra-record structure parameters and relevant characteristics of
database applications (the size of the database, the amount and type of data redundancy, the nature
and frequency of user functions, etc.).

9. INDEX SPECIFICATION

Indexes in a network database can support record types and set types (see Figures 16 and
23). For record types, they must be keyed on either a logical record key (Figure 30) or on a storage
key (Figure 4). (It is important to remember that a logical record type can have more than one key
defined by separate KEY clauses and that the DBMS allocates a unique storage key to each

51

occurrence of the storage record to be indexed.) For set types, the indexes are called here pointer
arrays and they can be keyed (pointer plus a key) or ordinary (pointer minus a key). The presence
of indexes has already been considered by us in Stage M4 (Section 5) and M5 (Section 6). In this
Section we provide a more detailed discussion on this issue.

key-name-l IS { [
ASCEND ING]
DESCENDING data-identifier-l }

DUPLICATES ARE }
[FREOUENCY OF 'I DIRECT I'

SEOUENTIAL RETRIEVAL IS lil.GH.]

Figure 30. Format of Record KEY Clause (DDL).

Figure 31 presents a taxonomy of indexing techniques as a basis for index specification.
The interpretation of the graph is that the concatenated and feasible properties of an index are those
that are linked together and thus, create an uninterrupted path. The path is broken (or finished) by
putting a black circle at the end of the link. For example, it is feasible to specify a pointer array (set
index) that is keyed, based on a single key such that it consists of several simple items and is not
unique. However, it is impossible to specify a record index which is ordinary and specify a
database index built on several keys.

Logical Key Index

Keyed Index

One Key Index

Key Index Pointer Array

Ordinary Index

I Several Key Index

Figure 31. Taxonomy of Indexes.

Dense Index

Nonunique Key

Group Item Key

Several Item Key

Sparse Index

Unique Key

Simple Item Key

One Item Key

52

The taxonomy of Figure 31 is meant to be useful to the DBA in customizing an index
definition. However, some of the index categories may not be amenable to the DBA's decision due
to a specific DBMS implementation and some as a matter of principle. Let us elaborate on these
problems a Hitle.

The DBA is given a choice of using a record index or a pointer array. A keyed index may be
specified for logical record type, storage record type, and set type. A logical record key to be
indexed must be chosen from among the keYes) defined in the KEY clause for the record type
(Figure 30). (This clause was removed in the ANSI-85 proposal and, instead, an optional (and less
specific) uniqueness clause was introduced (Draft, 1985).) A storage record key for the index is
established by means of the obligatory specification STORAGE KEY REQUIRED in the storage
record subentry (Figure 4), but apart from that the DBA is not involved.

A keyed index can only be built on one key. A several key index (often referred to as
combined index) is not supported by the index entry (Figure 16). In a several key index, each index
entry would contain a pointer to a record (or a list of records) which simultaneously satisfies all key
values. Theoretically, several key indexes could be applicable to logical keys, since in the DDL
there is a provision to define several keys for a record type (by means of writing several KEY
clauses in the same record entry; cpo Figure 30). This provision, however, is not extended on the
index entry. Supposedly, the maintenance problems with several key indexes have been regarded
as outweighing the potential benefits of speeding up some of the more complex queries. After all,
these sorts of indexes have not seen much practical use even in the dedicated (as opposed to
governed by universal DBMS) database systems (cp. Claybrook, 1983).

A keyed index can further be classified as consisting of one data item or several data items
(this division is not applicable to storage key indexes, as shown in Figure 31). To implement a
several item key, the DBA is required to use several data-identifiers:

(a) in the record KEY clause in the case of a logical key index (Figure 30) or
(b) in the SET ... KEY option of index entry in the case of a pointer array (Figure 16).

Each of the data-identifiers can in turn designate either a simple or a group item. This gives
rise to the next classification in Figure 31. In fact, an index based on a several item key, such that
the items are group items, can be considered as a nearly perfect simulation of a several key index.

The logical key indexes and pointer arrays can be constructed on unique keys
(DUPLICATES NOT ALLOWED) or on nonunique keys (DUPLICATES FIRST, LAST or
SYSTEM-DEFAULT). The record KEY clause is used to this aim in the case of the logical key
index. For pointer arrays, the same can be accomplished by omitting in the index entry the KEY
option and stating in the DDL that the set is SORTED (with the appropriate DUPLICATES clause).

A natural implementation technique for unique keys is a sparse index, for nonunique keys
a dense index. However, since the DBMS can ensure alternative ways to locate duplicates, the
sparse indexes are typically used in both cases. Ordinary pointer arrays are by necessity
implemented as dense indexes.

Apart from sparse and dense indexing, the taxonomy of Figure 31 does not address
implementation techniques for indexes, as this problem is beyond the DBA's decision scope.
Broadly speaking, from an implementation point of view, all known index structures can be
classified on those that organize the specific set of data (e.g. B-trees) and those that organize the
embedding space in which the data is located (e.g. grid files). While the former techniques are still
not seriously challenged by the latter in the database market place, there has been (due to intensive
research in recent years) a significant progress in search techniques that organize the embedding
space (cp. Nievergelt et al., 1984). Regretably, this subject, though exciting, remains beyond the
scope of this report.

53

We now tum to the placement of index records. As with data records, the facilities available
can be classified into those controlling gross placement (cp. Section 3) and those relevant to fine
placement (cp.Section 4). With reference to the index entry (Figure 16), the gross placement is
addressed by the WITHIN clause and the fine placement by the PLACEMENT clause.

As far as the gross placement is concerned, the main decision to be made is whether the
page range for the index records should coincide with (or be separated from) the page range for the
supported data records. A quick insight into the problem dictates the following heuristic rule that
has been confirmed by experience (cp. IDMS, 1982).

HEURISTIC. For record key indexes, the use of a separate page range or area is
preferable. For pointer arrays, it is usually more efficient for the index records to have the same
page range as the member records if they are clustered, otherwise - the same page range as the
owner of the set.

The reasons why a separate page range or area is usually better for record key indexes are
threefold (IDMS, 1982):
(1) The data records can be clustered more closely together.
(2) The index records may be given pages to themselves, and can therefore grow to their

maximum size without having to be relocated.
(3) Contention for the area or page range containing the index can be reduced, as the pages are

not locked just because of operations (mainly updates) on data records that may not even be
related to the index.

The pointer array records will normally benefit from sharing the page range with the
CLUSTERED member records, since a particular data record can often be retrieved together with
the pointer array records that lead to it. The risk of pointer array relocation can be kept under
control by the wise use of a DISPLACEMENT clause for data records (see Figure 7). Putting the
pointer array records in the page range of the owner of the set containing unclustered members
should be self-explanatory in view of the above discussion.

It should be mentioned, however, that the gross placement of index records can tum out to
be academic in face of the restrictions imposed by some older DBMS-s. For example, DMS-I100
requires the specification of separate areas for record key indexes, pointer arrays, and data records
(DMS, 1984).

Fine placement facilities are strictly correlated with the applied gross placement; to the extent
that record key indexes can only be controlled by the gross placement facilities and fine placement
is left entirely to the system (the DBMS attempts to distribute index key records evenly over the
page range by using a randomizing algorithm). The scope of DBA decisions in the case of fine
placement for pointer arrays is also minimal.The PLACEMENT clause (Figure 16) allows either for
hashing on a data item within the owner record type or for placing the pointer array records near a
storage record representing the set owner.

10. DISC SPACE REQUIREMENTS

We have already dealt with space calculation on many occasions - during the gross
placement (Section 4), fine pl~cement (Section. 5), a~d acc~ss .path selectio~ (Section 6). The
primary reason for this Stage IS to put on prevIOUS d~Scussion m a systematIC framework and
extend it by providing a consistent survey of the calculatIOn formulas.

Calculating the total, amount of disc space requ~ed for d~tabase files is simple once the
database structure is determmed. A recommended practice today IS to produce a stub schema and

54

make the system calculate the sizes. This can be done by running a schema report generator (one of
the processors of any self-respecting DBMS.) For example, the schema report generator SRT of
DMS-1100 calculates record sizes in 36-bit words (Figure 32) and area sizes in 1792-word tracks.
More specifically, the record size is given in terms of control data length, user data length, and total
length. For variable length records, the maximum record length is calculated and the designer
should convert it to the average length instead. The storage assignment requirements for each area
(not shown in Figure 32) are calculated as follows: the number of words allocated for the area (the
allocated pages multiplied by the words per page) is divided by 1792 words per track to produce
the number of tracks required for the area (DMS, 1984).

The schema report generator, however, is a generalized tool, not particularly suited for more
detailed space calculations. Therefore, we formulate now a specific method which provides the
basis for constructing yet another CAD tool in our IDDK. The method calculates the space needed
using the following steps:
(1) space for an average occurrence of each data record type,
(2) space for occurrences of all data record types,
(3) space for an index,
(4) space for all indexes,
(5) number of pages required for database area,
(6) total disc space requirements.

As mentioned, the space for an average occurrence of the record type can be obtained from
the schema report. The calculation formula is straightforward (cp. Formula (5»:

RL· = RS' + CD-I I I (29)

By way of illustration, we show in Figure 33 the DMS-1100 approach to establish RLi
(DMS, 1984).

The space required for occurrences of all data record types DS is estimated by the
formula which rounds up RLi to a multiple of four and multiplies it by the expected number of
occurrences of ith record type NROi' The products for all record types are then summed.

(30)

The calculation of the space required for an index ISind is system-dependent, as the index
implementation in Report (1978) is left to the implementor (it is likely, however, that the
implementation will be of B-tree type with a dynamic data split technique, as opposed to a static
overflow area technique). We propose the following generalized recursive formula to estimate IS:

ISind = L\ix ISind(x)

where: (ISind(O) = NROind * IESind

i
l ISind(x+1) = 10gb(ISind(x» until ISind(x+1) ~ 1

such that the branch factor b (the number of key values in the node) equals:
b = MISind I ISind

where:

(31)

R€ C I'") R 1) ~U~ "t E LOCATION ~aD:

AR~~S :~j ~~IC~ TnE
~ECJPD ~AY cE STO~E~

SET P~RTICIPATION

OS A~ O\;NER)

SET P~RTICIPAT!or.

(AS A MEMEE~)

RECORD LENGTH IN WORDS
CONTROL DATA TOTAL

2 OWNER POINTER(S)
2 AUTOMATIC POINTER(S)
1 MANUAL RESERVED POINTER(S)
1 CALC POINTER(S)

VI
VI

E~P-~O

(ASCt~0I~G)

Ljc~TIO~ C~rTER:A A3 A y~:,:~~~

SET ORO;:",," NEXT
MEM~ER OF TTP" FOLLO~ING CIjRRE~T OF S='T

IS SELECTED

NEXT

NEXT
PRIOR

POINTERS

PC'r'n::~s

Ii EX T
pQIO"

POINTERS

Fl:-V':NG-Sr;'l=F
GRCUr-oO-STAFF

2215

OLe

7

ASS I GII ED - TO

I S-A
(MAN IjAL)

PERSONAL-FILE
(AUTOMA TIC)

p::. RS (;"Jt;:: L
~

~.

~

~

i
c;:l.

~
l'T>

"C:I
o.,-lotl.,
~
~
c;:l.

~
'<

~
..-

~•,...,...
g
~

IS(O)
NROind

56

the space occupied by index records on the bottom index level,
the number of data record occurrences that can be accessed through the
index,
the index entry size (this equals the key length (which is zero for ordinary
pointer arrays) plus four bytes for the pointer (plus two bytes for the record
identifier for pointer arrays used for more than one member record type»,
the maximum index record size.

Owner Pointers
Owner of
Owner of
Owner of
Owner of

Record Header (Fixed)

sets with next links * 4 bytes
sets with prior links * 4 bytes
sets with order last * 4 bytes
pointer array sets * 4 bytes---

4 bytes

bytes

Automatic Member
Member of
Member of
Member of

Pointers
sets with next links * 4 bytes
sets with prior links * 4 bytes
sets with owner links * 4 bytes

Manual Flag Control (present only if defined as a
manual member)

Manual Member Pointers
Number of pointers reserved * 4 bytes

Chain Pointers (calc or index-sequential)
Add 4 bytes for single links, 8 for double

User Data (RS i)

System Pointers
Add 4 bytes if record is modified and written
on overflow page

Figure 33. Record Space Calculation (DMS-llOO).

4 bytes

The space required for all indexes IS is the sum of sizes of all record indexes and pointer
arrays declared in the database:

The number of pages required for kth database area #Pk is equal to:
#Pk = (DS + IS)k / EPSk * PDk (33)
where:
EPSk the effective page size as derived in the Stage M3 (Section 5),
P~ the initial packing density of area k in a percentage.

57

The total disc space requirement should be given in tracks rather than pages. It must be also
remembered that space is required for the directory, test databases, recovery journals, space
management records, and for the files that contain codes of the logical schema, physical schema,
subschemas, and application programs. Special consideration should be given to a predicted
growth factor of a database (possibly including such details as the space required for logically
deleted member records in the sets without prior pointers). For these reasons, our formula for the
calculation of TS is only approximate:

the track capacity,
the effective page size in kth area,
the extra space required for the directory, programs, etc.

TS = (:LVk (#Pk / LTC / EPSkJ» + ES

where:
TC
EPS
ES

11. PERFORMANCE PREDICTION

(34)

*
*

The performance prediction stage is the culmination of the physical design phase. This is
where the partial solutions obtained in the previous stages are integrated and the global efficiency
issues are considered. In a sense, the earlier stages have served merely to establish feasible
solutions and to promote candidate implementations. The paths of investigation that have had little
chance of success have been eliminated, leaving, however, a still large enough design region for
significant differences in operational performance due to variations in the physical database
parameters. In this Section, we propose an overall framework for the Physical Evaluation and
Selection (PES) tool aimed at assessing and predicting the effect of physical design decisions on
resource consumption, transaction throughputs, response times, etc. The specification of the PES
has been influenced by:
* the Layered Model of Database System Performance due to Sevcik (1981),
* the EOS and EROS systems ofDATAID project (Staniszkis and Rullo, 1982; Staniszkis et

al., 1982; Orlando et al., 1985),
the physical database design environment described by Teorey and Fry (1982), and
the measurement and tuning techniques for computer systems presented in Ferrari et ai.,
(1983).

We use Data Flow Diagrams (DFD) to represent the PES graphically in Figures 34 and 35.
The specific notation is consistent with that described in Jeffrey and Lawrence (1984). The directed
line represents a data flow, the circle portrays a data transformation, the straight line expresses a
data store, and the rectangle refers to an originator or receiver of data. Each data flow is named,
except for single flows to or from a data store. Each of the bubbles (circles) represents a
transformation of the incoming data flows by a processor of the PES. By convention, only the net
flow to or from a data store is shown on the diagrams (hence, for example, in an update process
only the flow to the file is shown, despite 1-0 processes being involved in reality).

Figure 34 presents the major categories of inputs and outputs for the performance
prediction. The framework of the PES is restricted to the physical design and does not provide for
modifications to the conceptual or logical designs (Maciaszek, 1986; Maciaszek et aI., 1986a).
According to Sevcik's (1981) classification, the PES is an evaluation and selection system, but it is
not an optimizer. The PES is capable of ev~lua~ing the performance of a specific design ",:ith
respect to certain measures. It can also aSSIst In selectlllg among a small number of deSIgn
alternatives. However, it is not aimed at producing the set of parameter values that optimize
performance with respect to a given performance measure (or group of measures).

58

Final Physical Design

Meta-database
Conceptual and Logical of PES
Design ~

po

~

....

Hardware Parameters ..
~

Utilizations
and mean
queue lengths
for each
device by
task class

Physical
Evaluator
and
Selector
(PSE)

~

....

Throughputs
and mean
response
times by
task class

~

....

...

..

DBMS and as
Characteristics

Quantitative Database
Description •

po

Application Processing
Scenario

Tentative Physical
Design

~,

(DBA)

D A
a d
t m
a i
b n
a l

s s
e t

r
a
t
0

r

(DBA)

~

"
Alternative Physical Design

Measurement
and Tuning
File

Figure 34. Physical Evaluator and Selector (Data Flow Diagram: level 0).

The PES is a design-time system. Nevertheless, with minor changes to the interfaces, it can
be used for performance prediction of existing databases under changing workload
characterizations and with tuning of physical parameters. Indeed, the accuracy of the PES could be
best verified by comparing its prediction results with the performance of a real database system. In
any case, it is reasonable to assume that the inaccuracies due to the modelling assumptions in the
PES will generally be insignificant in comparison with uncertainties in workload characterization
and workload forecasting (Sevcik, 1981). This motivated us to give special consideration to the
way a workload and its characterizati~n are decided upon. We do not rely entirely on the
probabilistic approach which represents the workload by random variables distributions of which
are assumed to be statistically independent. Instead, we draw from the knowledge on conceptual
and logical designs and generate a likely application processing scenario. This approach responds
to the research results that have shown that the uniformity and independence assumptions in
database design lead to cost estimations that are often pessimistic (Christodoulakis, 1984).

The database environment for the PES is a multiuser and shared system (however, a
non-database workload is not considered). This means that disc space is shared by many users, so
that the position of the read/write head on the device can be considered as a random variable. As
pointed out by Teorey and Fry (1982), this can have the effect (in the worst case) of making each
block access, a random access, regardless of where a user's previous block access occurred. We
believe that relaxing the requirement of multiuser and shared system for database performance
prediction would be unreasonable.

59

User
Functlons,~~----------J

arac er s cs

DBMS and as
Performance

physical

~~~~M~ert~a-database

Physical Allocation
structure

Function
Pseudocod
File

Function
File~ -+__.,...

Performance Reports

Expanded Workload
Model Tables

Hardware
p.arameters

Chanqes to Tentative
Physical Schema

Figure 35. Physical Evaluator and Selector (Data Flow Diagram: level 1).



60

The PES results in a group of measurement indexes that provide diversified views of the
database performance. It is left mostly up to the DBA to make a trade-off analysis when different
individual indexes result in conflicting design decisions. It must be remembered, though, that some
indexes are beyond the DBA's control and they can only constitute a background information from
the PES (e.g. CPU and I/O queue waiting time, communication delay). Other indexes can be tuned
by the PES and the DBA (e.g. I/O service time, secondary storage space) or they can be controlled
in a limited scope (e.g. lockout delays, CPU time, main storage space) (Teorey and Fry, 1982).

In general, the architecture of the PES, as shown in Figure 35, is designed to support the
following performance indexes:
* response time,
* throughput (or productivity),
* secondary storage cost and utilization,
* turnaround time,
* CPU memory cost and CPU utilization,
* overlap.

Response time is defined as the elapsed time between the interactive user function
initiation and the instant the corresponding reply begins to appear at the terminaL It consists of a
CPU service time, CPU queue waiting time, I/O service time, I/O queue waiting time, lockout
delay, and communications delay (Teorey and Fry, 1982). It seems that the I/O service time is most
susceptible to the DBA's control and as such should be reported separately. The global response
time for a user function should be further divided in order to show the execution time of DML
commands used in the pseudocode for the function. The content of the reports is expected to
resemble those of the DATAID project (Orlando et ai., 1985). The statistical description of
response times for all functions should also be provided (standard deviation or percentiles of the
distribution of response times (Ferrari et ai., 1983». (An observed response time is the pth
percentile ifp percent of all response times are below the observed time.)

Throughput is measured as the amount of work performed by a system in a given unit of
time (Ferrari at ai., 1983). Its value is to be expressed in the number of functions processed per
unit of time and in the amount of I/O transfers per unit of time. The value of throughput must be
analyzed in strong correlation with a given workload and the system's capacity (the maximum
theoretical value that the throughput can reach). Throughput is an important measure in calculating
the system's usage cost. It provides the global indication of the system's power.

Secondary storage cost is expressed in the disc space required by the database. The
utilization is a percentage of the disc active time for the workload. The utilization reports should
be enriched by the calculation of the related factors: mean service time, visits (I/O transfers),
average waiting time, average queue length.

Turnaround time is defined as the time interval between the instant a batch user function
(batch program) is submitted to the system and the instant its execution ends (Ferrari et ai., 1983).
It provides an indication of processing efficiency, especially when the weighted turnaround time
and the mean weighted turnaround time are obtained. The weighted turnaround time is the ratio
between the turnaround time and the program's processing time in a stand-alone (dedicated)
environment.

The CPU memory cost is expressed in the main memory space needed for the workload
(the DBA has some control over buffer allocation, but little else). The CPU utilization is defined
as the percentage of operating time during which the CPU is active (Ferrari et ai., 1983). The
analysis of the CPU utilization should also show the time spent for system overhead (for Operating
System and DBMS functions). The CPU utilization can also be used as one of the throughput
indices. The frequency with which the programs constituting the workload generate references to



61

information items not present in main memory (page faults) should also be obtained.

The overlap is described as the percentage of system's operating time during which two
or more resources are simultaneously busy (Ferrari et at., 1983). This index should reflect all the
possible combinations of channels and the CPU.

The PES is an integral part of the IDDK. In fact, some of the PES processors (Figure 35)
are being implemented outside of the PES and are expected to easily interface with the other PES
tools. The PSE, FSG, DRC are already operational in prototype forms on Macintosh Plus
workstations (Maciaszek et at, 1986b). The CSD, FPD and FPA provide the workload
characterization. The LSD is a part of the logical level IDDK (Maciaszek et at., 1986a). The RIC
and AVE are the IDDK tools relevant to the earlier stages of materialization (M! and MS,
respectively). The QIP is a consequence of a broad range of activities in all design phases
addressed by the IDDK (conceptualization, formalization, and materialization). The SOD and PAD
includes settings for DBMS tunning parameters and for operating system environment. The HAD
specifies the hardware, in particular disc characteristics. The actual measurement and performance
prediction is done by the WLE, WLS, and QNE (with operational properties similar to those in
DATAID (Staniszkis and Rullo, 1982; Staniszkis et at., 1982). The tuning is supported by the
HPO which will be built around the heuristic algorithms described more or less explicitly in the
previous sections of this report. Finally, the PRG will produce tabular and graphical analysis of the
evaluation and selection results. The overall process is iterative and leads to a semi-optimal physical
schema.

12. PHYSICAL SCHEMA DEFINITION

The physical schema definition is the tangible outcome of the physical design process. In
practice, it is given in the DSDL. The object physical schema is consulted during the database
accesses. During the design process, however, the DSDL definition should be supported by the
graphical representation of the physical schema. It is foreshadowed that the IDDK will first produce
the graphical display of the schema (using the tool named the Physical Diagram Constructor PDC),
and then the DSDL definition will be automatically generated (under the assumption that the IDDK
is customized for a given DSDL).

The graphical schema representation is consistent with the logical diagrammatic technique
already operational in a prototype version within the IDDK (Maciaszek et at., 1986a) and resembles
the diagrammatic notation developed by us in Maciaszek (1981). Figure 36 uses the "fork" set type
to show the graphical notation for the physical schema definition. We assume that the diagram is
self-explanatory. Because of the growing complexity of the diagrams for larger structures, the PDC
will only automatically generate small diagrams (up to ten record types, say), but it will provide
separate graphs for each set type. For large diagrams, the PDC should be supported by the Physical
Diagram Editor (PDE) which will allow the DBA to move shapes around and design the output
layout.

13. CONCLUSION

In this report we have described the methodology to derive a network physical database
schema based on the conceptual and logical designs. The methodology is accurate enough to be
used as a blueprint fo! the development .of a ~omputer-assi~ted. design tool. Such a t~ol will be
integrated in the IntellIgent Database DeSIgn KIt (IDDK), whIch IS a set of computer-assIsted tools
of expert system flavour for analysing, c0D:structing and do.cumenting a d.atabase design. The
IDDK is partly operational in prototype form m the Apple Macmtosh Plus enVlfonment (conceptual
and logical design scope).



62

OWNER-REC-NAME

O~DER-KEY

REC-KEY
ASC/DESC I DUP-CONTROL

INDEX-NAME
STORAGE-REC-NAME(S)

INDEX-PARAMETERS

PLACEMENT PLACEMENT-PARAMETERS

AREA (S) PAGE-RANGE(S)-
~ SET-NAME ----....

/ ORDER-CONTROL '\

~
POINTER-ARRAY-NAME )

POINTER-ARRAY-~

~ ~
/

INSERTION I RETENTION I DUP-CONTROL INSERTION I RETENTION I DUP-CONTROL'"

SORT-KEY SORT-KEY

ASC/DESC I DUP-CONTROL NULL-CONTROL ASC/DESC I DUP-CONTROL I NULL-CONTROL

SELECTION SELECTION-PARAMETERS ~ SELECTION SELECTION-PARAMETERS
..I"-

,~ "
MEMBER-REC-NAME MEMBER-REC-NAME

ORDER-KEY ORDER-KEY
REC-KEY REC-KEY

ASC/DESC IASC/DESC DUP-CONTROL DUP-CONTROL

INDEX-NAME INDEX-NAME
STORAGE-REC-NAME(S) STORAGE-REC-NAME(S)

INDEX-PARAMETERS INDEX-PARAMETERS

PLACEMENT PLACEMENT-PARAMETERS PLACEMENT PLACEMENT-PARAMETERS

AREA(S) PAGE-RANGE (S) AREA(S) PAGE-RANGE(S)

Figure 36. Graphical Definition of Physical Schema (Fork Set).



63

It is our opinion that the IDDK, when completed, will be of commercial value. With the
rising sophistication of DBMS-s, there is a growing demand for computerized design tools.
Currently, there is no network or relational production DBMS which provides for such tools even
in the limited scope. Some of the network DBMS-s, however, are well prepared for that purpose as
they interface with active Data DictionarylDirectory Software (e,g. IDMS). (Obviously, the IDDK,
to be commercially viable, will have to be interfaced with a DDID Package.)

We are of the opinion that most of the research in database design is too oversimplified to be
directly applicable. The best one can say is that there is a number of interesting partial solutions
which are not integrated in consistent methodologies. The only comprehensive approaches have
been, to the best of our knowledge: (1) the DATAID project financed by the Italian Research
Council (e.g. Orlando et at., 1985), (2) the Interactive System for Database Design and Integration
centered around the Functional Data Model (e.g. Yao et at., 1985) and more recently (3) the
Database Designer's Workbench based on the methodology of Teorey and Fry (1982) conducted
by Computer Corporation of America and Harvard University (e.g. Reiner et at., 1986). From all
DBMS vendors, Cullinet has always stood out in providing reasonable design manuals for its
IDMS and IDMS/R software. And only recently (October 1986), Cullinet announced that it
contracted the development of a database software engineering tool. The scope of that tool is not
known to this author at the time of writing, but it is believed to be inclined towards physical design.

Our methodology is similar in scope to the DATAID project (except that we do not address
distributed databases). We believe, however, that our approach is better structured, evolves from a
carefully defined extended entity-relationship approach, and is up to date with the ANSI
standardization efforts. As well, it provides for versatile feedbacks and multiple iterations, and
applies strong heursitics that eliminate (at early stages) paths of investigation that have little chance
of success. Moreover, high-resolution graphics capabilities of readily available personal computers,
i.e. Apple's Macintosh Plus, are being used for the IDDK implementation.

ACKNOWLEDGMENTS

The author wishes to thank William Bowie, Neil Gray, Michael Farnan, Wayne Findlay,
Stephen Lucas, Mark Paine, Peter Roan and George Zamroz for their contribution to the
implementation of the IDDK. I am grateful to Plenum Publishing Corporation for permission to
reproduce in this report (Sections 3 and 4) much of Maciaszek (1985). I also thank Michael Farnan,
Gary Stafford and Peter Strazdins for their comments on the draft of this report and for suggesting
improvements to the presentation.

INDEX OF FIGURES

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.

Figure 6.
Figure 7.
Figure 8.
Figure 9.
Figure 10.
Figure 11.
Figure 12.

Data Structure Design Process for Network Databases.
Derivation Dependencies Between Data Structure Notions.
Format of Storage Area Entry.
Format ofEntries Relevant to Storage Record Definition.
Access Structures of the Three Functions: (a) EMPSLROl, (b) EMPSTFOl,
(c) EMPSTF02.
Tabular Aid to Calculate the RDI of Record Types (example).
Format of Placement Subentry.
Format of a Part of Record Subentry (DDL).
Initial Design Situation for a Record to Area Mapping (example).
Subschema-Driven RDI of Record Types (example).
Design Situation After the First Iteratio~ (Area A1 is J?efin~d).
Design Situation After the Second IteratlOn (Area A2 IS DefIned).

3
6
7
8

9
12
13
13
15
15
17
18



64

Figure 13. Design Situation After the Third and Fourth Iteration (Areas A3 and A4 are
Defined). 18

Figure 14. Page Format. 22
Figure 15. Example of STEP2 and STEP3 of the Algorithm for Non-Recognizable

Pattern Problem. 26
Figure 16. Format of Index Entry. 28
Figure 17. Format of Set Pointer Subentry. 29
Figure 18. Graph of Storage Record Usage. 30
Figure 19. Simplified Physical Database Structure (example). 32
Figure 20. Format of SET SELECTION Clause (DDL). 33
Figure 21. Syntax of FIND Statement (ANSI'85). 34
Figure 22. Example of FIND Usage. 35
Figure 23. Structural Chart of Network Database Access Model. 36
Figure 24. Subschema Diagram and Definition for Query Language (QLP-I100). 40
Figure 25. Diagram of the University Database Schema. 42
Figure 26. Access Graph for Strategy 1. 44
Figure 27. Access Graph for Strategy 2. 45
Figure 28. Format of Data Subentry. 48
Figure 29. Impact of Data Item Formats on Record Sizes. 49
Figure 30. Record KEY Clause (DDL). 51
Figure 31. Taxonomy ofIndexes. 51
Figure 32. Record Report Produced by SRT (DMS-l100). 55
Figure 33. Record Space Calculation (DMS-1100). 56
Figure 34. Physical Evaluator and Selector (Data Flow Diagram: level 0). 58
Figure 35. Physical Evaluator and Selector (Data Flow Diagram: leve11). 59
Figure 36. Graphical Definition of Physical Schema (Fork Set). 62

REFERENCES

ARONSON, J. (1977): Data Compression - A Comparison of Methods, Institute for Computer
Sciences and Technology, National Bureau of Standards, U.S. Department of Commerce, June,
31pp.

BATORY, D.S. and GOTLIEB, C.c. (1982): A Unifying Model of Physical Databases, ACM
Trans. Database Syst., 4, pp.509-539.

BATORY, D.S. (1984): Modelling the Storage Architectures of Commercial Database Systems,
Tech. Report TR-83-21, University of Texas at Austin, 58pp. (also, in a slightly modified version,
in ACM Trans. Database Syst., 1985,4, pp.463-528).

BEIGHTLER, C.S. PHILLIPS, D.T. and WILDE, D.J. (1979): Foundations of Optimization,
Prentice-Hall, 487pp.

CALINGAERT, P. (1982): Operating System Elements. A User Perspective, Prentice-Hall,
240pp.

CHRISTODOULAKIS, S. (1984): Implications of Certain Assumptions in Database Performance
Evaluation, ACM Trans. Database Syst., 2, pp.163-186.

CLAYBROOK, B.G. (1983): File Management Techniques, John Wiley & Sons, 247pp.

COOPER, R.B. and SOLOMON, M.K. (1984): The Average Time Until Bucket Overflow, ACM



65

Trans. Database Syst., 3, pp.392-408.

CORMACK, G.V. (1985): Data Compression on a Database System, Comm. ACM, 12,
pp.1336-1342.

DAELLENBACH, H.G. GEORGE, I.A. and MCNICKLE, D.C. (1983): Introduction to
Operations Research Techniques. Second Edition, Allyn and Bacon, 705pp.

DAYAL, U. and GOODMAN, N. (1982): Query Optimization for Codasy1 Database Systems,
Proc. Int. Conf. on Management ofData SIGMOD, Orlando, Florida, U.S.A., pp.138-150.

DEEN, S.M. (1985): Principles and Practice ofDatabase Systems, MacMillan, 393pp.

DMS (1984): Series 1100 Data Management System Schema Definition DMS 1100 Level9Rl,
Data Administration Reference, p. several number, Sperry.

DRAFT (1985): Draft Proposed American National Standard Network Database Language,
Project 355-D, p. 142, Technical Committee X3H2 - Database, X3 Secretariat/CBEMA.

EFFELSBERG, W. and LOOMIS, M.E.S. (1984): Logical, Internal, and Physical Reference
Behaviour in CODASYL Database Systems, ACM Trans. Database Syst., 2, pp.187-213.

EISELT, H.A. and FRAJER VON, H. (1977): Operations Research Handbook. Standard
Algorithms and Methods with Examples, MacMillan Prss, 398pp.

FERRARI, D. SERAZZI,G. and ZEIGNER, A. (1983): Measurement and Tuning ofComputer
Systems, Prentice-Hall, 523pp.

GERRITSEN, R. (1975): A Preliminary System for the Design of DBTG Structures, Comm.
ACM, 10, pp.551-556.

GRAY, P.M.D. (1984): Implementing the Join Operationon Codasyl DBMS, in: Database - Role
and Structure. An Advanced Course, ed. P.M.Stocker, P.M.D.Gray, M.P.Atkinson, Cambridge
University Press, pp~185-205.

HEYMAN, D.P. (1982): Mathematical Models of Database Degradation, ACM Trans. Database
Syst., 4, pp.615-631.

IDMS (1980): IDMS Part 2 Database Establishment (IDMS.200/IDMSX.200), Reference, p.
several number, ICL 2900.

IDMS (1982): IDMS Part 5 Database Design (IDMS.320/IDMSX.320), Reference, p. several
number, ICL 2900.

IDMS/R (1984): IDMSIR Database Operations (Release 10.0, TDDB-0220-100GO), p. several
number, Cullinet.

JAIN, H.K. (1984): A Comprehensive Model for Storage Structure Design of CODASYL
Databases, Inform. Syst., Vo1.9, pp. 217-230.

JEFFREY, D.R. and LAWRENCE, M.J. (1984): Systems Analysis and Design, Prentice-Hall of
Australia, 225pp.

KATZ, R.H. and WONG, E. (1983): Resolving Conflicts in Global Storage Design Through



66

Replication, ACM Trans. Database Syst., 1, pp.ll0-135.

KENT, W. (1978): Data and Reality. Basic Assumptions in Data Processing Reconsidered,
North-Holland,21lpp.

LIROV, Y. and DAUNOV, N. (1985): Heuristic Approach to Network Database External
Parameters Design, Inform. Syst., Vol.lO, pp.31l-316.

MACIASZEK, L.A. (1981): Database Design, in: Design of Information Systems for Unified
Computer Systems, ed. E.Niedzielska, AE, pp.205-252 (in Polish).

MACIASZEK, L.A. (1985): Record to Area Mapping in a CODASYL Environment, Proc. 2nd
Int. Conf. on Foundations of Data Organization, Kyoto, Japan, pp. 297-304 (the revised
version in: Foundations of Data Organization, ed. S.P.Ghosh, Y.Kambayashi, K.Tanaka,
Plenum Publ., 1986).

MACIASZEK, L.A. (1986): An Enhanced Conceptual Structure Derivation, University of
Wollongong, Department of Computing Science, Preprint 86-1, 44pp.

MACIASZEK, L.A. BOWIE W.S. and LUCAS, S.K. (1986a): On Derivation of Network and
Relational Schemas from an Enhanced Conceptual Structure, University of Wollongong,
Department of Computing Science, Preprint 86-3, 38pp.

MACIASZEK, L.A. FARNAN, M.J. FINDLAY, W.T. PAINE, M.D. ROAN, P.M. and
ZAMROZ, G.B. (1986b): Computer-Assisted Derivation of a Feasible Conceptual Structure
(Detailed Abstract), typescript, 14pp.

MARCH, S.T. and SEVERANCE, D.G. (1977): The Determination of Efficient Record
Segmentations and Blocking Factors for Shared Data Files, ACM Trans. Database Syst., 3,
pp.279-293.

MARCH, S.T. (1983): Techniques for Structuring Database Records, Comput. Surv., 1,
ppA5-79.

MARCH, S.T. and SCUDDER, G.D. (1984): On the Selection of Efficient Record Segmentations
and Backup Strategies for Large Shared Databases. ACM Trans. Database Syst., 3, ppA09-438.

MERRETT, T.H. (1984): Relational Information Systems, Reston Publishing Co., 507pp.

NIEVERGELT, J. HINTERBERGER, H. and SEVCIK, K.C. (1984): The Grid File: An
Adaptable, Symmetric Multikey File Structure. ACM Trans. Database Syst., 1, pp.38-71.

ORLANDO, S. RULLO, P. SACCA, D. and STANISZKIS, W. (1985): Integrated Tools for
Physical Database Design in CODASYL Environment, in: Computer-Aided Database Design. The
DATAID Project, ed. A. Albano, V. De Antonellis, A. Di Leva, Elsevier Science Publishers B.V.,
pp.131-153.

RDMS (1985): Series 1100 Relational Data Management System RDMS 1100, Leve11R2, Release
Description, p. several number, Sperry.

REINER, D. BRODIE, M. BROWN, G. CHILENSKAS, M. FRIEDELL, M. KRAMLICH,
D. LEHMAN, J. and RESENTHAL, A. (1986): A Database Design and Evaluation Workbench:
Preliminary Report, in : VESELY, E.G.: The Practitioner's Blueprint for Logical and Physical
Database Design, Prentice-Hall, pp.268-275.



67

REPORT (1978): Report of the CODASYL Data Description Language Committee, Inform. Syst.,
Vol.3, pp. 247-320.

REUTER, A. and KINZINGER, H. (1984): Automatic Design of the Internal Schema for a
CODASYL Data Base System, IEEE Trans. on Soft. Eng., 4, pp.358-375.

RODAN (1979): Universal Database Management System RODAN, User Manuals, p.several
number, CPiZI (in Polish; English version available from CPiZI, Warsaw, Poland).

SEVCIK, K.C. (1981): Data Base Performance Prediction Using an Analytical Model, Proc. 7th
Int. Conf. Very Large Data Bases, Cannes, France, pp.182-198.

SEVERANCE, D.G. (1983): A Practitioner's Guide to Data Base Compression. Tutorial, Inform.
Syst. Vo1.8, No.1, pp.51-62.

STANISZKIS, W. and RULLO, P. (1982): Transaction Workload Analysis in the CODASYL
Data Base Performance Predictor EOS, Rapporto CRAI 82-17, 109pp.

STANISZKIS, W. RULLO, P. and GAUDIOSO, M. (1982): Probabilistic Approach to
Evaluation ofData Manipulation Algorithms in a CODASYL Data Base Environment, Rapporto
CRAI 82-16, 52 plus pp.

STANISZKIS, W. SACCA', D. MANFREDI, F. and MECHIA, A. (1983): Physical Data Base
Design for CODASYL DBMS, in: Methodology and Tools for Data Base Design, ed. S. Ceri,
North-Holland, pp.119-148.

TEOREY, T.J. and FRY, J.P. (1982): Design ofDatabase Structures, Prentice-Hall, 495pp.

VAX (1984): VAX DBMS Database Design Guide, Order No. AA-Y311A-TE, p. several
number, Digital Software.

WELCH, T.A. (1984): A Technique for High-Performance Data Compression, IEEE Comp.,
June, pp.8-19.

WHANG, K.-Y. WIEDERHOLD, G. and SAGALOWICZ, D. (1981): Separability - an
Approach to Physical Database Design, Proc. 7th Int. Conf. Very Large Data Bases, Cannes,
France, pp.320-332.

WHANG, K.-Y. WIEDERHOLD, G. and SAGALOWICZ, D. (1982): Physical Design of
Network Model Database Using the Property of Separability, Proc. 8th Int. Conf. Very Large Data
Bases, Mexico City, Mexico, pp.98-107.

WHANG, K.-Y. (1985): Property of Separability in Physical Design of Network Model
Databases, Inform. Syst., Vo1.10, pp.57-63.

WIEDERHOLD, G. (1983): Database Design, Second Edition, McGraw-Hill, 751pp.

YAO S.B. WADDLE, V. and HOUSEL, B.C. (1985): An Interactive System for Database
Design and Integration, in: Principles ofDatabase Design Volume I Logical Organizations, ed.
S.B.Yao, Prentice-Hall, pp.325-360.

YU, C.T. SUEN, C.-M. LAM, K and SIN, M.K. (1985): Adaptive Record Clustering, ACM
Trans. Database Syst., 2, pp. 180-204.


	A physical schema derivation for network databases
	Recommended Citation

	tmp.1283815130.pdf.mA9g5

