
University of Wollongong University of Wollongong

Research Online Research Online

Department of Computing Science Working
Paper Series

Faculty of Engineering and Information
Sciences

1982

Synchronization of processes Synchronization of processes

Alfs T. Berztiss
University of Wollongong

Follow this and additional works at: https://ro.uow.edu.au/compsciwp

Recommended Citation Recommended Citation
Berztiss, Alfs T., Synchronization of processes, Department of Computing Science, University of
Wollongong, Working Paper 82-11, 1982, 66p.
https://ro.uow.edu.au/compsciwp/28

Research Online is the open access institutional repository for the University of Wollongong. For further information
contact the UOW Library: research-pubs@uow.edu.au

https://ro.uow.edu.au/
https://ro.uow.edu.au/compsciwp
https://ro.uow.edu.au/compsciwp
https://ro.uow.edu.au/eis
https://ro.uow.edu.au/eis
https://ro.uow.edu.au/compsciwp?utm_source=ro.uow.edu.au%2Fcompsciwp%2F28&utm_medium=PDF&utm_campaign=PDFCoverPages

THE UNIVERSITY OF WOLLONGONG

DEPARTMENT OF COMPUTING SCIENCE

DEPARTMENTAL NOTES AND PAEPRINTS

SYNCHRONIZATION OF PROCESSES

Alfs T. BERZTI88

Department of Computer Science
University of Pittsburgh

PITTSBURGH. Pa. 15260
U.S.A.

Preprlnt No 82-11

P.O. Box 1144. WOlLONGONG. N.S.W. AUSTRALIA
telephone (042)-282-981

telex AA29022

May 13. 1982

SYNCHRONIZATION OF PROCESSES

1. INTRODUCTION 1
2. PROCESSES, RESOURCES, PROCESSORS 1
3. SHARING OF RESOURCES 4
4. SYNCHRONIZATION PROBLEMS 6

4.1 Dining Philosophers (DP) 7
4.2 Readers and Writers (RW) 8
4.3 Message Buffer (MB) 9
4.4 Disk Head Scheduler (DH) 9
4.5 Smokers' Problem (TS) 10
4.6 Banker's Problem (BP) 11
4.7 On-the-Fly Garbage Collection (GC) 11
4.8 Swimming Pool Problem (SP) 12

5. SEMAPHORES 13
5.1 Mutual Exclusion 14
5.2 Problem SP 15
5.3 Problem MB 15
5.4 Problem TS 16

6. PETRI NETS 17
7. DEADLOCK AND STARVATION 22
8. MONITORS AND RELATED CONSTRUCTS 27

8.1 Conditional Critical Regions 28
8.2 Monitors 31
8.] Examples of Monitors 32
8.4 Ada Tasks 36

9. PATH EXPRESSIONS AND CONTROL MODULES 39
9.1 Path Expressions 40
9.2 Control Modules 44

10. SYNCHRONIZATION OF DISTRIBUTED PROCESSES 46
10.1 Communicating Sequential Processes (CSP's) 48

11. CONCURRENCY IN DATA BASES 50
12. DATA ABSTRACTION AND SYNCHRONIZATION 52

12.1 Controlled Iteration 53
12.2 Controlled Iteration and Parallelism 56
REFERENCES 60

1. INTRODUCTION

The study of the synchronization of processes is a very

interesting field. It-brings together concepts that have

originated in the design of operating systems, and of high
level programming languages. Also it is becoming clear that

the design of algorithms for parallel execution is intimately

connected with synchronization problems. Some specialized
synchronization problems have arisen in the design of data
base systems. Indeed, distributed data bases provide an

example of distributed processing that has immense practical
significance. To summarize, synchronization of processes is
a universal activity whose importance is being felt throughout

computer science.

The time has therefore come for the synchronization of

processes to be studied as a topic in its own right. In this
course I am taking such a broad viewpoint, and am trying to
integrate some aspects of operating systems, languages, and
parallel algorithms. However, this being a first attempt,

the integration is not as thorough as I would have wished.

Also, in the s?ort time at my disposal, I am not able to

discuss several very important topics, such as reliability.

2. PROCESSES, RESOURCES, PROCESSORS

To begin with we need to establish a terminology that
will be used in what follows. The basic term process has
been defined in a great number of ways. This is understand­

able because being so basic it cannot be defined. We can
only give examples. They will show that the same activity

can be regarded as one process at one time, and as a set of
processes at another. Examples of processes:

(i) Merging of two files to produce a third.

1

(ii) Traversal of a file (accessing of the elements of
the file in sequence).

(iii) Generation of an output file by accepting as input
a sequence of records.

(iv) Output of a record.

(v) MUltiplication of two matrices A and B to produce
a product matrix C.

(vi) Taking the inner product of a row of a matrix A
and a column of a matrix B. (This can be regarded
as generating an element of the product matrix C.)

(vii) Generation of a row of C by a sequence of operat­

ions based on the traversal of one row of A and
row-wise traversal of all of B.

(viii) Traversal of a row in matrix A.

(ix) Row-wise traversal of all of matrix B.

(x) Processing of the job stream submitted to a compu­
ter center.

(xi) An operating system.

(xii) An r/o system.

(xiii) Conversion by a printer of an output stream sent

to it into lines printed on paper.

(xiv) A data base system in operation.

(xv) An update in a data base made necessary by the
transfer of an employee from branch X of a company
to branch Y of this company.

A process needs resources. For example, process (ii)
needs access to the storage areas where matrices A and Bare
to be found, to a storage area in which it builds up the row
of matrix C, and it needs a processor that does the actual
work.

Resources may be dedicated or shared. For example, in
process (xiii), the printer (with its control unit) is the
processor, and it serves this one process alone. On the

other hand, the situation with process (xv) can be very com­

plicated. It could well be that the employee data base is
distributed over the various localities where the company has

branches. Here then the process would need as resources the

sections of the distributed data base found a localities X
and Y, processors (both at X and Y) for carrying out the

update, and a communications link between X and Y.

Consider a process as a sequence of state transitions of
a machine. Moreover, the machine may be accepting an input,
and generating an output. In terms of this model we can

classify processes into deterministic and nondeterministic
processes. In a strictly deterministic process the sequence
of states that the machine goes through is unique for a

particular input (or for a particular initial state of the
machine in case there is no input). However, if the process
shares resources with other processes, this fact should be
reflected in the design of the maChine, and the machine would

go through different sequences of states depending on the
availability or lack of availability of the resources. We

then have a nondeterministic process. Still, some measure

of determinism must be retained. Following Habermann (HA76),

define I/O determinism: A process is 1LQ deterministic if

its output is a function of its input (or of the initial

state in case-there is no input). We require I/O determinism,
but can often benefit by not requiring strict determinism.

Besides classification of processes into deterministic
and nondeterministic, we can classify them into sequential and
parallel. A seQuential process is a sequence of atomic pro­
cessing steps. For example, process (ii) is by definition
sequential. In a Barallel process, provided more than one

processor is available, some atomic processing steps may be
executed simultaneously. An example is process (v). Suppose

matrices A and B are both square and of order n. Then, given

n2 processors, each processor could be used to generate one

of the n2 elements of matrix C. The processors could proceed

in parallel. A distinction must be made between a parallel

process and concurrent processes. Regarded as process (v),
the computation of C by the n2 processors working in parallel

3

is a parallel process. But matrix C can also be computed by

process (vi) performed n2 times. Given the same n2 processors,

if they are associated with the n2 instances of process (vi),

and they do their processing at the same time, we have then a

system of n 2 concurrent processes.

Through all this the notion of a process has remained

still rather vague. It shares the vagueness with the notion

of a module. We might consider processes as modules, and

could find some guidance for the separation of a large task

into processes in the criteria for separating a program into

modules discussed by Parnas (PA72), and by Goos and Kastens

(GK78).

J. SHARING OF RESOURCES

Assume that we have a programming language in which the

ability to execute operations in parallel is indicated by the

delimiter II, and assume that the assignmBnt of a value to a

variable is an atomic action. Then, in executing

begin i := 1 II i := 2 end

because of the indivisibility of the assignment operation the

two operations have to be performed sequentially. But the

sequence can be either of

i:=l; 1:=2;

and

i :=,2; i:= 1;

i.e., the computation is nondeterministic.

Next, suppose that it is required to replace the current

value of variable i by the result of the computation i + j + k.

Suppose we have

i := 0; j:= 1; k:= 2;

begin i: = i + j " i : = i + k end

Here, because of the indivisibility of the assignment operation,

the two assignments are again performed in sequence, but this

does not help us. The two additions can be carried out in

parallel, and the same value i = 0 could be picked up for

both additions. Again the computation would be nondeter­

ministic, with the result possibly 1 or 2. It could even be

the 3 we want (in case two processors had not been available

at the same time for the two additions). One solution is to

regard the entire sequence of operations expressed by, say,

i := i + j as an atomic operation. But where does one stop

then? By carrying this too far all the benefits that we hope

to gain from parallelism would become unobtainable. These

trivial examples illustrate very well that sharing of re­

sources may introduce nondeterminism, and this problem has

to be attacked in a systematic manner.

A simple cure for eliminating nondeterminism is to give

a process exclusive control over the resources it requires.

In our instance the location associated with variable i would

not be accessible to the process "i:= i + k" until the

process "i:= i + j" completes, or vice versa. Unfortunately

such mutual exclusion creates new problems, notably deadlock.

How deadlock arises is well illustrated by Fig.l, which first

appeared in (CE7l).

5

progress
of P1

infeasible
region

unsafe
region
~.

~-----------joint progress
path of Pl & P

2

Fig.l

both
done

progress
of P2

Fig.l represents the progress of two processes, Pi and P2 ,

both of which have to have exclusive control of resources Rl
and R2 at some time. The time at which process Pi holds

resource R. is indicated by a bar on the P.-axis. The in-
J 1

feasible region corresponds to the impossible situation of

both processes having exclusive control of the same resource.
The shaded region corresponds to Pi holding R1 , and P2 holding
R2 • Neither process can proceed once the boundary between the

shaded region and the infeasible region is reached, and the

two processes are then said to be deadlocked. At this point,

for either process to proceed, it needs both the resource it

already holds and the resource held by the other process. In

order to proceed, one of the processes would have to give up

the resource it holds.

The joint process path consists of vertical and horizontal

segments, and of sloped lines. A vertical (horizontal) segment

represents process Pl (P2) executing alone; a sloped line

represents execution of Pi and P2 in parallel. Parallel

execution is possible unless the path hits the boundary of the

infeasible or of the unsafe reglon. In such an event it has
to move along the boundary, and only one process can be

executing during this move.

4. SYNCHRONIZATION PROBLEMS

Referring back to the computation of i + j + k, the
problem there is to ensure that the processes "i:= i + j"

and "i:= i + k" are so timed or synchronized that they do

not interfere with each other. There are quite a few

different aspects to process synchronization, and some very

interesting models have been devised to illustrate these

aspects. Here we shall describe some of the models that have

become classics. In all cases we shall recognize that a

process can be in one of the following three states:

it is dormant;
it is running;

it is waiting (it wants to run, but cannot because

6

a resource that it needs is unavailable).

A process is called active when it is either waiting or running.

4.1 Dining Philosophers (DI72).

Five philosophers sit around a table, as shown in Fig.2

(there is an obvious generalization to n philosophers).

A philosopher either thinks or eats--from a bowl set in the

middle of the table. There is one chopstick between each pair

of philosophers, and, in order to eat, a philosopher must have

control of both chopsticks accessible to him or her. We shall

call this the DP 5 pIDoblem (or DPn in the general case).

Fig.2

Obviously at most two philosophers can eat at anyone time.

Also, if each philosopher is in possession of one chopstick,

there is deadlock. Moreover, since these are very civilized

philosophers who would rather starve than eat with a single

chopstick or their fingers, a phenomenon known as starvation
(or livelock) may arise.

7

Each philosopher can be regarded as a process that alter­
nates between the following three states:

it thinks;
it eats;

it wishes to eat, but cannot do so because it does not

have the required resources (two chopsticks), i.e., it
is in a wait state.

A system 1S deadlocked when all of its processes are in a wait
atate. One way to avoid deadlock is to require that a philo­
sopher may pick up chopsticks only if both the chopsticks

within his or her reach are available. Now, however, it is
still possible for two philosophers to take turns thinking and
eating in such a way that the philosopher between them is
permanently prevented from eating. This arises, for example,

if the system keeps switching between the following two

system states:

1 and 3 think, 2 and 4 eat, 5 waits;

2 and 4 think, 1 and 3 eat, 5 waits.

Starvation is prevented by the further stipulation that no

philosopher is to commence eating if one of the neighbors of

this philosopher~' has been longer in a wait state than this
philosopher (R078). A further concept is fairness. This is

difficult to make precise--one interpretation is that in a fair
system no waiting time may exceed a specified constant bound.

4.2 Readers and Writers (CH71).

Here one has a system ,of r readers and w writers that all

access a common data base (or some other resource). A reader
may share the resource with an unlimited number of other

readers, but a writer must be in exclusive control of the
resource. We call this the RW problem. Two additional
constraints characterize variants of the problem.

Problem RW1. As soon as a writer is ready to write, no
new reader should get permission to run. Starvation of readers
is a possibility here.

8

Problem RW2. No writer is permitted to start running if

there are any waiting readers. Here it is possible to starve

the writers.

4.3 Message Buffer (DI68).

The message buffer is a resource shared between a "pro­

ducer" process and a "consumer" process. The producer appends

messages to the bUffer at one end; the consumer removes

messages at the other end. This is also called the bounded

buffer problem because the size of the buffer is fixed, or the

producer-consumer problem. We shall denote it by MB. The

usual assumption is that it takes much longer to produce and

consume messages than it takes to append or remove them.

Hence it is reasonable to require that that exclusive control

of the buffer be given to one or other of the processes that

requests it. There are two synchronization problems here:

(i) the producer may not deposit a message ln the buffer when

it is already full; (ii) the consumer must be prevented from

overtaking the producer, i.e., from trying to consume some­

thing that has not yet been produced.

4.4 Disk Head Scheduler (H074)

Suppose several processes are waiting to use a moving

head disk. Average waiting time is reduced by reducing the

total distance moved by the disk heads. The obvious approach

is to select at all times that waiting process for which the

head motion is least. Unfortunately this heuristic may

localize all the action within one set of cylinders, leading

to starvation of processes wishing to access cylinders outside

this set. The solution is to minimize the number of changes

of direction of the movement of the disk head assembly.

Suppose that at some point in time the head assembly has out­

ward direction. If there are cylinders requested by waiting

processes in this direction, then these requests are acted

on in the order in which the cylinders are reached. If there

are no such requests, the direction changes, and the head

assembly makes a sweep in the other (inward) direction. This

9

is known also as the elevator problem because disk head

scheduling and the scheduling of an elevator in a building

are essentially equivalent. Denote this problem by DH.

4.5 Smokers' Problem (PA71)

Three smokers sit around a table. Each has a permanent
supply of precisely one of three resources, namely tobacco,

cigarette papers, and matches, but is not permitted to give

any of this resource to a neighbor. An agent occasionally

makes available a supply of two of the three resources. The

smoker who has the permanent supply of the remaining resource

is then in a position to make and smoke a cigarette. On

finishing the cigarette this smoker signals the agent, and

the agent may then make again available a supply of some two

resources.

The smokers are three processes, and the agent can be re­

garded as a set of three processes. As regards the latter,

either none or exactly two of them run at 'anyone time. The

problem is to have the six processes cooperate in such a way

that deadlock is prevented, e.g., that when the agent supplies
paper and matches, it is indeed the smoker with the supply of

tobacco who gets both, instead of one or both of these re­

sources being acquired by the other two smokers. Call this

problem TS.

4.6 Banker's Problem (DI68).

A banker has a finite amount of capital, expressed in,

say, kronor. The banker enters into agreements with customers
to lend money. A borrowing customer is a process. The
following conditions apply:

a. The process is created when the customer specifies a

"need", i.e., a limit that his indebtedness will never be

permitted to exceed.

b. The process consists of transactions, where a transaction
is either the advance of a krona by the banker to the customer,

10

or the repayment of a krona by the customer to the banker.

c. The process ends when the customer repays the last

krona to the banker, and it lS understood that this ~ccurs

within a finite time after the creation of the process.

d. Requests for an increase in a loan are always granted
as long as the current indebtedness is below the limit

established at the creation of the process, but the
customer may experience a delay between the request and the
transfer of the money.

Here a means has to be found for the banker to determine

whether the next payment of a krona to a customer creates the

risk of deadlock. This problem will be denoted BP.

L
4.7 On-the-Fly Garbage Collection (D¢78)

A. model for the underlying representation of the list

processing system Lisp consists of a "binary graph" contain­
ing a fixed number of nodes. Each node is provided with a

left link and a right link, either or both of which may be

missing. A link originates and terminates at a node, and is

directed away from the node of which it is the left or right
link. A fixed set of nodes are called "roots". A node is

"live" if it is reachable from at least one root along a di­
rected path of links. A sUbpath on all the live nodes is
the "data structure"; the nodes that do not belong to the
data structure are "garbage", and they are to be reclaimed
into a "free list" for future use.

The reclamation process is performed by a garbage col­
lector. Classically a Lisp process is interrupted when the
free list is nearly exhausted, and a two-phase garbage col­
lection takes place. In the first phase all live nodes are
marked; in the second phase nodes that have remained unmarked
are added to the free list.

Under on-the-fly garbage collection the Lisp process and

the garbage collection process are required to execute in

parallel. Call the two processes mutator and collector,

respectively. Design requirements are: (i) synchronization

11

and exclusion constraints between the mutator and the collector

are to be weak; (ii) the overhead for the mutator due to the

need to cooperate with the collector is to be small; (iii) the

activity of the mutator should affect minimally the ability of

the collector to identify garbage. It is this need to minimize

in the individual processes the perturbations brought about by

the cooperation of the processes that makes this problem

interesting. We denote the problem by Ge.

4.8 Swimming Pool Problem (LA80)

The problem here is to synchronize the arrivals and de­

partures at a swimming pool facility. There are two classes

of resources, both in limited supply, n dressing rooms (or

cubicles) and k baskets (where generally n < k). The process

that a bather goes through:

a. Find available basket and cubicle.

b. Change into swimwear and put one's street clothes in

the basket.
c. Leave cubicle and deposit the basket with the attendant.

d. Swim (the pool is assumed to have unlimited capacity).

e. Collect one's basket from the attendant.
f. Find free cubicle and change back into street clothes.

To increase the degree of possible concurrency it helps

to decompose these operations. Thus (a) and (b) become:

ai. Find available cubicle.

b1. Change into swimwear.

a2. Find available basket.

b2. Put street clothes into basket.

Similarly (f) becomes:

f1. Find free cubicle and empty the basket (thus making the
basket available to someone else).

f2. Change into street clothes.

Now, however, it is possible to have deadlock: Arrivals occupy

cubicles waiting for baskets to become available, but in so

doing lock out prospective departures from the cUbicles, thus
preventing baskets from becoming available. This problem will
be called SP.

12

5. SEMAPHORES

In many of the examples discussed in Section 4 an im­

portant issue was mutual exclusion: No process is permitted
into a critical region (is given access to a resource) when
some other process is already in the critical region (is

holding the resource). An early solution of the mutual ex­
clusion problem was to provide lock and unlock operations.

On entering a critical region a process locks it, and no other

process may enter the critical region until the lockingprocess
I

again unlocks it at the time that it leaves it. The excluded
processes have to test again and again whether or not the
critical region is still locked, i.e., they are in a busy wait

state. There is no queing mechanism, and this implies that

at best there is no way of implementing fairness criteria,

and at worst there may be starvation. Moreover, the lock and

unlock affect an actual physical critical region, which is not
what is always wanted (see Subsection 5.1 below).

Dijkstra (DI68) introduced operations P and V, whose

purpose is to act on a semaphore. The terminology derives

from railroad traffic control, where a semaphore either permits
a train to pass a certain point or prevents it from doing so.

When the semaphore allows a train to pass, this passage changes
the semaphore setting, i.e., debars other trains from entering

this section of the railroad track.

13

The P is short for the Dutch word Passeren (to let through),
and V for Vrijgeven (to release). The purpose of P is to
acquire permission for a process to enter a critical regionj
V signals exit from a critical region. Definition if the two

operations now follows.

P(sem): If sem > 0, then it is decremented by 1, where the

test and decrementation is one atomic action.
Otherwise the process in which P occurs is put into
a waiting queue associated with sem, i.e., it is
put to sleep.

V(sem): Semaphore sem is increased by 1 in an atomic
action. If there is a queue of sleeping pro­
cesses, then a process is woken up.

There is an alternative formulation (see, e.g. (LA80))

in which a semaphore may have its value decreased below zero.
A negative value of the semaphore indicates the existence of

a queue, and its absolute value then measures the length of
the queue. On the other hand, the possibility of negative
values complicates the representation of semaphores by places

in a Petri net, a topic to be discussed in the next section.

The advantage of semaphores is that the introduction of

(implicit) queues eliminates busy waiting. A disadvantage is

that semaphores are a very low level construct, and as such
out of place in a program written in a high level language.

Implementation of semaphores is discussed in (SH74).

We now present examples of problems that are solved by
means of semaphores. In these examples, because only the P
aria V operations may change the value of a semaphore, assign­
ment cannot be permitted. Hence a semaphore has to be

initialized in its declaration.

5.1 Mutual Exclusion.

Semaphore mutex controls access to the critical region
in this rather trivial example. Two processes are shown side
by side as an indication that they may proceed concurrently.

Only when one process has entered its critical region does

the other have to wait. The critical regions are s1 and s2,

respectively. Note in particular here the increase in
generality over what a lock-unlock feature provides. The
lock-unlock protect one specific segment of code; here s1

and s2 may be quite dissimilar.

mutex: semaphore (=1);

pi: loop p2: loop
P(mutex) ; P(mutex);
s1; s2;
V(mutex) ; V(mutex) ;

ms! loop; end loop;

14

5.2 Problem SP.

Here we consider the version In which the greater

paralleism is possible (but also deadlock). First declare

the semaphores:

cub: semaphore (=n);

bas: semaphore (=k);

Each swimmer is now represented by a concurrent process

having the following structure:

15

begin
P(cub) ;
change into swimwear;
P(bas) ;

fill basket;
V(cub) ;

swim;

-- Action Ai

-- Action A2

-- Action A]

-- Action A4
P(cub) ;

empty the basket;
V(bas) ;

change into street clothes; -- Action A5
V(cub) ;

end·--'
A new instance of this process is created for each new

arrival at the swimming pool; the process dies when the

swimmer departs from the facility.

5.J Problem MB.

Three semaphores are needed: "bUSY", which ensures that

only one process has access to the message buffer at the one
time; "queue", which counts the number of messages waiting
to be appended to the buffer; and "space", which counts the
number of free positions in the buf'fer. Procedures "producer"
and "consumer" are written side by side to indicate that they
may run concurrently. They run forever. The size of' the

buffer is n.

busy: semaphore (=1);

queue: semaphore (=0);

space: semaphore (=n) ;

16

producer:

loop
produce message;
P(space) ;
P (busy);

append message;
V(busy) ;

V(queue) ;

end loop;

5.4 Problem TS.

consumer:

loop
P(queue) ;

P(busy) ;

extract message;
V(busy) ;
V(space) ;

process message;

end loop;

This was originally proposed as a problem that cannot

be solved in a simple fashion by semaphores (PA71). However,

Parnas has given a solution in terms of an array of sema­

phores that is still reasonably simple (PA75). It consists
of twelve processes. Each of the twelve processes is

running unless it has been put in a wait state by a P­
operation.

Semaphores tobacco, paper, matches report a supply of
these three respective resources; mutex and s are mutual

exclusion semaphores; semaphores smokert, smokerp, smokerm

are used by the smokers to report that they are done with the
resources; C is an array of semaphores which have to match

up a pair of resources with the smoker who has the permanent
,

supply of the third resource. The primary purpose of this
example is to illustrate the degree of complexity that one

faces in programming synchronization problems. First, let
us declare the semaphores, and also a counter t:

tobacco, paper, matches: semaphore (=0);

smokert, smokerp, smokerm: semaphore (=0);
mutex, s: semaphore (=1);

C: array (1 •• 6) of semaphore (=0);
t: integer (=0);

The processes come in four groups of three.

Agent processes:

17

at: loop
P (s) j

V(paper) ;

V(matches) ;

.§.!1Q loop;

Order processes:

ot: loop
P(smokert) ;
V(s) ;

end loop;

ap: loop
p(s) ;

V(tobac co) ;

V(matches);

end loop;

op: loop
P (smokerp) ;
V(s) ;

end loop;

am: loop
p(s) ;

V(paper) ;

V(tobacco) ;

end loop;

om: loop
P (smokerm) ;
V (s) ;

end loop;

Policing (coordinating) processes:

pt: loop
P (tobacco) ;
P(mutex) ;

t : = t+l;
V(C(t)) ;

V(mutex) ;

end loop;

pp: 100]2,

P(paper) j

P(mutex) ;

t : = t+2;

V(C(t));

V(mutex) ;

end loop;

pm: loop

P(matches);
P(mutex) ;

t : = t+4;

V(C(t»;
V(mutex) ;

end loop;

Finally the smoker processes themselves:

st: loop
P(C(6));

t := 0;

smoke;
V(smokert) ;

end loop;

6. PETRI NETS

sp: loop

P(C(S));

t : = 0;

smoke;
V(smokerp) ;

end loop;

sm: loop

P(C(3));
t := 0;

smoke;
V(smokerm) ;

end loop;

A popular formal device for studying process synchronizat­
ion is the Petri net. A Petri net is a directed graph in which
there are two types of nodes, called places and transitions,

which denote conditions and events, respectively. No two nodes

of the same type may be adjacent to each other. Consider the

The problem of Fig.4 is essentially one of sequencihg

the computational steps so that they do not interfere with
each other, and the problem of mutual exclusion does not

arise there, but mutual exclusion can be represented very

graphically by Petri nets. The net of Fig.5 models the

system of Subsection 5.1. We represent a semaphore by a
place in the net. In Fig.S this place is named mutex.

A V-operation adds a token to the place representing a sema­
phore; a P-operation removes a token.

Fig.5

Next we consider Petri net analysis of problem SP,
which shows that deadlock is possible there. This analysis

is taken from (LASO). The system is shown in Fig.6. Since

every user of the swimming pool goes through the same

actions (A1 through AS, see p.1S) the Petri net displays

both the sequence of events as they relate to an individual
user of the pool, and the behavior of the system as a whole,

The initial labeling MO is defined by

Mo(1) = n,
. MO(5) = k,

MO(i) = 0, i I 1 and i I 5.

20

Fig.6

A4

sem
(bas)

sem
(cub)

Ai

A2

21

The significance of a labeling M, obtained from MO as a

result of a sequence of firings, is as follows:

M(1) - number of free cUbicles;
M(2) - number of cubicles in use for changing into swimwear;
M(J) - number of cubicles in use for filling baskets;
etc.

set of arcs terminating at and originating from an event node.

Call the set of nodes at which the first set of arcs originates

the enabling set of the event, and call the set of nodes at

which the second set of arcs terminates the enabled set of
this event. A net may be used to model the behavior of a
system; The holding of a condition in the system may be in­
dicated by placing a token into the corresponding place in

the net. An event is enabled to fire if all nodes in its en­

abling set hold tokens, i.e., if all of the prerequisite
conditions for the firing are satisfied. The firing of an
event consists of removing a token from each node in its en­
abling set, and adding a token to each node of its enabled

set. A distribution of tokens over the places of the net is

called a marking of the net. A succession of firings of

events produces a sequence of markings, and such a sequence
of markings may be used to model the behavior of a system of

concurrent processes. Fig.) shows a Petri net before and
after it has fired. Circles denote places; bars denote
transitions. The black dots within circles represent tokens.

Fig.)

18

A Petri net can be used to model the behavior of a
system of concurrent processes. Consider the computation
of the factorial of a number n. This can be broken down
into two processes:

(a) Decrementation of n by 1, and test of n against zero;

(b) Accumulation of the factorial f by succesive multi­
plication of the current value of f with k = n,
n-1, n-2, etc.

To begin, f has to be initialized to 1, and throughout the

computation the decremented value of n has to be assigned to
an auxiliary variable k so that operations on n and with n

(now k) can proceed in parallel. The process stops when n

has been reduced to zero. The Petri net representation of
the system, shown as Fig.4, is due to Mazurkiewicz (MA77).

n=O

19

n:=n-1

n> 0

f:=1

Fig.4

It is easy to see that there are two invariants:

n = M(l) + M(2) + M(3) + M(4) + M(6),

k = M(3) + M(7) + M(4) + M(5).

22

The first invariant corresponds to loops (1,2,3,1) and (1,4,6,1),
the second to the loop (3,7,4,5,3). Of particular interest is

the fact that the marking

M(2) = n,

lVI(7) = k

can be derived from Mo by a sequence of firings. Under this
marking the system is deadlocked. Techniques for showing
that this deadlock marking is in fact attainable from MO are
discussed by Memmi and Roucairol (MRBO).

Peterson (PE77) provides a survey of Petri nets. A col­

lection of papers on Petri nets and their generalization has
recently appeared (BRBO); of these the highly theoretical
survey (JV80) discusses nets that are closest to the nets as

defined here. (KE76) deals with the use of Petri nets in the

verification of parallel programs. (LC75) contains an ex­
tensive discussion of solutions of the TS problem in terms of
Petri nets. Andler's survey of synchronization primitives

(AN79) is recommended reading in any case--it contains in
particular a Petri net representation of the MB problem.

7. DEADLOCK AND STARVATION

We have discussed some examples of deadlock and starvation
(livelock) informally, and a definition of these phenomena

should now be given. For much of what follows we are indebted

to (SH74), which contains an excellent chapter on deadlock.

A sYstem is a pair <S ,F), where 8 is a set of system

states {sl' s?' •.. , s 3-, and P is a set of processes.... n
t Pl ,P2" .• ,Pk 3-. A process Pi is a function from 8 into
.1>(8),

Pi: 8 ~P(8).

The null set is included in the range of the process: p. (s) = %
l U

means that Pi is in effect undefined for the state s .u ..

then p. can change the state of the system
1

23

from s to s by means of an operation. Let this be denotedu v

by

Also,

means that

(ii) is --=+ s for some p.,u W 1
or

(iii)

A process Pi is blocked in state su if there exists no Sv

1such that su~ sv' State Su is a deadlock state if every

process is blocked in this state.

in state su if for all

A process p. is livelocked
1

*such that s ~ s, p. isu V 1

blocked in state s , i.e., a livelocked process remainsv

blocked no matter what future changes the system goes through.

State s is safe if for all s such thatu - v

not a deadlock state. By contrast, an unsafe state is one

for which every sequence of operations (state changes) that

begins at this state ends up in a deadlock state before the

length of this sequence has exceeded the number of states in
•

the system, i.e., the system, after it has entered an unsafe

state, necessarily ends up deadlocked. There are states that

are neither safe nor unsafe.

Refer now to Fig.1 (p.5). There we have a set of states

represented by the right and upper edges of the diagram in

which, according to our definition, one or other of the

processes is blocked; the state represented by the upper right

corner is a deadlock state. The definitions of deadlock and

related phenomena have arisen from the study of operating

systems which are regarded as nonterminating, and in which the

processes too may be regarded as cyclic (going on forever).

Clearly, the state in which a terminating system has cor~ectly

terminated should not be regarded as a deadlock state; rather,

it should be added to the set of safe states.

With this interpretation ln force, all states in the

region of Fig.1 above the upper limit and to the right of the

righthand limit of the unsafe region are safe, all states

within the unsafe region are unsafe. Consider the region that

lies below the upper limit and to the left of the righthand

limit of the unsafe region, but does not include the unsafe

region itself. States in this region are neither safe nor

unsafe. Of course, some regions of the diagram are empty of

states: they represent impossible combinations of process

states.

Consider now two processes that both require the same two

resources, and are cyclic, i. e. , they loop forever.

P1: loop A p? : loop J
....

request r
1

; B request r?; K....
acquire r 1; C acquire r 2 ; L

request r Z; D request r
i

; M

acquire r 2 ; E acquire r i ; N

release r? ; F release r i ; 0
.....

release r
1

; release r?;....
end loop; end loop;

We shall define the states for this system in terms of

states of the individual processes, but in this we have to be

very careful. There are two stages in P1 when this process

holds the single resource r
1

and no unsatisfied request has

been made (at C. and at F), ~nd there are two analogous stages

in Pz relative to r 2 (at Land 0). These two stages are

fundamentally different, i.e., they must be distinguished as

separate states. Define a system state as follows: the system

is in state Sij when Pi is in state i and P2 is in state j.

Now suppose i is "P1 holds r 1 " and j is "P2 holds r 2 ". Then

four realizations of Sij might exist:

(i) P1 is at C, P2 is at L;

(ii) P1 is at C, Pz is at 0;

(iii) P1 is at F, Pz is at L;

(iv) Pi is at F, P2 is at O.

24

Note now that (iv) is an impossible situation, that (i) leads
to deadlock, but that (ii) and (iii) are possible and need
not result in deadlock. A clear distinction is made between
these cases if the process states are defined as follows:

states of p states of Pz1

1 - process lS at A process is at J

2 - process is at B process is at K

J - process is at C process is at L

4 process is at D process is at M

5 - process is at E process is at N

6 process is at F process is at 0

Then the system has the representation shown in Fig.?

23

Examination of Fig.? shows that the system is deadlocked

in state s44; states sJJ' sJ4' and s4J are unsafe. Process Pi

lS blocked in states s25' s43' s44' and s46; of these, states

s25 and sLI-6 are not unsafe. Because of symmetry, there exists

an analogous set of states in which P2 is blocked. There are

no safe states in this system.

The objective of deadlock prevention is to make all

states of a system safe. This we hope to achieve by means of

synchronization mechanisms. However, in the general case,

undecidability of the halting problem puts a theoretical limit
on what can be achieved.

Deadlock can arise only when the following four conditions
are all satisfied (CE?l):

(a) resources cannot be shared;
(b) processes continue to hold already acquired resources

while they are waiting for requested resources;

(c) resources may not be preempted while they are being
held by a process (taken away from a process before the
process is ready to release them);

(d) there exists a circular chain of processes such that

each process holds resources that are being requested

by the next process in the chain.

The very essence of many resources enforces (a) -- a

terminal is impossible to share. Moreover, much of our syn­
chronization effort is directed precisely at mutual exclusion.

Condition fel' is also difficult to come to grips with.
Preempting a printer would result in interleaving of output

from different processes; the overhead of saving and restoring
the state of a process at the time a resource is taken from
it by preemption can be very high. This leaves conditions

(b) and (d), and in practice one aims at preventing deadlock
by assuming that one or other of these conditions is not

satisfied. A survey of techniques for deadlock prevention can
be found in (CE?l).

Some systems contain so many processes and resources that
deadlock prevention is an unrealistic goal. There one can only

26

hope to detect deadlock when it has arisen, and take the
appropriate corrective action. An algorithm is presented in

(KA80) that determines a priori whether or not starvation
(and, hence, deadlock) is possible in a system of n processes

and m types of serially reusable resources, and this with

time complexity O(mn1 •5). Since most resources are serially

reusable, this algorithm is quite general. Unfortunately,
in the complex systems that we have in mind here--for example,
data base applications--processes come and go, so that one
does not know beforehand what processes there will be and

what resources they will require. Detection of deadlocks

in this latter dynamic setting is discussed in (BU79).

8. MONITORS AND RELATED CONSTRUCTS

Semaphores exhibit two features that make them incon­

sistent with modern programming practice. First, they are
such a low level construct that semaphore solutions of syn­
chronization problems of any complexity, particularly those

in which different processes have different priorities with
complicated rules governing process selection, become very
difficult to understand. An example is provided by the
writers-priority (RW1) and readers-priority (RW2) versions
of RW (CH71). Second, and this is the more serious matter,

they are totally at variance with modularity concerns. The
P and V operations relating to the one semaphore may be

scattered throughout a set of different process implemen­

tati,ons--see, for example, the semaphore solution of the
TS problem (p.16). This makes program verification very

difficult.

In the early seventies two attempts were made more or
less simultaneously to bring synchronization in line with
modern programming practice. One approach was to modernize
the existing concept of critical region by providing the
critical region with a Boolean entry condition, and a queue

in which processes would wait their turn if initially they
were unable to satisfy the entry condition. This synchro-

27

nization mechanism is called a conditional critical regi?n,

and it localizes access to a shared object.

The other approach derives from Simula. For a Simula

programmer a type of data objects consists of a representation

of the object, and a set of operations meaningful for this

representation. In Simula the specification of the repre­

sentation and procedural definitions of the operations are

collected in a class, which is a manifestation of a module.
To this one now adds the synchronization conditions, i.e.,

synchronization becomes localized entirely within the type
definition. A class generalized in this manner is called a

monitor. There is implicit mutual exclusion in that the
operations that are defined within the same monitor can
operate only one at a time on a particular data object.

8.1 Conditional Critical Regions

Conditional critical regions (CCRs) were first proposed
by Hoare (H072), and developed by Brinch ~ansen (BH72). The

form of a CCR of res, a resource shared by several processes,

is

region res when B do S

The shared resource is a variable, e.g., a record. Boolean
condition B may be expressed in terms of components of res

--its purpose is to guard the entry into S, where the latter
is a statement (simple or compound), called the body of the
CCR. Shared resources may be used only inside their CCRs.

To start off, a process enters its CCR and evaluates
,

condition B. If B is true, the process executes S: otherwise
the process enters a queue associated with res. This is a
common queue for all processes put into a wait state on

account of res. Whenever some process completes a CCR of res,
the Boolean conditions are reevaluated for all waiting
processes. A process whose condition is now true enters and

completes execution of its CCR. Fairness criteria that pre­

vent an eligible process from staying in the queue for long

periods of time must be built into the queue scheduler.

28

Let us first look at a CCR solution of the ME problem.

Here the shared variable is the message buffer (we shall call
it exchange), which is a record of two components--the actual

buffer mb, and an integer variable length (with initial value
zero). Component mb is declared to be of type messagequeue,

where it is assumed that the latter has been specified else­
where as a queue of objects of type T. It is assumed further
that the data type queue supports operations pop and push.

~ exchange: shared record

mb: messagequeue;
length: integer;

end;

inmessage, outmessage: T;

29

producer:

lool?

produce inmessage;

region exchange
when length < capacity do

begin
push(mb,inmessage);
length := length+l;

end;
end loop;

consumer:

loop
region exchange

when length > 0 do
begin

outmessage := pop(mb);

length := length-l;
end;

process message;
end loop;

A very interesting discussion of the CCR approach can be
found in Latteux's survey (LA80). Consider the SF problem

with a slight modification: If there remains just one empty
cubicle, then a person coming into the facility (entering

from the street) is given access to the cubicle only if there

are available baskets as well. Now the shared record is

var check: shared record
cub, bas: integer;

end;

Each user of the facility is r'epresented by the following
process:

begin
region check when cub< n-1 V

(bas<k A cub<n) do
cub : = cub+l;

change into swimwear;

region check when bas < k do
bas := bas+1;

fill basket;
region check when true do

cub := cub-1;

swim;
region check when cub < n do

cub : = cub+1;

empty the basket;

region check when true do
bas := bas-1;

change into street clothes;
region check when true do

cub := cub-1;

Latteux uses the techniques developed by Owicki and

Gries (OG76) to prove that the system cannot become dead­
locked. He makes the interesting observation that the real
difficulty of the proof is in the search for auxiliary vari­

ables and for invariants, which precedes the actual verifi­
cation stage, and goes on to comment that since the first
stage is entirely constructive (i.e., there is no proving

going on), and the second stage could be automated, the risk
of obtaining an erroneous proof is minimized. Here one can

argue that the risk of an erroneous proof is indeed reduced,

but that one may well be proving a "wrong" system in the
sense that errors could well have been introduced during the
construction of' the invariants. See (AN8t) for a general

discussion of verification issues as they relate to
parallel programs.

Evaluation of the Boolean conditions in the CCR solution
of the MB problem introduce virtually no overhead, and the
same can be said about the SP problem, but this is not so

in general. The need for repeated evaluation of the Boolean
conditions may make the CCR approach very costly in some
instances. Ford (F078) suggests modifications that would
reduce the cost.

30

8.2 Monitors

The monitor was introduced by Dijkstra (DI72), who called

it secretary, and developed by Brinch Hansen--see, e.g., (BH7J)

--and Hoare (H074). Hoare also provided proof rules for

monitors, which were developed further by Howard (H076), who

used them to study the monitor solution of the DH problem.

Monitors have been incorporated into the programming languages

Concurrent Pascal (BH75), Modula (WI77), and Mesa (MM79).

A monitor is an encapsulated set of procedures for

operating on shared resources that are accessible to all

processes of a system. Mutual exclusion is achieved by per­

mitting only one monitor procedure to be running at anyone

time, but finer tuning within a monitor is made possible by

low level synchronization primitives wait and send (in Modula

terminology; Hoare introduced the primitives wait/signal,

Concurrent Pascal has delay/continue, Mesa has wait/notify-­

all are similar, but have their points of difference).

Assume that process P is in control of a procedure. If

the procedure contains the statement waites), then execution

of the waites) causes P to be suspended at this point until

it receives the signal s. If the procedure contains the

statement setid(s), then P is suspended, and a suspended pro­

cess Q that may be waiting for signal s is activated. Process

P is automatically resumed when Q has completed its execution

of the monitor procedure. If no processes are waiting for

the signal s, then send(s) has no effect. Actually Modula

has a more general form of the wait statement that permits

precedence classes of waiting processes to be established.

The wait/send primitives communicate between processes,

i.e., the strict exclusion enforced by the monitor mechanism

is somewhat relaxed as regards these primitives. Neverthe­

less, only one process is actually running at anyone time

within a monitor. Joseph (J078) compares the use of moni­

tors in Concurrent Pascal and Modula, and finds the wait/

send facility of Modula superior to the delay/continue of
Concurrent Pascal. The difficulty with comparisons is to

find objective criteria for comparisons, but some work

31

towards arr1v1ng at such criteria is being attempted (BL?9).
One criterion that suggests itself is expressive power.

However, any reasonable variant of the monitor construct 1S

sufficient for the implementation of semaphores; conversely,

a monitor can be implemented using semaphores. Hence

monitors are equivalent in expressive power to semaphores,

and different variants of the monitor are themselves equi­

valent.

Considerable experience has been gained with monitors.

Brinch Hansen has used Concurrent Pascal to write the Solo

operating system (BH76); the Pilot operating system has been

written in Mesa--the experience gathered in this effort is

documented in (LR80).

8.3 Examples of Monitors

Our examples will be expressed as actual Modula programs.

Therefore, in contrast to earlier examples given above, more

detail will appear in these programs. We begin with the MB

problem. Note that in Modula a monitor is called an interface

module, and that our buffer has size 10.

interface module message:buffer;

define put, get;

~ buffer: array 1:10 of datatype;

inpos, outpos, count: integer;

nonfull, nonempty: signal;

procedure put(inmessage: datatype);
begin

if count = 10 then wait(nonfull) end;

buffer[inpos] := inmessage;

inpos := inpos mod 10 + 1; count:= count+l;

send (nonempty)

end put;

procedure get(~ outmessage: datatype);

begin

if count = 0 then wait(nonempty) end;

outmessage := buffer [outpos];

outpos := outpos mod 10 + 1; count:= count-l;
send(nonfull)

32

.§Illi get;

begin

inpos := 1; outpos:= 1; count:= 0

end messagebuffer;

The actual processes are now simply

33

producer:

loop

produce message;

put(message)

end;

consumer:

loop

get (message) ;

process message

end;

Comparison of this monitor solution with the corresponding

CCR solution (p.29) shows that a fair degree of separation

of the synchronization component from the actual processes

has been achieved, and this in a natural way.

Our second example is from (WI??); it is a monitor for

the DH problem. Note the use made here of the system

function awaited(s). This is a Boolean function that is

true if there is at least one process waiting for signal s,

and false otherwise. Note further that a second argument is

used in procedure wait to establish priorities among waiting

processes. This is the delay rank. If several processes are

waiting for signal s, then s is received by the process with

the smallest d§lay rank; if two processes with the same rank

contend, signal s goes to the process that has waited longer.

waites) is interpreted as wait(s,1).

interface module diskhead;

define request, release;

~ cylmax; (*no. of cylinders*)

val headpos: integer;

up, busy: Boolean;

upsweep, downsweep: signal;

procedure request(dest:integer);

begin

if busy then

if headpos <dest then wait(upsweep,dest)

~ wait(downsweep,cylmax-dest) end

end;

busy := true; headpos:= dest

end request;

procedure release;

begin

busy := false;

if. up then

if awaited(upsweep) then send(upsweep)

else up := false; send(downsweep)

end

else

if awaited(downsweep) 1h&n send(downsweep)

·else up:= true; send(upsweep)

end

end release;

begin

headpos := 0; up:= true; busy:= false

end diskhead;

A comparison of this program with Hoare's solution (HO?4)

will show that there is very little difference between the

wait/send and wait/signal formulations.

We remarked before on the separation of the synchro­

nization component from the actual computations that take

place once a process has been permitted to proceed. This is

an important concern as regards the RW problem. Since any

number of readers can read at the same time, but only one

monitor procedure can be active, it would be a serious mis­

take to include actual read (or write) operations in the

monitor. Let it be strongly emphasized that a monitor is to

contain only synchronization procedures; the actual process

is external to the monitor and only invokes the monitor pro-
,

cedures. A solution of the RW problem is to be found in

(HO?4) .

A significant modification of the monitor concept has

been proposed by Kessels (KE??). Counts are kept of active

processes, i.e., those running or wishing to run. In the

case of problem RW1 appropriate counters would be readers and

writers. Conditions are specified at the head of the monitor

in terms of the counters and other data. Wait statements can

appear in any monitor procedure any number of times, and they

are identified with the names of the conditions. For example,

34

wait thiscondition passes a process through if thiscondition
is true, but makes it wait otherwise. This makes the con­

cept similar to CeR, with which it shares the possibly very

high cost of condition reevaluation at each completion of a

monitor procedure. What complicates matters is that the
same condition can be associated with more than one wait

statement. Kessels' solution of RWl follows

interface module readerswriters;

define startread, endread, startwrite, endwrite;
val readers, writers: integer;

writerbusy: Boolean;
readpermit: cond writers=O;
writepermit: £QDQ readers=O and not writerbusy;

procedure startread;
begin

wait readpermit;
readers := readers+l

end;

procedure endread;

begin

readers := readers-l
end;
procedure startwrite;

begin
writers := writers+l;
wait writepermit;
writerbusy := true

end;
procedure endwrite;
begin

writerbusy := false;

writers := writers-l
end;

begin

readers := 0; writers:= 0; writerbusy:= false
end readerswriters;

Each reader starts and ends its reading action with calls
to startread and endread, respectively. Similarly for a

writer.

J5

8.4 Ada Tasks

The fact that the components of monitors are procedures

is a significant cause of the complexity of the specification

of a monitor. Consider the implementation of Boolean sema­

phores in Modula (WI??):

interface module resourcereservation
define semaphore, P, V, init;

~ semaphore = record taken: Boolean;
free: signal

end;
procedure P (var S: semaphore);

begin if S.taken then wait(S.free) end;
S.taken := true

end P;
procedure V (~S: semaphore);
begin S.taken := false;

send(S.free)

.§.!14 V;
procedure init (yg£ S:semaphore);

begin S.taken := false

end init
end resourcereservation;

In Ada (US80) this same specification is achieved by the

much simpler

task semaphore is
entry P;
entry V;

end;

task body semaphore is
begin loop accept P;

accept V;
end loop;

end;

A task (the Ada term for a process) specification is in two

parts: the task is starts a declarative part that may be

36

physically separated from the actual task body, which starts

with task body ... is. The statement "entry Pj" declares

P to be an entry, i.e., an object that can be invoked from
other tasks by a call that has the same form as a procedure
call. However, an entry has little resemblance to a proce­

dure. Suppose we have task A that calls entry X in task B.

Completion of this call involves the statement "accept Xj"
in the body of task B. The two tasks are proceeding side by

side. Now, if an "accept Xj" is reached in B before X has

been called, task B remains suspended in a wait state at

this statement; if a call to X is made before an "accept X;"
has been reached in the execution of B, then task A is sus­
pended to allow task B to catch up with it. In Ada termino­
logy, the two tasks meet in a rendezvous. Now a measure of

resemblance to a procedure may enter. An accept can take the
form

accept X(parameters of X) do

...
• •• ••• • ••

end Xj

If this were the form of our "accept XII, then the statements
between the do and the "end X" would have to be executed

before task A could proceed on its way. In other words, tasks

A and B are made to come together by means of a call and an

accept, possibly task B then executes a particular piece of

code, and then tasks A and B go their separate ways again.

Returning to task semaphore, note that to begin with the

task has to be set running. This is done by means of the
statement

37

initiate semaphorej [
~tlli u.-) "W~O"'" prov,ks
i~pll't..:t Ilo\itiatio!'\,

In a task that uses the task semaphore to achieve mutual ex­

clusion, the critical section would be bracketed by calls
to P and Y, as follows:

Pj

...
y.

I

. •. .•. -- critical section

Note that more than one task can call an entry, and the called

task may then have difficulty generating the accepts qu~ckly

enough. When this happens, calling tasks are put into a

queue associated with the appropriate entry.

Undoubtedly the Ada implementation of the semaphore is

simpler than the corresponding Modula implementation. One
could argue that this is achieved at the cost of new pro­
gramming constructs (entry and accept), but it should be

kept in mind that the wait and send of Modula are also new.
A more serious argument in favor of monitors is that while
the one instance of a monitor can be used with numerous

38

semaphores, a separate task has
phore that we wish to use. The
creation of a family of tasks.

to be created for each sema­

Ada response is to allow for
Thus

task semaphore(l
entry P;

entry V;

end;

10) is

in data type) ;

out datatype);

is the declarative part of a task consisting of ten individual

semaphores that can be initiated separately or en bloc.
Reference to entry P of the fifth semaphore is now

semaphore(5).P

An Ada task that implements a solution of the MB problem

is taken from (IC79). It illustrates parametrized entries,
accepts that consist of some explicit processing, and the

select statement. The latter is similar to the case state-
ment and should be self-explanatory.

,ss!J
task meY'gebuffer is

entry put(inmessage:
entry get(outmessage:

~;

task body messagebuffer is

buffer: array (1 .• 10) of datatype;

inpos, outpos: integer := 1;
count: integer := 0;

begin

loop

select
when count< 10 =)

accept put(inmessage: in datatype) do

~uffer(inpos) := inmessage;

end;
inpos := inpos mod 10 + 1;

(Q!l count: = count + 1;

t ~hen count> 0 =>
accept get(outmessage: out datatype) do

outmessage := buffer(outpos);

end;
outpos := outpos mod 10 + 1;

count := count - 1;
end select;

~ loop;
end messagebuffer;

Ada has numerous synchronization features not introduced
here. Many more interesting examples of tasking can be found

in (IC1,). This is an important document in general,

detailing the reasons for making the design decisions that
finally resulted in the programming language Ada. A highly
formal definition of parallelism in Ada is given by Mayoh
(MA80); critiques of the synchronization features of Ada are

provided by van den Bos (VB80), and Silberschatz (SI81).

9. PATH EXPRESSIONS AND CONTROL MODULES

Modularization of programs, and the localization of the
synchronization component have two advantages. First, modifi­
cation of a program in response to changes in synchronization
rules is confined to well defined modules in the program.

Second, program verification is made much easier. In contrast
to semaphores, monitors provide localization of the synchroni­

zation component, thus making the effect of changes in the
synchronization rules reasonably easy to cope with. However,
the dependence on low level primitives within a monitor
(wait/send) is detrimental to program validation. Rather un­

expectedly, the Ada rendezvous mechanism goes very much

39

against the localization criterion. However, in justic~ to
the Ada designers, it should be noted that the Ada design

reflects anticipation of distributed processing. One would

have some difficulty in providing distributed localization.

Deliberate attempts at trying to separate synchronization
of processes from their specification have resulted in the
development of path expressions and control modules. In

both instances localization was an important concern, but so

also was the provision of a sound theoretical base for the

new mechanisms. Path expressions (CH?4) are regular express­

ions, and are thus tied to formal languages and automata

(HA?5). They can also be described in terms of Petri nets
(LC?5). A precise statement of the semantics of path express­

ions has been provided by Berzins (BE??). An extensive study

of various aspects of path expressions has been made by a

group of researchers at the University of Newcastle upon Tyne.
A bibliography of their work is given in (LB?8); updates can

be found in (SL80). Kotov (KO?8) describes control types,

which resemble path expressions. Two programming languages

have been developed that make use of path expressions:

COSY (LT?9), and Path Pascal (KC80).

Verjus and his collaborators have introduced control
modules based on system status counters (RV??), and have de­

veloped this concept further (BB?8). A major concern in the

design of this mechanism has been the ease of proofs of

correctness. Proofs of correctness make use of invariants.

Since the synchronization conditions in control modules are

invariants, proofs are being made easier. Some extensions

of the control module conc'ept are described in (LASO), which
also contains good examples of the use of control modules.

9.1 Path Expressions

Contrary to the more common synchronization schemes that

set out to delay or prohibit processes from running, path

expressions state what sequencing of processes is permissible.

A path expression is a regular expression from which all
possible execution sequences can be derived (HA?5). It

40

consists of procedure names, and, in precedence order, the

operators * (Kleene star), ; (sequencer, which may be

omitted when the meaning is clear), and + (exclusive alter­

native selector). Parentheses may be used to override

normal precedence. A path ,expression is delimited as follows:

path path expression end

where path/end represent an implicit Kleene star. The

operator . denotes sequencing. Thus

path a; (b;c)*; d end

which may also be written as

path a(bc)*d end

states that execution of a may be followed by any number of

executions of b followed by c, which is then followed by

the execution of d, and ~hat this entire execution sequence

can be repeated again and again.

The operator + denotes exclusive selection from a set

of alternatives, e.g.,

indicates that one and only one of the execution sequences

abe, ace, and ade is permitted. However, in repetition one

may switch between the sequences, e.g., it is possible to

have abeabeaceabeade. The distribution law of over +

lets us write a(b+c)d as (ab+ac)d or as abd+acd.

An expression followed by * may be executed zero or

any number of nonzero times. Note that a* + b* stands for

a sequence composed of all a's or of all b's, but that

(a+b)* stands for a sequence in which any number of a's and

bls may appear intermixed.

Path expressions may be modified by means of conditional

elements. A conditional element in a path expression has

the form [cl,c2, .•. ,cn,celse], where each of cl,c2, ... ,cn

has the form

condition: path expression,

but the optional celse is just a path expression. Priority

may be introduced by means of symbols> and (, which have

41

the same precedence as operator +. For instance,

means that after f has been executed, either g or h can execute,

but, if execution of both g and h'is requested, g will be

scheduled first.

It is possible to describe the desired behavior of a

system by more than one path expression. Thus

path pr end

path qr end

specify that the execution of two p's must be separated by an r,

and that the execution of two q's must also be separated by

an r. Then two r's must be separated by both a p and q, but

the order of the two does not matter (they may be even executed

in parallel). To keep all the other properties of this system,

but eliminate the possible execution of p and q in parallel,

one has to combine the two path expressions given above into

a single path expression of the form

path pr & qr end

Let us now write a path expression solution for the MB problem,

as adapted from (HA75).

42

class message_buffer is

array (1 .• 10) Qf message;

~ slotstate is (empty,inuse, full);

mesnum: integer:= 0;

slotnum: integer:= 10;

inpos, outpos: integer:= 0;

state: array (1 .. 10) 'of slotstate;

path (mesnum > 0: searchmes] + addmes &

[slotnum > 0: searchslot J + addslot
function searchmes return integer;

x: integer:= inpos+l;

begin

while state ex) /= full loop

x:= x mod 10 + 1;

end loop;

stateex):= inuse;

mesnum:= mesnum-l;

end,--'

inpos:= x;

return inpos;

I end;
function searchslot return integer;

y: integer:= outpos+1;

begin

while state(y) /= empty 100£

y:= y mod 10 + 1;

end loop;

state(y):= inuse;

slotnum:= slotnum-1;

outpos:= y;

return outpos;

end;
procedure addmes(k: in integer);

begin

mesnum:= mesnum+1;

state(k):= full;

end;
procedure addslot(k: in integer);

begin
slotnum:= slotnum+1;

state(k):= empty;

.wQ;

procedure put(messagein: in message);

y: integer:= searchslot;

begin

message~buffer(y):=messagein;

addmes (y);

end;

procedure get(messageout: out message);

x: integer:= searchmes;

begin

messageout:= message_buffer(x);

addslot (x);

end;

end class;

Here the path expression makes sure that no put takes place

when there are no empty slots, and no get when there are no

43

messages. It also specifies that the search and add operations

cannot overlap to preserve the integrity of the ~tate vector

and variables slotnum and mesnum. However, the path does not
require the execution sequences "searchslot; addmes" or

"searchmesj addslot". Hence more than one sender or receiver

can access the buffer, but only one at a time can search or
add. This means that the program, although more complicated
than other solutions we have seen for the MB problem, is also

more general.

9.2 Control Modules'

A control module maintains for each procedure P that it
controls a set of five state counters:

#requ(P): total number of requests for P since the control

module was started up;

#auth(P): total number of execution authorizations since

the control module was started up;

#term(P): total number of terminations of P since the

control module was started up;

#runs(P) = #auth(P) - #term(P), the number of instances
of P currently running;

#Wait(P) = #requ(P) - #auth(P), the number of requests
for P currently queued up.

The control module also has to maintain queues for the pro­
cesses that are in wait states.

Control modules for three versions of the RW problem are

provided in (RV77). We give here the two that correspond to
our RW1 and RW2.

RW1: control module;

begin READ, WRITE: procedure;

condition(READ) : #runs(WRITE) + #wait(WRITE) = 0;

condition(WRITE): #runs(WRITE) + #runs(READ) = 0;

end;

44

= 0;
= 0;
= 0;
= 0;
= o·J

RW2: control module;
begin READ, WRITE procedure;

condition(READ): #runs(WRITE) = 0;
condition(WRITE): #runs(WRITE) + #runs(READ)

+ #Wait(READ) = 0;

The advantage of this approach is that the synchronization

module is completely removed from the actual procedures it

synchronizes. Also, a change in priority rules, such as we

have in going from RW1 to RW2 is implemented merely by

changing conditions in the control module.

In (LA80) can be found a discussion of numerous extensions
of the control module idea. To start, by associating a formal

. ,
language with a control module, a methodology is developed
for proving that a particular solution is free from deadlock,
or showing that a solution does allow starvation. Consider

a solution of the DP problem:

philosophers: control module;
begin M1, M2, M), M4, M5 procedure;

condition(Ml): #runs(M5) +#runs(M2)

condition(M2): #runs(Ml) +#runs(M3)

condition(M)): #runs(M2) +#runs(M4)

conditlon(M4): #runs(M3) +#runs(M5)

condition(MS): #runs(M4) +#runs(Ml)

This solution prevents deadlock, but starvation may result.

This is demonstrated in (LA80).

In (BB78) control module implementations are given of
binary and general semaphores. Hence any synchronization
problem that can be solved with semaphores can be solved
with control modules. Nevertheless, control modules do have

their limitations of convenience, arising from the fact that

the counters do not provide a SUfficiently detailed history
of the system. Only counts of events are available, not the
sequence in which the events took place. Some finer dis­

tinctions can be made by the use of what Latteux (LABO) calls

final counters, but we prefer to term conditional counters.

46

Let P and Q be two procedures, and let A and B be operations

of the basic kind that relate to these procedures (requ, auth,
term). Then #(A(P)/B(Q)) is a conditional counter that is

incremented by 1 at each operation A(P), but reduced to zero

at each operation B(Q). By means of conditional counters a

rather complicated readers-writers control module can be
specif'ied:

READWRITE: control module;

begin READ, WRITE: procedure;

condition(READ): #runs(WRITE)=O A
(#wai t (WRITE) =0 V #(requ(READ)/term(WRITE))=0) ;

condition(WRITE): #runs(WRITE)+#runs(READ)=O A
(#Wait (READ) =0 V # (auth (READ) lauth (V\TRITE))> 0) ;

We leave it as an exercise to determine what priority rules

this solution implements, and what the deadlock-starvation

properties of this solution are.

10. SYNCHRONIZATION OF DISTRIBUTED PROCESSES

So far we have considered only systems that share memory,
i.e., systems that communicate with each other by updating
the contents of' shared memory locations. Further, there is
the implicit assumption of centralized control over the

system. In a ,distributed network of processes there is some
measure of autonomy of the individual processors, and they
can communicate with each ~ther only in a limited way by
means of message passing. Suppose one were to use semaphores

or counters in this setting. Then a copy of a semaphore or
counter would have to be maintained at each site, and one

would have to ensure that the same value is held in each copy.
This would take too long for the semaphores or counters to

be of much use as synchronization mechanisms. More funda­
mentally, just ensuring that the copies hold the same value

is difficult. In other words, the maintenance of system
integrity is more difficult for a distributed system. Another
difference between centralized and distributed processing is

concern with system failure. The failure of a centralized

system has to be accepted with greater or lesser grace. With

distributed systems, on the other hand, one of the reasons for

their development is precisely the desire to continue to have

an operational system even when one or more of its component
processors or message links are out of action. For a survey

of distributed processing see (SD79).

Reference to early research on message passing can be

found in (HU79), a major component of which is a critical

discussion of some of this work (which started in the early

1970's). The approach that seems to have achieved greatest

prominence is Hoare's Communicating Sequential Processes, and

we shall be discussing this approach further down in some

detail.

A most extreme attitude to programming by message passing

is found in Hewitt's actor systems--see, e.g., (HE77). An

actor is an object that behaves like a data structure or like

a procedure, and interacts with other actors by sending
messages. It may be dormant or active, and it is roused into

the active state by means of a message that it receives.

Messages sent to actors that behave like data structures cor­

respond to requests for operations to be performed with or on

the data structures; messages sent to actors that behave like

procedures correspond to parameter lists passed to procedures.

Synchronization in an actor system is by means of serializers

(AH79), which represent an extension of the monitor concept.

A process waiting in a monitor queue can be made to run only

by an explicit signal to this process. In a serializer, the

condition for a process to resume running must be explicitly

stated when the process enters a queue, thus making a signal
unnecessary. However, it remains to be seen what efficiency

serializers can achieve, i.e., their practicability is still

rather uncertain.

Other work of importance has related to the interpre­
tation of coroutines as a special case of parallel pro­

cessing, which has led Kahn and MacQueen (KM77) to propose a
programming system for distributed processing based on the

coroutine concept. Cook (CaBO) has extended Modula into a

language for distributed programming. Data flow languages

47

provide a very radical departure from current practice, but

they have not as yet found practical application. It seems

certain that they will gain in importance as VLSI makes

available the support architecture that they neen. A very

brief introduction can be found as part of (BD79).

Other work going on is the PLITS project at Rochester

(FE79,FN80), the development of a general mathematical model

of computation by message passing (MI79), Brinch Hansen's

development of his "distributed processes" (BH78), which

has been extended by Mao and Yeh in their work on communica­

tion ports (MY80), and the introduction of a communication

data type (CL80,CM80).

Three additional papers dealing with the nature of dis­

tributed computing need to be drawn attention to. The first
is a discussion of time in the context of distributed systems

by Lamport (LA78). The second shows that mutual exclusion

can be created in a computer network with only 2*(N-l)

messages between N system nodes (RA81). The third is an

analysis of the DP problem in a distributed setting (LR81),

and is recommended as an example of the essential changes a

problem undergoes in changing from a centralized to a

distributed system.

10.1 Communicating Sequential Processes

Hoare's language for CSP's (H078) is exceedingly simple.

The system on which it is based is assumed to consist of pro­

cesses that do not share any variables, but communicate by

means of input and output operations, expressed by primitives

of the language. For each communication source and target
processes have to be specified, and the messages that are

being passed are strongly typed.

Instead of specifying the complete syntax, which can be

found in (H078), we take again the MB example, and will then

explain the language features that are made use of in this

example. There are three processes to consider: messagebuffer
is the synchronization process, and it communicates with a
producer process and a consumer process.

48

message buffer::

buffer: (1 .. 10) message;

inpos p outpos, count: integer;

inpos:= 1; outpos:= 1; count:= 0;

*[count<10; producer?buffer(inpos) ~

inpos:= inpos mod 10 + 1; count:= count+1

ncount:> 0; consumer?more () ~

consumerlbuffer(outpos);

outpos:= outpos mod 10 + 1; count:= count-1

]

The communication component in CSP consists of input and

output commands. In general an input command is written

PB?a, and, if it appears in process PA, it ~xpresses an input

request of PA from PB. This is to result in the assignment of

an input value to variable a, which is local to PA. The input

command may be executed only when PB is ready to execute a

corresponding output command PA!b, which is to export the value

of variable b (local to PB) to process PA. The concept is

similar to the Ada rendezvous, and similarly to the latter, can

be used to synchronize PA and PB.

In our example producer?buffer(inpos) requests input

from the producer, which is to contain the matching output

command messagebuffer!inmessage. Communication with the con­

sumer is more complicated: consumer?more() requests a signal

from the consumer indicating that it is ready, and the actual

transfer of outmessage is effected by consumer!buffer(outpos);

the matching commands in the consumer process being

messagebuffer!more() and messagebuffer?outmessage, respecti­

vely. The more() is a structured value with no components,

i.e., it acts purely as a signal.

The construct [..•..] is an alternative command, con­

sisting in our case of two guarded commands, which are sepa­

rated by the guard separator O. The text to the left of the

arrow (-.) is the guard; the text to the right is a command

list. Note that guards may consist of Boolean conditions and

input commands. In our example both guards have this form.

A guarded command list can be executed only if the guard is

passable, which happens when the Boolean conditions are true

49

and the input commands have awaited their corresponding;output

commands in the source processes. If more than one guard is

passable, then precisely one of the guarded co~mands is exe­

cuted; if no guard is passable the alternative command has no

effect. Note, however, that when in the execution of a guard

all Boolean conditions are found true, and an input command is

reached that cannot be immediately executed, the guard is not

regarded impassable. The evaluation of the guard simply has

to be delayed. As soon as a guard is established as passable,

the command list that it is guarding can be executed. Star­

vation arises when the evaluation of all potentially passable

guards is delayed forever. The * preceding an alternative

command denotes repetition, i.e., the alternative command is

executed again and again as long as there are passable guards.

If repetition or termination depends on input commands in the

guards, then termination will take place when all processes

named as input sources by the input guards have terminated,

but starvation remains of course a possibility.

Critiques and suggested extensions of CSP's can be found

In (KS79) and (BA80); formal semantics of CSP's are provided

in ('FH79), and a proof system is developed in (AF80).

11. CONCURRENCY IN DATA BASES

The dominant activity of data base processing is writing

into files and reading from files. It would seem that the

RW problems discussed before would therefore be very important

in the data base setting. , However, the problems associated

with data bases are of a totally different order of magnitude.

The RW solutions given above require a synchronization

mechanism for each resource. Thus, in terms of a data base,

either entire large files would be regarded as resources, in

which case potential for parallelism would be reduced, or

individual records would become the resources, which would

result in an extremely primitive mechanism or in unacceptable

overhead costs. Solutions have therefore been application
specific.

50

Other quite distinct problems have been created by distri­

bution of data bases over sites that may be geographically

widely dispersed. Indeed, at present nearly all proposals

for truly distributed processing that are practically moti­

vated are related to data bases. What complicates matters
here is redundancy: a copy of the same data item may have to

be stored at more than one site for reasons of robustness and

efficiency. A reader then accesses some ~ copy of the data

item, but a writer has to update all stored copies.

Our discussion of concurrency in data bases will be

rather brief. The best starting point for a course of readings

on this topic is (BG79), which, although it deals primarily

with concurrency control in distributed data bases, contains
a useful list of references on concurrency control in a centra­

lized setting as well.

Let us define some general terms. A transaction is a

sequence of reader and writer operations on a data base. The

read-set (write-set) of a transaction is the set of data items

to which a reader (writer) has to gain access. Two trans­

actions are in conflict if the write-set of one intersects

the read-set or write-set of the other.

Consider a set of transactions, each of which is a sequ­

ence of reader and writer operations. The total activity can

be represented by a log. If no transactions execute con­

currently, then the log is just a concatenation of sequences

of the individual transactions, and the log is called serial.

Suppose now that each transaction if performed on its own

leaves the data base in a "correct" state, i.e., a state in.
which all the data satisfy the integrity constraints associ­

ated with the data base. Since each transaction maps the data

base from a correct state to a correct state, a sequence of

such transactions must also produce a correct state in the end.

However, at intermediate stages in the execution of a trans­

action, the state of the data base need not be correct. This

means that the data base may not be in a correct state after

completion of a set of transactions that are executed con­

currently. With concurrency of transactions, the operation

sequences that define the individual transactions are inter-

51

leaved in the log. However, if the entries in such a nonserial

log NS can be permuted to produce a serial log S, and the

effects of NS and S on a given data base are identical, then

NS is said to be serializable. Unfortunately Papadimitriou

(PA78) has shown that the determination of whether or not a

log is serializable is NP-complete, but he also discusses use­

ful subclasses of the set of serializable logs.

Two-phase locking (EG76) is a mechanism that guarantees

serializability of a nonserial log. Locking is aimed at

detecting and eliminating adverse effects of conflicts. Two­

phase locking is applicable where it is possible to divide a

transaction into distinct growing and shrinking phases. All

locks must be requested in the first of these phases, and they

must all be released in the second phase. This is equivalent

to requiring that no lock be requested after it has been re­

leased, and it is this rule that guarantees serializability.

Deadlock (or starvation) may exist, but in the data base

setting it would be too expensive to try to prevent it from

arlslng. Instead, when deadlock is detected (and a detection

procedure must be provided), one of the transactions that con­

tribute to it is backed up and restarted. This may lead to

cyclic restart in which the transaction keeps getting into a

blocked state, is backed up and restarted, only to get into

the blocked state yet again. See (BG79) for references to

techniques for avoiding cyclic restart.

12. DATA ABSTRACTION AND SYNCHRONIZATION

In the preceding section we saw that the RW problem can

become very complicated in the particular context of bata

base processing. Complications also arise when synchroni­

zation is to be combined with data abstraction. To cope with

this, Raynal (RA78) suggests the creation of three libraries,

comprising (i) specifications of data types, e.g., sets,

graphs: (ii) representations of the abstract types; (iii) access

disciplines or synchronization modes, containing reader-writer,
producer-consumer, and some very few additional modes. our

experience suggests the opposite: there is little loss of

52

convenience in limiting abstract data types to a small number
of standard types, but synchronization disciplines should not

be so restricted.

What is particularly important is that very often the

need for synchronization arises in a setting in which no

elaborate mechanisms are necessary. We contend that where

synchronization can be achieved by means of minor extensions

of existing programming languages, this simple approach should

be taken.

Consider the merging of two files that are objects be­

longing to an abstract data type. We have to traverse both

files, but an advance is made only in one file at a time, and

the traversals have to be synchronized to this effect. In

(BE80) we argue that the merge operation should not be associ­
ated with a single data type. Further, iterators, which are

provided by some modern programming languages, should belong

to data types, but the synchronization of iterators then

becomes a problem. Our solution is controlled iteration.

12.1 Controlled Iteration

The convenience that convetional loop variables and sub­

scripts provide for array computations is fully appreciated

only after one has worked with generalized iterators. In a

conventional for loop the current value of the loop parameter

can be used as a subscript value for access into any number

of arrays not only directly, but also as modified by some

suitable function. In other words, several arrays can be

accessed in different orders in the same loop, as for example

in
for I in A'FIRST •• A'Last loop

C(I):= A(I/2) + B(A'LAST-I+1);

end loop;

However, if a single for loop drives several iterators, then

very much the same effect can be achieved without too great a

sacrifice of the basic simplicity of the for loop. We can

thus regard traversals as separate processes that can proceed

at their own rates, i.e., achieve the effect of coroutines,

53

but retain control over their synchronization in a for loop.

Our generalized for loop takes the form

for Tl, T2, •.. , Tn loop

loop body;

end loop;

loop tail;
end for;

Here each iteration clause Ti is a string

[controlled) var (attributes)] in Ii [:doneJ

where components enclosed in brackets [J are optional. The Ii

is an iteration sequence, abbreviated IS, and elements of IS

are bound to loop parameter var in turn. The Ii may be a con­

ventional IS, such as the Ada forms

K L

reverse K •. L

or Ii may be a generalized IS that follows the CLU model.

For example, the generalized iteration sequence Y.tra delivers

elements of structure Y in the order defined by tra, which is

an iterator belonging to the data type of which Y is an

instance. If a loop parameter is preceded by controlled, then,

on reaching the end of the loop body, an advance is made to

the next element of its IS only if an authorization to this

effect has been issued in the body of the loop in the current

pass through it. The authorization for

controlled x in Y.tra

is

promote x;

The items that make up the generalized IS may be composite,

and (attributes) indicates which of the components of the

item are made accessible as attributes of the loop parameter.

Optional completion flag done is FALSE while the IS has not

yet been exhausted; it changes to TRUE on reaching the end of

the loop body if (i) the loop parameter is currently bound to

the last element of the IS, and (ii) (for a controlled IS) a

promote relating to this IS has been executed in the pass

through the loop body that is just being completed.

54

Let us consider the file merge as our example. Files A

and B are composed of records. Iterators trax and tray

deliver records of A and B, respectively, in ascending order

of their keys.

for controlled x(key:REAL) in A.trax: donex,

controlled y(key:REAL) in B.tray: doney loop

if donex then

transfer y to output file;

promote y;

elsif doney then

transfer x to output file;

promote x;

elsif x.key <= y.key~

transfer x to output file;

promote x;

else

transfer y to output file;

promote y;

end if; end loop;

end for;

Some remarks on the generalized for loop:

1. The type of the loop parameter in a conventional iteration

clause is the type of the elements in its IS. For a generalized

IS it is the type of the elements of the structure that is being

traversed.

2. A conventional IS may be controlled; a generalized IS

need not be.

]. Because different iteration sequences may become exhausted

at different times, a loop paramete~ continues to have as value
the final element of the IS even after this IS has become

exhausted. The loop parameter associated with an empty IS is

undefined, but then the termination flag is initiated to TRUE.
4. In each pass through the loop at most one advance is made

in a controlled IS.

5. Exit is made from the loop body when all iteration sequen­

ces have become exhausted, or by means of an explicit exit.

Exit is to the first statement following end loop. The scope

of loop parameters and completions flags extends to ~ for.

55

Just how much this generalization of the for loop will

cost is determined by the nature of the iterators. If they are

simple coroutines, a stack suffices for the control: one simply

pushes down a vector of activation records, one record for each

of the T1, T2, •.• , Tn. The implementation will tend to be

distinctly more expensive if the iterators are recursive or

invoke other iterators.

Proof of termination of the loop consists of two parts.

First it has to be shown that the iterator generates a finite

IS, and then that the IS does in fact become exhausted. The

latter can be shown by demonstrating that an advance is made

in each pass through the loop in some iterator, or, if this is

not the case, by showing that the number of successsive passes

through the loop between two passes in which advances are made

is bounded by a constant. Hence, as regards termination, the

generalized for loop occupies a level intermediate between

the while loop and the conventional for loop.

12.2 Controlled Iteration and Concurrency

There are three opportunities for introducing a modest

measure of parallelism in the context of controlled iteration.
First, because traversals of data structures are carried out

only in the context of for loops, bUffering is possible, i.e.,

the iterator may begin looking for the next element in a tra­

versal sequence as soon as it has delivered the current one.

Second, under controlled iteration, the body of the loop

takes quite naturally the form of an if statement. Now, if
,

this is written in the form of Dijkstra's guarded command
set, and the interpretation of the latter extended to permit

execution in parallel of all commands whose guards are true,

a further opportunity for concurrency arises.

We shall discuss in more detail the third opportunity:

an iteration sequence may at times be partitioned into com­

ponents to which the process defined by the body of the for

loop can be applied independently one from the other, i.e.,

the components may be processed in parallel.

56

Consider matrix mUltiplication: matrix C is to receive
the product of matrices A and B, and it is assumed that C has
already been initialized to zeros. In conventional Ada

syntax this can be written as follows:

for I in A' FIRST .. A' LAST loop
for K in A'FIRST(2) •. A'LAST(2) loop

for J in B'FIRST(2) .• B'LAST(2) loop
C(I,J):= C(I,J) + A(I,K)*B(K,J);

end loop;

end loop;

end loop;

Here matrix C is built up one row at a time. In building up a
row in C, the corresponding row in A is traversed just once,
but B is traversed in its entirety. What matters is that in
generating a particular row of C only the one corresponding

row of A is needed, i.e., the traversal of A can be parti­

tioned into independent traversals of its rows.

Consequently we now consider a matrix as an array, but
also as a set of vectors (its rows). We rewrite the matrix
multiplication code in such a way that the separation of the
matrix into a set of vectors can be used to induce parallelism

in execution. It is the declaration of the data structure as

a set before the for loop is entered that enables the system
to recognize the opportunity for concurrency. The loop itself

contains no indication to this effect.

for X in ROWSET.TRA loop
I:= C'FIRST(2);

for controlled A in X.FORWARD,
B in MATB.ROWWISE(ENDROW) loop
C(X.ROWNO,I):= C(X.ROWNO,I) + A.VAL*B.VAL;
I: = I +1;

if ENDROW then
promote A;
I: = C' FIRST (2) ;

end if;

end loop; end forj
end loop; end for;

57

Here we have three iterators: (i) Iterator TRA delivers a

complete row of a matrix. It is understood that the object

denoted by ROWSETA functions both as a set of vectors and as

an array. Its guise as ~et permits parallelism. The body of
the outer loop can be executed concurrently by as many pro­

cessors as there are rows in the array. An attribute of the

row delivered by TRA is the index of this row in reference to

the matrix as a two-dimensional array (ROWNO). This attribute

is essential to establish proper correspondence between the

rows of the input matrix and the result matrix C. (ii) FORWARD

delivers the elements of the matrix row supplied by TRA.

(iii) ROWWISE is associated with the second input matrix in

its guise as a proper matrix (MATE). It delivers elements of

MATB one by one in roworder. Parameter ENDROW associated with

ROWWISE is normally false, but it becomes true for any pass

through the loop in which an element that terminates a row in
MATB is being accessed.

One problem is the synchronization of components of
several partitioned iteration sequences.' Such is the case
when matrices A and C are both regarded as sets of row

vectors. Then it has to be ensured that the row in C gene­

rated using a particular row in A properly corresponds to this

row in A (for example, that the row generated using the second

row of A becomes in fact the second row of C). Iterators are

used to enforce the required correspondence. Each iterator
over the set (TRA in both cases in the example below) has to

define a sequence of the elements of the set, and correspond­

ing elements from the sequences are assigned to the same

instance of execution of ihe loop body.

Matrix mUltiplication with two partitioned iteration

sequences: Iterator WRAPAROUND delivers elements of vector
Y in the infinite sequence Y(FIRST), ... ,Y(LAST),Y(FIRST),

.•. ,Y(LAST),Y(FIRST), .•.. Because the sequence is infinite,

a halter has to be used to effect termination of the loop.

The concurrent interpretation of the conditional is in force
here.

58

for X in ROWSETA.TRA,
y in ROWSETC.TRA loop

for controlled A in X.FORWARD,

B in MATB.ROWWISE(ENDROW): ENDB,

C in Y.WRAPAROUND loop

cond

ENDB: exit D
not ENDB: C.VAL:= C.VAL + A.VAL*B.VAL n
ENDROW: promote A II

end cond;

end loop; end for;

end loop; end for;

Clearly the device described above does not solve general

concurrency problems. Nevertheless, as regards the execution

of such programs as are currently being executed on very small
computers, use of our mechanism can lead to substantial

reduction in execution time by enabling the computational

load to be spread over several processors.

59

AF80

AH79

AN79

AN81

BA80

BB78

BD79

BE77

BE80

BG79

BH72

BH73

BH75

BH76

BH78

BL79

REFERENCES

Apt,K.R., Francez,N., and deRoever,W.P. A Proof System
for Communicating Sequential Systems, ACM Trans. Prog.
Lang. Syst. 2, 3 (July 1980), 359-385.
Hewitt,C.E., and Atkinson,R.R. Specification and Proof
Techniques for Serializers. IEEE Trans. Software Eng.
SE-5 (1979), 10-23.
Andler,S. Synchronization Primitives and the Verifi­
cation of Concurrent Programs. In Operating Systems:
Theory and Practice (D.Lanciaux,ed.), North-Holland,
1979, 67-99. (Contains annotated bibliography.)
Andrews,G.R. Parallel Programs: Proofs, Principles, and
Practice. CACM 24, 3 (March 1981), 140-146.
Bernstein, A. Output Guards and Nondeterminism in
"Communicating Sequential Processes". ACM Trans. Prog.
Lang. Syst. 2, 2 (April 1980), 234-238.
Bekkers,Y., Briat,J., and Verjus,J.P. Construction of
a Synchronization Scheme by Independent Definition of
Parallelism. In Constructing Quality Software (P.G.
Hibbard and S.A.Schuman,eds.), North-Holland, 1978,
193-205 (see also discussion: 233~235).

Bryant,R.E., and Dennis,J.B. Concurrent Programming.
In Research Directions in Software Technolo (P.Wegner,
ed. , MIT Press, 1979, 584-610.
Berzins,V. Denotational and Axiomatic Definitions for
Path Expressions. Compo Structures Group Memo 153-1,
Lab. for Computer Science, MIT, Nov. 1977.
Berztiss,A.T. Data Abstraction, Controlled Iteration,
and Communicating Processes. Proc. ACM Annual Conf.,
Nashville TN, 1980, 197-203.
Bernstein,P.A., and Goodman,N. Approaches to Concurrency
Control in Distributed Data Base Systems. Proc. AFIPS
vol.48 (NCC 1979), 813-820.
Brinch Hansen,P. A Comparison of Two Synchronization
Concepts. Acta Informatica 1 (1972), 190-192.
Brinch Hansen,P. Operating Systems Principles.
Prentice-Hall, 1973.
Brinch Hansen,P. The Programming Langua~e Concurrent
Pascal. IEEE Trans. Software Eng. SE-1 (1975), 199-207.
Brinch Hansen,P. The Solo Operating System: a Concurrent
Pascal Program. Software--Practice Experience 6 (1976),
141-150.
Brinch Hansen,P. Distributed Processes: A Concurrent
Programming Concept. CACM 21, 11 (Nov.1978), 934-941.
Bloom,T. Evaluating Synchronization Mechanisms. Proc.
7th Symp. Op. Sys. Principles, 1979, 24~32.

60

CH71

CE71

BR80 Brauer,W.,ed. Net Theory and Applications. Springer
Lecture Notes in Computer Science No.84, 1980.

BU79 Bittmann,P., and Unterhauer,K. Models and Algorithms
for Deadlock Detection. In Operating Systems: Theory
and Practice (D.Lanciaux,ed.), North-Holland, 1979,
101-111.
Coffman,E.G., Elphick,M.J., and Shoshani,A. System
Deadlocks. Computing Surveys 3, 2 (June 1971), 67-78.
Courtois,P.J., Heymans,F., and Parnas,D.L. Concurrent
Control with "Readers" and "writers". CACM 14, 10
(Oct.1971), 667-668.

61

CH74

CL80

CM80

C080

DI68

DI72

DL78

EG76

FE79·

FH79

Campbell,R.H., and Habermann,A.N. The Specification of
Process Synchronization by Path Expressions. In
Springer Lecture Notes in Computer Science NO.16, 89-102.
Cunha,P.R.F., Lucena,C.J., and Maibaum,T.S.E. On the
Design and Specification of Message Oriented Programs.
Int. J. Compo Inf. Sciences 9 (1980), 161-191.
Cunha,P.R.F., and Maibaum,T.S.E. A Communication Data
Type for Message Oriented Programming. Proc 4e ColI.
Internat. sur la Programmations (Springer Lecture Notes
in Computer Science No.8), 1980, 79-91.
Cook,R.P. *MOD--A Language for Distributed Programming.
IEEE Trans. Software Eng. SE-6 (1980), 56)-571.
Dijkstra,E.W. Cooperating Sequential Processes. In
Programming Languages (F.Genuys,ed.), Academic Press,
1968, 4.3-112.
Dijkstra,E.W. Hierarchical Ordering of Sequential
Processes. In 0 eratin S stem Techni ues (C.A.R.Hoare
and R.H.Perrot,eds. , Academic Press, 1972, 72-9.3.
Dijkstra,E.W., Lamport,L., Martin,A.J., Scholten,C.S.,
and Sterfens,E.M.F. On-the-Fly Garbage Collection:
An Exercise in Cooperation, CACM 21, 11 (Nov.1978),
966-975.
Eswaran,K.P., Gray,J.N., Lorie,R.A., and Traiger,I.L.
The Notions of Consistency and Predicate Locks in a
Database System. CACM 12, 11 (Nov.1976), 624-6.3.3.
Feldman,J.A. High Level Programming for Distributed
; Computing. CACM 22, 6 (June 1979), 35.3-368.
Francez,N., Hoare,C.A.R., Lehmann,D.J., and deRoever,
W.P. Semantics of Nondeterminism, Concurrency, and
Communication. J. Compo Syst. Sciences 19 (1979),
290-308.

A Model and Proof Technique
SIAM J. Comput. 9 (1980),

FN80 Feldman,J.A., and Nigam,A.
for Message-Based Systems.
768-784.

F078 Ford,W.S. Implementation of a Generalized Critical
Region Construct. IEEE Trans. Software Eng. 8E-4
(1978), 449-455.

GK78 Goos,G., and Kastens,U. Programming Languages and the
Design of Modular Programs. In Constructin uaiit
Software (P.G.Hibbard and S.A.Schuman,eds. , North­
Holland, 1978, 15J-186 (see also the discussion following
this paper, 187-191).

HA75 Habermann,A.N. Path Expressions. Dept. of Compo Sc.,
Carnegie-Mellon University, June 1975.

HA76 Habermann,A.N. Introduction to Operating System Design.
SRA, 1976.

HE77 Hewitt,C. Viewing Control Structures as Patterns of
Passing Messages. Artificial Intelligence 8 (1977),
J23-364.

H072 Hoare,C.A.R. Towards a Theory of Parallel Programming.
In ° eratin S stems Techni ues (C.A.R.Hoare and
R.H.Perrot,eds. , Academic Press, 1972, 61-72.

H074 Hoare,C.A.R. Monitors: An Operating Systems Structuring
Concept. CACM 17, 10 (Oct.1974), 549-557.

H076 Howard,J.H. Proving Monitors. CACM 19,5 (May 1976),
27J-279.

H078 Hoare,C.A.R. Communicating Sequential Processes.
CACM 21, 8 (Aug.1978), 666-677.

HU79 Hunt,J.G. Messages in Typed Languages. ~SIGPLAN

Notices 14, 1 (Jan.1979), 27-45.
IC79 Ichbiah,J.D., et ale Rationale for the Design of the

Ada Programming Language. ACM SIGPLAN Notices 14, 6
(June 1979), Part B.

J079 Joseph,M. Towards More General Implementations Languages
for Operating Systems. In Operating Systems: Theory and
Practice (D.Lanciaux,ed.), North-Holland, 1979, 321-331.

JV80 Jantzen,M., and Valk,R., Formal Properties of Place/
Transition Nets. In (BR80), 165-212.

KA80 Kameda,T. Testing Deadlock-Freedom in Computer Systems.
JACM 27, 2 (April 1980), 270-280.

KG80 Kolstad,R.B., and Campbell,R.H. Path Pascal User Manual.
8QM SIGPLAN Notices 15, 9 (Nov.1980), 15-24.

KE76 Keller,R.M. Formal Verification of Parallel Programs.
CACM 19, 7 (July 1976), J71-384.

KE77 Kessels,J.L.W. An Alternative to Event Queues for
Synchronization in Monitors. CACM 20, 7 (July 1977),
500-503·

KM77 Kahn,G., and MacQueen,D. Coroutines and Networks of
Parallel Programs. Proc. IFIP Congress 77 (1977),
993-998.

K078 Kotov,V.E. Concurrent Programming with Control Types.
In QQu§tructing ~uality Software (P.G.Hibbard and
S.A.Schuman,eds., North-Holland, 1978, 207-228 (see
also discussion 2JJ-2J5).

KS79 Kieburtz,R.B., and Silberschatz,A. Comments on
"Communicating Sequential Processes". ACM Trans. Prog.
Lang. Syst. 1, 2 (Oct.1979), 218-225.

LA78

LA80

LB78

LC75

LR80

LR81

LT79

MA77

MA80

MI79

1Vl1Vl79

MR80

MY80

OG76

OW76

PA71

PA72

PA75

Lamport,L. Time, Clocks, and the Ordering of Events in
a Distributed System~ CACM 21, 7 (July 1978), 557-565.
Latteux,M. Synchronisation de Processus. R.A.I.R.O.
Informatigue/Computer Science 14, 2 (1980), 103-135.
Lauer,P.E., Best,E., and Shields,M.W. On the Problem
of Achieving Adequacy of Concurrent Programs. In
Formal Descri tions of Pro rammin Conce ts (E.J.Neuhold,
ed. , North-Holland, 1978, 301-334.
Lauer,P.E., and Campbell,R.H. Formal Semantics of a
Class of High-Level Primitives for Coordinating Con­
current Processes. Acta Informatica 5 (1975), 297-332.
Lampson,B.W., and Redell,D.D. Experience with Processes
and Monitors in Mesa. CACM 23, 2 (Feb.1980), 105-117.
Lehmann,D., and Rabin,NI.O. On the Advantages of Free
Choice: A Symmetric and Fully Distributed Solution to
the Dinig Philosophers Problem. Conf. Record 8th Ann.
ACM Symp. Frinc. lrog. Lang., 1981, 133-138.
Lauer,P.E., Torrigiani,P.R., and Shields,M.W. COSy--
A System Specification Language Based on Paths and
Processes. Acta Informatica 12 (1979), 109-158.
Mazurkiewicz,A. Concurrent Program Schemes and Their
Interpretation. DAIMI PB-78, Dept. of Comp.Sc.,Aarhus
University, July 1977.
Mayoh,E.H. Parallelism in Ada: Program Design and
Meaning. Proc 4e ColI. Internat. sur la Programmation
(Springer Lecture Notes in Computer Science No.83),
1980, 256-268.
Milne,G., and Milner,R. Concurrent Processes and their
Syntax. JACM 26, 2 (April 1979), 302-321.
Mitchell,J.G., Maybury,W., and Sweet,R. Mesa Language
Manual.- Xerox PARC, 1979.
Memmi,G., and Roucairol,G.P. Linear Algebra in Net
Theory. In (BR80), 213-223.
Mao,T.W., and Yeh,R.T. Communication Port: A Language
Concept for Concurrent Programming. IEEE Trans. Soft­
ware Eng SE-6 (1980), 194-204.
Owicki,S., and Gries,D. An Axiomatic Proof Technique for
Parallel Programs. Acta Informatica 6 (1976), 319-340.
Owicki,S. A Consistent and Complete Deductive System for
the Verification of Parallel Programs. Proc. 8th ACM
SIGACT Symp. Theory Comp., 1976, 73-86.
Patil,S.S. Limitations and Capabilities of Dijkstra's
Semaphore Primitives for Coordinations amongst
Processes. Computer Structures Group Memo 57, MIT
Project MAC, Feb. 1971.

Parnas,D.L. On the criteria to be used in decomposing
systems into modules. CACM 15, 12 (Dec.1972), 1053-1058.

Parnas,D.L. On the Solution to the Cigarette Smokers
Problem (without Conditional Statements). CACM 18, 3
(March 1975), 181-183.

63

PA79 Papadimitriou,C.H. The Serializability of Concwrent
Database Updates. JACM 26, 4 (Oct.1979), 631-6.53.

PE77 Peterson,J.L. Petri Nets. Computing Surveys 9, 3
(Sept.1977), 223-252.

RA78 Raynal,M. Une Expression de la Synchronisation pour
les Types Abstraits. R.A.I.R.O. Informatig,ue/Computer
Science 12, 4 (1978), 307-316.

RA81 Ricart,G., and Agrawala,A.K. An Optimal Algorithm for
Mutual Exclusion in Computer Networks. CACM 24, 1
(Jan.1981), 9-17.

R078 Roucairol,G.P. Mots de synchronisation. R.A.I.R.O.
Informati~ue!ComputerScience 12, 4 (1978), 277-290.

RV77(Robert,P., and Verjus,J.P. Toward Autonomous Descript­
ions of Synchronization Modules. Proc.IFIP Congress 77
(1977), 981-986.

SD79 Stankovic,J., and vanDam,A. Research Directions in
(Cooperative) Distributed Processing. In Research
Directions in Software Technology (P.Wegner,ed.),
MIT Press, 1980, 611-638.

SH74 Shaw,A.C. The Logical Design of Operating Systems.
Prentice-Hall, 1974.

SI81 Silberschatz,A. On the Synchronization Mechanism of
the Ada Language. ACM SIGPLAN Notices 16, 2 (Feb.1981),
96-103.

SL80 Shields,M.W., and Lauer,P.E. Verifying Concurrent System
Specification in COSY. In Springer Lecture Notes in
Computer Science No.88, 576-586.

US80 U.S.Dept. of Defense. Reference Manual for the Ada
Programming Language. July 1980.

VB80 van den Bos,J. Comment on Ada Process Communication.
ACM SIGPLAN Notices 15, 6 (June 1980), 77-81.

WI77 Wirth,N. Modula: A Language for Modular MUltiprogramming.
Software--Practice Experience 7 (1977), J-J5.

64

	Synchronization of processes
	Recommended Citation

	tmp.1283740331.pdf.Zn89P

