
University of Wollongong University of Wollongong

Research Online Research Online

Department of Computing Science Working
Paper Series

Faculty of Engineering and Information
Sciences

1979

Trees as data structures Trees as data structures

Alfs T. Berztiss
University of Pittsburgh, uow@berztiss.edu.au

Follow this and additional works at: https://ro.uow.edu.au/compsciwp

Recommended Citation Recommended Citation
Berztiss, Alfs T., Trees as data structures, Department of Computing Science, University of Wollongong,
Working Paper 79-2, 1979, 75p.
https://ro.uow.edu.au/compsciwp/3

Research Online is the open access institutional repository for the University of Wollongong. For further information
contact the UOW Library: research-pubs@uow.edu.au

https://ro.uow.edu.au/
https://ro.uow.edu.au/compsciwp
https://ro.uow.edu.au/compsciwp
https://ro.uow.edu.au/eis
https://ro.uow.edu.au/eis
https://ro.uow.edu.au/compsciwp?utm_source=ro.uow.edu.au%2Fcompsciwp%2F3&utm_medium=PDF&utm_campaign=PDFCoverPages

Department

University

Pittsburgh,

PREFACE

In these notes for a series of lectures given at the

University of Wollongong in the Winter of 1979

emphasis is on the structural aspects of trees, i.e.,

there is little concern with properties related to the

information content of trees. Hence nothing will be

found here on, for example, optimization of weighted

trees, B-trees, or decision trees as used in artificial

intelligence work.

Some'of the material is an adaptation of the auhtor's

research results. This research was partly supported

by the National Science Foundation of the United

States under Grants GJ-4l683 and MCS 77-01462.

A. T. Berztiss

of Computer Science

of Pittsburgh

PA 15260, U.S.A.

TREES AS DATA STRUCTURES

1. TREES AND THEIR REPRESENTATION

1.1 Trees and binary trees 1

1.2 Traversals of trees 3

1.3 Algorithms for binary tree traversals 6

1.4 Storage representations of trees, 10

2. SEARCHING, SORTING, AND TREES

2.1 Heaps and binary search trees 16

2.2 Recurrence relations with constant

coefficients 20

2.3 Generating functions in the solution

of recurrences 24

2.4 Recurrence relations with variable

coefficients 28

2.5 Effect of balancing on binary search trees 29

2.6 Analysis of search in AVL trees 33

2.7 Insertions and deletions in AVL trees 36

1

16

3. GRAPHS

3.1

3 •. 2

3.3

3.4
3.5

AND K-TREES •

Representation of digraphs by K-trees 42

Depth-first search algorithms and K-trees

Algorithms that change the structure

of K-trees 56

K-trees of undirected graphs 60

K-trees and K-formulas 62

46

42

4. A PHILOSOPHY OF DATA STRUCTURES

4.1 Trees as abstract data structures 68

4.2 Levels of abstraction 71

FURTHER READING •

68

75

Suppose

left-

1. TREES AND THEIR REPRESENTATIOlll

1.1 Trees and binary trees

A connected acyclic graph G= <V, E >, where V is its set

of~ and E its set of edcl.£.§.. is a tree. Designate some

rEV as the root of the tree. Then G becomes a rooted tree.

If a node in a rooted tree is not the root of the tree and has

just one node adj acent to it l' then it is a leaf or terminal node;

else it is an internal node. Every edge of a rooted tree lies

on some path from the root to a leaf. If a direction is

assigned to every edge, the 1:ree becomes a directed tree. An

edge with direction is an ~~. The usual convention (and the

one followed here) is to require that every arc in a directed

tree be directed away from the root. In drawings of digraphs

arcs are represented as arrm"s. This is rarely done in drawings

of directed trees. Instead the direction is implicitly

indicated by placing the taU of an arc above its. head.

several arcs have the same node as their taiL When the

to-right order of the heads of these arcs is important we speak

of an ordered directed tree. These latter structures have

greater significance to computer science than the more general

trees, and in what follows the term~ will be used as short

hand for ordered directed tree.

Consider node n in a tree. Nodes reachable from n are

descendants of n, and nodes 'that are heads of arcs whose tail is

n are successors of n. All nodes that have n as descendant are

ancestors of n, and the ancestor nearest to n is the parent of

n. Consider the nodes that have the same parent in their left

to-right order. The nearest node to the left (right) of node n

is its left (right) neighbour.

A tree in which no more than k arcs originate from a node

is a k-nary tree (binary whe::1 k=2, ternary when k= 3). In a

binary tree, whenever -two arcs originate from a node, one of the

arcs goes to the left, and the other to the right. However,

2

when there is just one arc originating from a node, it is still

possible to impose a left or right orientation on this arc, and,

if this is done, the binary tree becomes oriented. It is common

practice to reserve the term binary tree for structures that

would be more precisely called oriented binary trees.

The level of a node in a tree is the length of the path

(i.e., the number of arcs on the path) from the root to this

node. The level of the root is thus zero. The height of a tree

is the greatest level assignment given to a node in the tree,

i.e., it is the length of the longest path from the root to-a

terminal node.

Level i of a binary tree is full if there are exactly 2
i

nodes at this level. A binary tree of height k is full if

level k in this binary tree is full -- level k being full implie

of course, that levels k-l, ..• ,l,O are all full. A binary tree

of height k is balanced if level k-l in this binary tree is fu1]

Consider node n in a binary' tree. The binary subtree-rooted at

the left successor of n is the left subtree of n, and that

rooted at the right successor is the right subtree. A binary

tree is height balanced (or an AVL-tree, after Ade1son-Ve1skii

and Landis) if, at every node in the tree, its left and right

subtrees differ by no more than 1 in height (for the purposes

of this definition a tree that does not exist has height -1

for example, if a node has no left successor, and its right

successor is a leaf, the heights of its left and right subtrees

are -1 and 0, respectively).

Every tree can ~e transformed into a binary tree by means

of the following procedure, which has become known as the

Knuth transformation:

Denote the arcs originating at internal node x in a tree

by <x'Yl' <x'Y2 , ... , <x,y? Assign left orientation

to arc <x'Yr ' and replace the remaining arcs by arcs

<Yl'Yt '<Y2'Y3>'''''<Yt-l'Y?' all with right orientation.
After this has been done for all internal nodes of the

tree the result is a binary tree that contains the same

number of arcs as the original tree.

Note that the transformation is reversible, i.e., that a tree

c

s

1

t

a

F

t

i

o

0:

3

an be reconstructed from its Knuth transform. Figures 1 and 2

how a tree and its Knuth transform, respectively.

Figure 1

.2 Traversals of trees

Figure 2

The three classical disciplines of traversal of binary

rees -- prcordcr, inorder (or symmetric order), postorder -

re well known and well understood. For the binary tree of

ig. 2 they generate the following sequences:

pre 1- 2 6 7 3 8 4 5 9 10 12 11

in 6 7 2 8 3 4 9 12 10 11 5 1 (1)

post 7 6 8 12 11 10 9 5 4 3 2 1

Now extend the definitions of preorder and postorder

raversa1s to arbitrary trees. Preorder traversal: At each node

n the tree, process the node and then proceed to the successors

f the node in left-to~right order. Postorder traversal: At each

ode, proceed to the successors of the node in left-to-right

rder, and then process the node. For the tree of Fig. 1 we have

T-pre 1 2 6 7 3

T-post 6 7 2 8 3

8 4 5 9 10 12

4 9 12 10 11 5

11

1
(2)

Jmparison of (2) with (1) shows that preorder traversal is

2

when there is just one arc originating from a node, it is still

possible to impose a left or right orientation on this arc, and,

if this is done, the binary tree becomes oriented. It is common

practice to reserve the term binary tree for structures that

would be more precisely called oriented binary trees.

The level of a node in a tree is the length of the path

(i.e., the number of arcs on the path) from the root to this

node. The level of the root is thus zero. The height of a tree

is the greatest level assignment given to a node in the tree,

i.e., it is the length of the longest path from the root to'a

terminal node.
iLevel i of a binary tree is full if there are exactly 2

nodes at this level. A binary tree of height k is full if

level k in this binary tree is full -- level k being full implies,

of course, that levels k-l, ... ,l,O are all full. A binary tree

of height k is balanced if level k-l in this binary tree is full.

Consider node n in a binary' tree. The binary subtree· rooted at

the left successor of n is the left subtree of n, and that

rooted at the right successor is the right subtree. A binary

tree is height balanced (or an AVL-tree, after Adelson-Velskii

and Landis) if, at every node in the tree, its left and right

subtrees differ by no more than 1 in height (for the purposes

of this definition a tree that does not exist has height -1

for example, if a node has no left successor, and its right

successor is a leaf, the heights of its left and right subtrees

are -1 and 0, respectively).

Every tree can be transformed into a binary tree by means

of the following procedur~, which has become known as the

Knuth transformation:

Denote the arcs originating at internal node x in a tree

by <x,Yf ' <x,Yi , ... , <x'Yl' Assign left orientation

to arc <x,Yf ' and replace the remaining arcs by arcs

<Yl,Yt '<Y2 'Y3>""'<Yt -l'Yj?' all with right orientation.
After this has been done for all internal nodes of the

tree the result is a binary tree that contains the same

number of arcs as the original tree.

Note that the transformation is reversible, Le., that a tree

3

can bd reconstructed from its Knuth transform. Figures 1 and 2

show a tree and its Knuth transform, respectively.

Figure 1

1.2 Traversals of trees

Figure 2

The three classical disciplines of traversal of binary

trees -- preorder, inorner (or symmetric order), postorder -

are well known and well understood. For the binary tree of

Fig. 2 they generate the following sequences:

pre 1 2 6 7 3 8 4 5 9 10 12 11

in 6 7 2 8 3 4 9 12 10 11 5 1 (1)

post 7 6 8 12 11 10 9 5 4 3 2 1

Now extend the definitions of preorder and postorder

traversals to arbitrary trees. Preorder traversal: At each node

in the tree, process the node and then proceed to the successors

of the node in left-to~right order. Postorder traversal: At each

node, proceed to the successors of the node in left-to-right

order, and then process the node. For the tree of Fig. 1 we have

T-pre 1

T-post 6

2

7

673 8

2 8 3 4

4 5 9

9 12 10

10

11

12

5

11

1
(2)

Comparison of (2) with (1) shows that preorder traversal is

4

invariant under the Knuth transformation, but that postorder

traversal of a general tree is equivalent to inorder traversal

of its transform. This observation permits us to advance an

alternative definition of prcorder and postorder traversals of

trees. Preorder (postorder) traversal: Process nodes in the

order they would be processed in the Knuth transform of the tree

under preorder (inorder) traversal.

Preorder traversal is also known as depth-first traversal.

If we wished to explore a tree ina breadth-first manner, we

would be employing breadth-first or levelorder traversals. A

traversal whose direction is from .left to right will be

designated to be of type LR, and one whose direction is right to

left to be of type RL. We then have, for the binary tree of

Fig. 2,

LR-levcl

RL-level

126 3

123 6

7

4

8 4

8 7

5 9

5 9

10 12 11

10 11 12
(3)

and for the general tree of Fig. 1,

T-LR-level

T-RL-level

1 2 3 4

154 3

567

2 11 10

8

9

9

8

10 11

7 6

12

12
(4)

It is of interest to determine what levelordertraversals

(4) become in the transform. In the equivalent to LR-levelorder

traversal of a general tree we are moving down diagonally from

upper left to lower right (LR-down). In the equivalent to

RL-levelorder we move from ,lower r~ght to upper left (RL-up).

So, for the binary tree of Fig. 2 we obtain two new traversal

sequences:

LR-down

RL-up

1

1

234

543

5 6 7 8 9 10 11 12

2 11 10 9 8 7 6 12
(5)

Let us now introduce two operators on traversals, R (for

reverse) and C (for converse). Under R(t) nodes of a binary tree

are processed in an order that is the exact opposite of the order

in which they are processed under traversal t, and C(t) is

5

equivalent to traversal t in a binary tree that has been

flipped over, thus interchanging the meaning of left and right.

For the binary tree of Fig. 2 we now have

R(pre) 11 12 10 9 5 4 8 3 7 6 2 1

R(in) 1 5 11 10 12 9 4 3 8 2 7 6

R (post) 1 2 3 4 5 9 10 11 12 8 6 7

C (pre) 1 2 3 4 5 9 10 11 12 8 6 7

C (in) 1 5 11 10 12 9 4 3 8 2 7 6

C(post) 11 12 10 9 5 4 8 3 7 6 2 1

Note that

R(pre) C (post) ,

R(in) C (in)

R(past) C(pre)

(6)

(7)

(8)

Indeed, we can relate the three classical'traversal disciplinp.s

and their converses by the diagrams of Fig. 3.

Now, if we apply the C and R operators to LR-level, LR-down,'

RL-up, we obtain in each instance three new traversals, as shown

in Fig. 4. Th8se nine new traversals are distinct from the nine

traversals defined earlier, as can be seen by comparison of (1),

(7), (3), and (5) with (9) below, where we give the sequences

obtained when the nine traversals are applied to the binary tree

of Fig. 2.

R
pre III .. C (post)

ct tc
C (pre) " ~ post

R

in • R,C
~ C(in)

Figure 3

R
LR-levelt---........ R (LR-level)

C t tc
RL-levelt----'l~~ R (RL-level)

R

6

LR-down R R (LR-down)~

ct tc
RL-down 4 ~ R(RL-down)

R

RL-up ~
R

~ R(RL~up)

C t tc
LR-up R(LR-up)

R

Figure 4

RL-1eve1 1 2 3 6 4 8 7 5 9 10 11 12

R (LR-leve1) 11 12 10 9 5 4 8 7 3 6 2 1

R(RL-1eve1) 12 11 10 9 5 7 8 4 6 3 2 1

RL-down 1 2 6 3 8 7 4 5 9 10 12 11

R(LR-down) 12 11 10 9 8 7 6 5 4 3 2 1 (9)

R(RL-down) 11 12 10 9 5 4' 7 8 3 6 2 1

LR-Up 6 2 1 7 8 3 4 9 5 12 10 11

R(RL-up) 12 6 7 8 9 10 11 2 3 4 5 1

R(LR-up) 11 10 12 5 9 4 3 8 7 1 2 6

1.3 Algorithms for binary tree traversals

The classical traversals and their reverses (or converses)

correspond to the six permutations of statement.s X,Y,Z in the

schema

procedure traverse (root) ;

begin {X,Y,z} end;
(10)

where

X: process node;

Y: if left exists then traverse (left);

z: if right exists then traverse (right);

The ordering of X,Y,Z in (IO) defines the traversals as follows:

pre XYZ

in YXZ

post YZX

R{pre)

R{in)

R(post)

ZYX

ZXY

XZY

C(pre)

C(in)

C (post)

XZY

ZXY

ZYX

Note that the order of the statements for R{t) is exactly the

reverse of that for traversal t, but that C(t) is obtained from

t by interchanging Y and Z alone.

Let us now remove recursion from schema (IO) by the intro

duction of an explicit pushdown store.

procedure traverse (binary tree) ;

begin PDI := X' ;
PDI+- root;

while PDI t X' do

begin node POI;

if node marked then process node

else begin {A,B,C} end

end

where

A: mark node; PDI.-node;

B: if left exists then PDI'-left;

C: if right exists then PDI~right;

Now, pushdown store POI may be either a sta~ or a queue.

If it is a staGk then the permutations of A,B,C still define

the three classical traversals and their converses (or reverses),

as follows:

pre

in

post

CBA

CAB

ACB

C(pre)

C(in)

C(post)

BCA

BAC

ABC

8

If POl is a queue then the nodes of the binary tree are

processed in RL-levelorder irrespective of whether the order

of A,B,C is CBA, CAB, or ACB. Similarly, LR-levelorder is

obtained with permutations BCA, BAC, ABC. In other words, the

three classical orders all map to RL-levelorder, and their

converses (or reverses) to LR-levelorder.

Under schema (11) each node of the binary tree is pushed

down twice. It is possible to refine (11) specifically into

a procedure for preorder traversal in which each node is

pushed down only once.

procedure preorderl (bitree) ;

begin POl := ~ ;

P01..-root;

repeat node + POl;

process node;

if right exists then rOl + right;

if left exists then POl +left

until POl = }1

Procedure preorderl still processes the nodes of a binary tree

in RL-levelorder when POl is a queue.

Let us refine the procedure still further. We note that

when "POI + left" is executed its execution is followed

immediately by "node + POI", and we take advantage of this.

procedure preorder2 (bitree);

begin POI: = ~;

POI'" root;

repeat node + POI;

noleft: = false;

repeat process node;

9

if right exists then PDI -<- right;

if left exists then node: = left

else noleft: - ~

until noleft

until PDI = ;r
end;

SUbstitution of queue for stack in preorder2 produces a

procedure for RL-downorder.

In the next modification, instead of processing nodes

directly as they are taken off PDI or reached in tracing left

successor chains in the inner repeat-until loop, we save them

up in a second pushdown store. This modification cannot be

called a refinement because there is now a substantial increase

in cost over that of preorder2. In addition to the activities

associated with PDI, which is utilized in exactly the same manner

as in preorder2, now every node gets pushed down exactly once on

the second pushdown store.

procedure preorder3 (bitree);

~ PDI: =~: PD2: = ~;

PDI -<- root;

repeat node -<- PDI;

noleft: =~;

repeat PD2 -<- node;

if right exists~ PDI -<- right;

if left exists then node: = left

else noleft: ~

until noleft;

repeat node -<- PD2;

process node

until PD2 == ~

until PDI == ~

The behaviour of preorder3 is expressed in the following table:

10

PDl PD2 Traversal

stack queue preorder

stack stack LR-uporder

queue queue RL-downordcr

queue stack (nonstandard)

Let us summarize our results on traversals of binary trees.

We have defined 18 distinct and meaningful traversal disciplines,

and shown that they can all be derived from five basic disciplines

by means of operators Rand C. It should be noted that the two

operators are fundamentally different: C operates on an algorithm

(it interchanges the meaning of left and right); R operates on the

node sequence produced by an algorithm. Only in the special case

of the schemas for the classical traversals, e.g. (11), does R too

function as an operator on an algorithm. We shall designate the

following five traversals as our set of basic traversals:

preorder

inorder

lU.-levelorder

RL-downorder

LR-uporder

Fig. 5 shows how the procedure~ fer generating these traversals

are related.

1.4 Storage representations of trees

A tree can be represented by a set of arc lists, one for each

internal node. For example, the tree of Fig.l has the following

arc list representation:

1 : 2,3,4,5

2 : 6,7

3 : 8

5: 9,10,11

10: 12

(12)

preorderl with~

POl - queue

RL-LEVELORDER

preorder2 with +--1'
POl - queue ,

RL-OOWNORDER

preorder3 with ~I

POI - stack

P02 - stack

LR-UPORDER

traverse with

permutation CBl\.

preorderl with

POl - stack

preorder2 with

PDl - stack

preorder3 with

Pol - stack

PD2 - queue

PREORDER

Figure 5

11

-----~ traverse with

permutation CAB

INOROER

J.L

The unequal lengths of the arc lists create some problems in

the design of a space-efficient storage structure. Also, in

many applications one has to provide for addition and deletion

of arcs, and the storage structure should permit this to be

done reaso,-ably efficiently.

For a binary'tree each arc list contains at most two

entries. If each arc list is made to have exactly two elements,

then it is possible to indicate orientation of an arc: the

head of an arc with left orientation is stored in the first

element, the head of an arc with right orientation in the

second element. This uniformity in the representation of

binary trees is one reason for mapping arbitrary trees to

binary trees by means of the Knuth transformation. The only

disadvantage in operating with the transform is that path

lengths in the transform are greater than in the original tree.

For example, the length of the path from node 1 to node 11 is

only 2 in the tree of Fig. 1, but 7 in the transform (Fig.2).

We have, for the binary tree of Fig.2:

1: 2, -
2: 6, 3

3: 8, 4

4: 5 (13)
5: 9, -
6: 7

9: 10

10: 12,11

It is customary to provide arc lists for terminal nodes as

well, although both elements in such lists are empty. Thus, if

the nodes are numbered 1,2, ... ,n, the set of arc lists can be

stored as an array of n rows and two columns. Names of arc

lists are now provided implicity by the row subscripts.

This approach has the further advantage that the empty

locations can be used to hold threads, which can be very useful

in the implementation of some iterative traversals of the

binary tree that do not then .require a pushdown store. For

example, if the second linkage element,in the row for node n

is empty, i.e., if n has no right successor, tten this element

can be made to hold the node that follows node n under

right

13

inorder traversal, i.e., it is then a thread from n to

this node, called the right thread. Similarly, if the

first linkage element is empty, it can be made t? hold a

left thread from n to the node that precedes it in the

inorder sense. A binary tree with right threads is a right

threaded binary tree, one with both right ~nd left threads

is a fully threaded binary tree. Fig. 6 shows the fully

threaded representation of the binary tree of Fig. 2, where

the threads are distinguished from successor links by flags

(*). Since the inorder sequence begins at 6 and ends at 1,

there is no left thread for node 6 and no right thread for

node 1.

1: 2

2 : 6 3

3: 8 4

4 : 3* 5

5: 9 1*

6 : 7

7 : 6* 2*

8 : 2* 3*

9: 4* 10

10: 12 11

11: 10* 5*

12: 9* 10*

Figure 6

An algorithm for inorder traversal of a right threaded

binary tree:

procedure inorder (bitree);

begin node: = root;

alldone: = false;

repeat if left existsAnode not reached by thread then

node: = left

else begin process node;

if right exists then node:

14

else if thread exists then node:

else alldone: ~ true

end

unti 1 allclone

A similar algorithm based on right threads alone can be

defined for preorder traversal. The algorithm for postorder

traversal is more complicated and requires full threading. Age

if there exists an algorithm for traversal t, the algorithm fOI

C(t) is obtained by simply interchanging left and right in the

algorithm t. This means, of course, that left threads have to

be provided before the modified algorithm for inorder traversal

can be applied to a binary tree for C(inorder).

By means of right threads one can easily determine in the

Knuth transform of tree T the parent of node n with respect to

node: = nj

while right exists do node:

parent: = thread;

rig~tj

On occasion, in case the tree is stored on disk, it may be

convenient to determine first whether or not a node has a

particular successor rather than try to retrieve the (possibly

nonexistant) successor. This is achieved by means of bit vectol

where for the binary tree of Fig. 2 we have:

1 2

1 1

o 1

3 -4 5

1 0 1

110

6

o
1

7· 8

o 0

o 0

9

o
1

10

1

1

11

o
o

12

o
o

(14)

A very dense binary tree, i.e., one close to being fUll,

can be represented by a vector tree. Consider the binary tree

of Fig.7. Its height is 3. Take a vector of 15(=2 3+1-1)

elements. Store the r:oot in tree [1.]" Then for each node

already stored in the array, if the node is stored at tree[kJ,

store its left and right successors at tree[2*k] and tree[2*k+l]

respectively.

15

The result here is

1 2

9 8

3 4

6 4

567

7 3

8 9

2 1

10 11 12 13 14

5

15
(15)

Additions and deletions can be handled quite easily, provided

they do not change the height of the binary tree upward.

Figure 7

16

2. SEARCHING, SORTING, AND TREES

2.1 Heaps and bi nary seaJ:ch trees

Trees are often used to express relationships between

records in a file. The n,cords are regarded as occupying the

nodes of a tree, and the relative location of two nodes in the

tree implies some relatior.ship between the keys of the records

associated with these nodEs. Consider node numbers 1,2, ..• ,9

in the binary tree of Fig. 7 as keys. Here the tree has the

heap property, which means that for any node the key at this

node is larger than the keys at its successor nodes. Consequent

the largest key in the entire file is at the root of the tree,

and the second largest is at one of the successors of the root.

rhe significance of this is that a binary tree with the heap

property functions as a Q~~ri~y queue, i.e., irrespective of

the changes that it may un:'lergo, it provides inunediate access

to the largest of the keys stored in it at anyone time.

If a binary tree that has the heap property is balanced,

then it can be stored very compactly, and it is easy to provide

o (log n) algorithms for addition and deletion of nodes that

maintain both the h~ap property and balance. Using the storage

concept expressed by (15), the following array (to which we give

the name heap) corresponds to the binary tree of Fig. 8.

i 1 2 3 4 5 6 7 8 9

heap [iJ 9 8 4 7 5 1 2 3 6

A~3 6

Fi1lure 8

(16)

true

17

suppose exactly one node k in a oinary tree of n nodes is

responsib!e for the heap property not holding. This node may

either have to be bubbled up until the heap property is

restored, or it may have to be shifted down in the tree. The

following procedures perform these two tasks.

procedure bubbleup \ heap, k};

begin ordered: = false;

repeat parent: = k div 2;

if parent = 0 then ordered: = true

else if hea~k] < heap[parent] then ordered:= true

else begin swap hea~k] and heap[parent];

k: = parent

end

until ordered

The procedure for shifting down is slightly more complicated

because now it has to be first established which of the two

possible successors of the node is the greater, because, in case

a swap is required, it is with this successor. The complications

arise out of the need to deal with cases in which the node has

no successors or just one successor.

procedure siftdown (heap, k, n);

begin ordered: = false;

repeat next: = 2*k;

if next) n then ordered:

else

begin if next = n then hi: = next

else if heap[next] > heap[next+l] ~ hi:=next

else hi: = next+l;

if heap[k] >heap[hi] then ordered:=~

else swap heap[k] and heap[hi];

k: = hi

end

until ordered

18

With these procedures the basic heap operations become very

easy to implement.

(i) Building a heap of n elements.

for i: = I to n do

begin read (datum);

heap[i]: = datum;

bubbleup (heap,i)

(ii) Deletion of an element. Suppose element heap[j] is ·to be

deleted. This is effected by moving heap[n] into the vacated

location, and then restoring the heap property to the remaining

n-l elements.

temp: = heap[j];

heap[j]: = heap[n];

if heap[j]) temp then bubbleup (heap,j)

else siftdo~n (heap,j,n-l);

The creation of the heap is the first phase of an O(n log n)

sorting procedure known as heapsort or treesort. The second

phase is extremely simple:

for i: = ndownto 2 do

begin swap heap[l] and heap[i];

siftdown (heap,l,i-l)

At the end of the k-th iteration the k largest keys are in their

final positions, and, since the tree of the remaining n-k

keys possesses the heap property, the largest of these keys is

in heap [1], ready to be shifted into hea~[n-k]at the start of the

next iteration.

The search tree prooerty of binary trees is similar to the

tree property: for each node, the key at the left successor is

smaller and the key at the right successor larger than the key

at the node. Keys 1,2, ... ,9 have to be qssigned to the binary

19

tree of Fig. 8 in the manner of Fig. 9 for this tree to have

the search tree property.

Figure 9

For a given tree shape and a given set of keys there is

just one search tree, but there may be more than one heap.

However, for a given set of n keys one can construct search

trees of (2g)/\n+l) distinct shapes. The numbers (2g)/(n+1) are

known as Catalan numbers or Segner numbers. When anyone of these

search trees is traversed under inorder, the result is a sorted

sequence of the keys -- here the interpretation of "process node"

is "append the key associated with the node to the sequence of

keys being generated".

The height of a balanced binary tree is O(log n). Hence

the cost of retrieving an element or inserting a new element

in a balanced binary search tree is at most O(log n). However,

insertion may require subsequent reorganization of the tree.

Note now that the height of an AVL tree is also O(log n), and

for binary search trees that have the AVL property it is relatively

easy to show that a new node can be inserted or an existing node

deleted, and the tree reorganized ~o that the AVL property is

preserved, in time bounded by O(log n). This means that an AVL

search tree of n nodes can be grown in time O(n log n), and that

consequently an O(n log n) sorting procedure can be based on the

search tree as well.

Further in this chapter the retrieval properties of balanced,

height balanced, and arbitrary binary search trees will be

compared. This analysis will be based on the solution of

recurrence equations, and the next three sections are devoted to

this topic, which is of major importance in the analysis of

algorithms.

20

2.2 Recurrence relations with constant coefficients

The expression

(17)

where all c i are constants is a k-term lincRr recurrence relation

with constant coefficients. Suppose (17) is used to compute a

sequence [a l ,a
2

,a 3 , ...J. Since it computes an from its k-l

predecessors, the initial k-l members of the sequence must be

known before any computing can begin. These values are called

the boundary values. Here we n'eed boundary values a l ,a2 ,·· • ,ak - l
to compute a

k
• We shall be interested in solving recurrence

relations rather than in using them to generate sequences, but

for a fully determined solution of a k-term relation we shall

still need k-l boundary values. Recurrence relations are often

called just recurrences, or they are called difference

equations.

Examples:

1. The number of moves required to solve the Towers of

Hanoi problem is defined by the two-term recurrence

an - 2an _ l = 1, with al=l. (18)

2. The Fibonacci sequence [,1,1,2,3,5,8,13,2l, ••.J is

defined by the 3-term recurrence relation

an - a n - l - a n- 2 = 0, with a l = a 2 = 1. (19)

3. Let a be the max. number of pieces into which a pancaken
can be sliced with n cuts. These pancake numbers are defined by

a a n-l = n (nU) , with a =1 (20)n 0

Let us try to solve from first principles the Fibonacci

recurrence (19), which we rewrite as

Try different forms for an'

o. (19a)

dn. Then

21

a. If we set an = cn+d, where c and d are constants, then

we o!)tain a n+ l = c (n+l)+d and a n + 2 = c(n+2)+d, and, on substitu

tion into (19a) and simplification, we obtain

-cn + c - d 0,

which leads to the contradiction n = (c-d)/c.

b. Similar contradictions arise with any polynomial form

for an'

c. Try an

o dn+2 _ d n+l _ dn

dn (d 2 - d - 1).

Hence d 2 - d - 1 = 0, giving d

general form the solution is

(1 ± 15)/2. In the most

Now make use of boundary values a
l

simultaneous equations

gives c
l

: 1//5, c 2 = -1//5. Thus

*[[1~/5) n _ (1;/5(]

(21)

1. Solving the

(22)

Specification of (21) did already require a certain measure

of sophistication. Let us now express it as a systematic

procedure for solving linear recurrence relations with constant

coefficients. Equation (17) with the right hand side set to

zero is known as a homoaeneous eouation, and we start by finding

the solution to this equation. This S91ution is called the

22

homQ.Y!'r. ..."_ ~'2-l11_~_0~ un (h), and in the theory of recurrence

equations it is e~;tablishcd that a homo~cneous linear recurrence

relation has a solution of the form

a (h)
n Aa n . (23)

Taking (17) with the right hand side set to zero, and making

substitution (23), we obtain

0,

which simplifies to

(24)

This is the characteristic eouation of the recurrence relation.

The roots of (24) are called charact~ristic r02~, and (24) has

k-l such roots, which need not all be real or distinct. Our

discussion will ce restricted to the case of dis~inct real roots.

Let the characteristic roots be denoted a
l

,a
2

, .•• ,a
k

_ l . Then

an = AlaIn satisfies the homogeneous equation with any AI' and

so does a = A a n with any A
2

, etc. A deterministic homogeneous
n 2 2

solution must contain all the characteristic roots. It is

(25)

in which the constants are determined by means of the boundary

values.

Example: The Fibonacci recurrence is ho~ogeneous, and the

characteristic equation is a 2 - a - I = O. It has the two

distinct roots a 1 = (1+/5)/2, a 2 (1-/5)/2. Hence

(26)

and the constants are found as before.

When the right hand side of (17) is not zero, then solution

(25) is incomplete in that it reduces the left hand side to

zero, which then does not correspond to the nonzero right hand

side. The homogeneous equation has to augmented by a particular

co1ution a (p), and the total solution is now=--- n

a (h) + a (p)
n n

(27)

We expect a (p) to have the same form as the right hand side
n

of (17).

Examples:

1. The homogeneous solution of (lB) is A2 n • For the

particular solution try the constant B. The substitution

B-2B = 1 gives B = -1. Hence the total solution is A2 n-l, and

initial value a l = 1 establishes A = 1. WARNING: Constants Ai

are not to be evaluated before the total solution has" been

derived. Here, if al=l had been used in an (h) = A2 n , we would

have obtained A=~.

2. The most skewed AVL tree of height n has the two

subtrees of every internal node differing in height by exactly

1. The number of nodes in such a tree obeys the recurrence

(2B)

with boundary values a o =l, a
l

=2.

is given by (26). Try an (p) = k.

a (p) = -1 and we get
n '

~e already have a (h) -- it
n

Substitution into (2B) gives

Here we obt\!li\'1 Al = 1 + 2//5, A
2

= 1-2//5.

3. The characteristic equation of an + a n - l

is a 2 + a - 2 = 0, with solutions a
l

=.-2, a
2

= 1.

2a
n

_ 2
Hence

(29)

24

an (h) = Al (_2)n + A
2

• For the particular solution try B2n . Then

B2n + B2n- l - 2B2n- 2 = 2n , or 2B + B - B = 2, giving B=l. Hence

an = (-2)nAl + A
2

+ 2n , where Al and A2 are determined from

boundary values.

4. The characteristic equation of the pancake recurrence

an - a 1 = n is u-l = 0, and hence a (h) = A. However, whenn- n
we try an(P) = Bn, we get Bn - B(n-l) = n, which results in the

contradiction B=n. Hence we try next a (p) = Bn 2 + Cn. Substi-
n

tution of this into an - a n- l = nand a n - l - a n - 2 n-l gives

two simultaneous equations in Band C, which have the solution

B = C =~. The boundary value ao=l next establishes that A=l.

Hence an = 1 + ~n(n+l).

2.3 Generating functions in the solution of recurrences

We just saw in the case of the pancake recurrence that the

particular solution does not always have the form of the right

hand side of (17). The use of generating functions simplifies

the solution of (17) in that it permits us to find the total

solution without us having to consider its two components separatl

Generating functions are used extensively in combinatorics

because they make sequences of numbers amenable to mathematical

analysis. Suppose we have the sequence [ao ,al ,a2"'.J Instead

of manipulating the sequence we operate instead on

(30)

the generating function of sequence [ao ,al ,a2 , ... J. The fo(x),

fl(x), f 2 (x), '" are indicator functions. Any set of linearly

independent functions could serve as the set of indicator

functions, but for ease of manipulation the most commonly used

indicator functions are the monomials f. (x) = xi (i=0,1,2, .•.).
~

We shall use these functions exclusively. Then

F(x) = \~
t 1 =o (31)

The benefits that derive from the use of generating functior

are a consequence of the operations that can be performed on then

Some examples follow:

25

a. Change of formal mark. L;t F{x)generatlO [ao ,a l ,a2 , .. ·]·

Then F(cx) generates [ao ' alc, a 2c , ...]. Example: ~[F{X) +

F(-x)] and l.j[F{x) - F{-x)] generate [ao ' a
2

, a 4 , ...] and

k
l

, a
3

, a 5 , ...], respectively.

b. Addition. If F{x) generates [ao ,al ,a 2 , •..] and G(x)

generates [bo' b l , b 2 , •.•], then F(x) + G{x) generates

[ao+bo ' al+bl , a 2+b 2 , ...].

c. MUltiplication. If F(x) generates [ao ' a l , a
2

, ...]

and G(x) generates [bo ' b l , b 2 , .•.], then F(x)G(x) is the

generating function of [co 'cl ,c2 , ...], where

d. Differentiation. If F(x) is the generating function of

[ao ' a l , a 2 , •••], then

HencexP'(x) generates [oxao ' lxal' 2 xa 2 , "']'.

Perhaps the most important generating function is the one

that generates [1,1, ...J. Let us write down two mathematical.

facts needed for its derivation.

a. The binomial theorem for exponent n a negative integer:

(n) n-r r~ r x a + •••. (32)

b.

(This is really an expression that holds for n any integer

When n is a positive integer the series terminates with

(R)xOan
= an.)

(J
k (r+k-l) for k an integer.

-~ = (-1) k)

x

Then 1
l-x

(l-x) -1 1

::: 1 +

.. 1 +

[-i)x + (-~]x2
tiJ x + (~] x

2
+

+ x 2 + ••• ,

26

We have an interesting
2+ alx + a 2x + •••

-11 F(x) is the generatir.-x
For this reason l=x is

i.e. -11 generates D.,l,l, •..].-x
special case of F(x)G(x) when F(x) = a

12 0

and G(x) = I-x 1 + x + x + ••• Then

function of [ao ' ao +al , a o+al +a 2 , ..•].

sometimes called the summing operator.

Example: Find L~=l k 2 • Here the approach is to find first the

generating function of [0 2 ,1 2 ,2 2 , •.•], apply the sunming operator

to it, and pick out the coefficient of the term in x n from the

result.

1Solution: Since r=x generates [1,1,1, •..], we have that
d 1 -x d d 1

x dx(i-x] generates [0,1,2, .••], and x dX(x dx (I-X]] generates

[0 2 12 2 2] Th dOff t" l' x(l+x) hO h, , ,.... e ~ eren ~at~on resu ts ~n (I-x) 3, w ~c ,

. x(l+x)
on application of the summ~ng operator becomes (I-x)'. The

binomial theorum (32) teas us that (l~X)~ = L ~=o (3~iJxi.

H th ff " t f n ° (3+n-l) r3+n- 2) hO hence e coe ~c~en 0 x ~s n-l) C + l n-2 ., w ~c , on

evaluation, becomes n(n+1) (2n+l)
6

Let us return to the solution of recurrence relations.

Again take the Fibonacci recurrence (19), an - a n _1 - a
n

-
2

0,

which is valid for n ~ 3 with boundary values a
l

= a
2

= 1.

Choosing a =1 makes it valid for n=2 as well. .we mUltiply the
o n

equation by x and sum it from n=2 to n=~:

r:=2
n ~oo n r" a x

n
O. (33)a x

l. n=2 an_Ix -n n=2 n-2

Now, in terms of F(x) as defined by (31) ,

[F(x)-ao-alx] - X[F(x)-ao] - x 2F (x) O. ,

or F (x) x
l-x-x 2

and we next have to restore F(x) to the form (31). By the method

27

of partial fractions, we get

F(x)
x

(I-cx) (l-dx)

1 [cx
c-d l-cx

dx],
l-dx .

where c
1+.5
-2-' d

1- 15
-2-' But

cx
1-cx

Hence F (x) 1 \~ (ck_dk)xk,
c-d l k=O

1 r(l+ls)n _ (1-1s)n]
an 75 L -2-) l-2-

Now consider the pancake cutting problem, as defined by

recurrence (20). Carry out the summation:

(34)

Deal first with the last term. We have

1 _ 1 + x + x 2 + x 3 + •••
I-x -

Hence,

and

1 1 + 2x + 3x2 + 4x 3 + •••
-(l-X) 2

x 234
(1~x)2 = X + 2x + 3x + 4x + •••

nnx •

xSubstitution into (34) gives F(x)-ao = xF(x) + rr=xr2, and, since a o=l,

F(x) = x + 1
(I-x) 3 (l-x)

generates[(~), U), ... , (l~~), ...], and

x .
by (I-x) 3 1.S

[1,1,1, ••. ,1, •••],

1
We know that (l-x) 3

(2~k)= ~(k+l) (k+2). Hence the sequence generated

1
[0,1,3, ... ,~k(k+l) , ...], and, since I-x generates

we have

an ~n(n+l) + 1.

2.4 Recurrence relat10ns w1tn var1aDle coerr1C1cncs

This is a very complicated topic. Here we shall look at

just one equation, the particularly simple linear first-order

relation

a n+l s(n) - ant(n) = u(n).

On dividing through by sen) this becomes

a n+l - an g(n) = fen) (35)

We want to express (35) in a form that we know haw to deal with.

Suppose first that fen) = O. Then

o , (36)

where g(n) is still a variable coefficient. However, if (36) is

divided by II ~=l g (k), the result is

l n] [n-l']a n+l / II k-l g (k) - an;t! k=l g(k) 0, (37)

and this is a homogeneous equation with constant coefficients in

the variable

linear, ' and the solutio

change of variable has

This results in

n-l
a n;11 k=l g (k) •

The characteristic equation of (37) is

is therefore an arbitrary constant A. The

now to be put into effect 'throughout (35).

(38)

It can be shown that the solution of (39) is

t;n-l k
A + ~k:l [f(k)/ITi=l g(i)]

in terms of variable (38). Hence

1I~:i g(k) [A + r~:i {f(k)/IT~=l g(i) n. (40)

Examples:

1. a n+l - ann

2.

1. Here g(n)=n, f(n)=l, and we have

an = (n-l): [A + I~:i 11k:].

n(n+l), with al=l.
2

(
n+n l) n+nla n+l -

<;>n-l k+lnk ri+l]2]
Gk=l -X-t"f=l l-r-

29

n(n-l), and use of al=l gives A=l.

= n 2 + n(n-l) = n(2n-l).

n
2[A +

= n2[A +

n2[A +

~n-l

l.k=l
~n-l
l.k=l
~n-l

l.k=l

n2[A + n~l].

Hence a = n 2A +n.

The solution: a
n

¥ I (k+l) 2J

k(k+l)]

(~- k;l)]

2.5 Effect of balancing on binary search trees

Let a binary search tree contain N nodes, and let n i be th~

number of nodes located on level i. Originally the N records could

have been entered in N: different sequences, giving rise to N:

binary trees (which need not all be distinct). The different

possibilities for three records, with keys 1,2,3, are shown in

Fig. 10.

123: 132: 213:

/,(J)
'231:

®

ri~

312: 321:

Figure 10
For a given tree the total number of comparisons required to

find all N records divided by N is the expected number of comparison~

required to find an arbitrary record in the tree. However, since

there are N: trees, these expected numbers for particular trees have

to be averaged out over the N: trees for the

number of comparisons. D8note this quantity

by CN' the expected number of comparisons in

search tree. We have

30

overall expected

by C , and denote
N

a balanced binary

i 1 2 3 4 5

c. 1 3/2 17/9 53/24 149/60
~

11/5 (41)C, , 1 3/2 5/3 2
~

1.13ratio 1 1 1.13 1.10

Derivation of CN is easy:

•
= ~ l~=oCN (i+1)ni (M l1og2NJ).

where, by definition of a balanced binary tree,

Hence

2 i for i < M, and M
~= N - (2 -1).

(i+1) 2 i

(M-I) 2M+I
N

C' = ~(M+1) (N+1-2M)+~ \ ~-lN N N L ~=O
M= (M+I) (l+~) _ (M+I)2 +

N N

= (M+I) (l+~) 2M+I +!N
N -N-

= M, for large N. (42)

There are three stages to the determination of CN' namely the

setting up of a recurrence equation, the solution of this recurrenc

and the simplification of the solution by means of an approximatior

The first of these is the most difficult.

When a search tree contains N-l nodes, the number of positionE

that can be occupied by an N-th node on level i is

(i<O) ,

as illustrated by Fig. 11. Moreover, if we look at the entire tree

·H.

there are precisely N locations at which the N-th node can be

placed: each occupied position suspends 2 arcs, and each of N-2

\odes is at the end of some arc (the N-I nodes except the root);

hence the number of locations available for the new node is

2(N-l)-(N-2) = N. On the assumption that the new node is equall~

likely to occupy anyone of these N possible locations, the

probability that the new node will go into level i is

With the new node added there are now N-l nodes for which

the expected number of comparisons is C~l' and the added node

HI
for which it is ~(2ni_l - ni' summed over all levels. Hence

Then

I,,
;',,

,N-l
[.i=l

,N-l
Li=l

,,,,
I

I,

(i+l) (2n i _ l - nil

. }:N-l
~n. I + 2 . In, 1 +

.~- ~=~-

,,,,,
'\,,,,,

\ ...

}:N-l (' ') ,N-I ,'-I ~n, l-~n. -[.·-ln~.1- 1- 1 1-

(43)

i=O

i=l

i=2

Figure 11

32

.. h 'i'2' . t d 'i'N-l (.The reason for spl~tt~ng up t e ~ ~ni-l ~s 0 pro uce ~i=l ~ni-l

in
i
), which becomes (I~:~ n i - (N-l)nN_l), and, since nN_l = 6,

ultimately becomes 'i'~-2 n N-l. Also 'i'N-l n = ~-2 n. = N-l.
~i=O i £i=l i-l i=O ~

Hence (43) becomes

(N-l)CN_l + (N-1) + I~:~ni + (N-l) - I~:~ni

(N-l)C
N

_l + 2(N-l) + no - n
N

_
l

(N-l)CN_l .+ 2(N-l) + 1,

and, after some rearrangement,

C = 1 C
N

_
l

+ 2 1
(l-iF) N - -2N N .

This put into form (3£l becomes

CN+1 = (1 1 CN
2. 1- TN+lT2) + N+l - (N+T) 2. (44)

Now, in accordance with (40) , equation (44) has the solution.
N-1

[1 (k~l) 2J[A rN- l { 2k+1 k [1 - chI) 2]}JCN = II k=l '- + k=l (k+1) dIIi=l

= nN [1 - -+-J[A + IN { 2k,..1 / rrk [1 - }rJ}].k=2 k=2 -p- i=2

It can be shown that rr ~=2 (1-~2) n+l
211 Hence

C = (N+l) [A + IN (2k-l) (2k)JN 2N k=2 -p- m

= (~~l) [A + L~=2 ~i~~l~)]' N~ 2.

In now remains to use C2 = 3/2 to establish that A=l. Then

2 (2k-l) J
k(k+l)

33

(N+l) [1 + LN 6 2 lJ..
2N k=2 k+l K

~~1)lL~=3~+ N~l]

(~~1) [4HN - 4 - 2 + N~l]

1 - 3,2 (l+&)HN (45)

where HN is the harmonic number HN
1 + ! + 1 12 'j'-t···+ W

Finally it remains to simplify (45) by removing the summation

that is implicit in HN• There exists the expansion

111
logeN + 0.577216 + 2N - 12N 2 + l20N~ -

Hence, for large N,

(46)

Thus,

1. 39.

As (41) shows, the ratio is even smaller for small N. Our

conclusion is that one need not be greatly concerned with the lack

of balance in a binary search tree, or, expressed more precisely,

increase in search costs due to lack· of balance has to be weighed

against the cost of keeping the search tree balanced. However,

one should keep in mind that in the worst case, when the height

of the binary search tree that holds the N records is N-l, the

expected number of probes required to retrieve an item is ~(N+l) _.

the probability that the tree has height N-l is 2N-
l
/N:.

2.6 Analysis of search in AVL trees

Recurrence relation (28) gives an' the n~~ber of nodes in the

most skewed AVL tree of height n:

The particular solution we look for is of the form dn, and we do

in fact obtain

K (p)
n (3+/S)

5+15 n.

Since only the particular solution depends on n we can make a

further approximation, taking just the particular solution for

the total solution. Thus

K '" (3+/S)n
n5+Is (52)

,The n in (52) is height of the AVL tree. We want to express

K
n

in terms of an = N, the number of nodes in this AVL tree.

Going back to the solution of (28), we see that for large n

log an '" n log (1;/5),

giving

(3+/5) (1+/5)KN '" logN 5+/5 flog -2-

Using base 2 logarithms in (53) we obtain

(c. f. C'
N

(53)

This is a very encouraging result, .particu1arly if we keep in

mind that it pertains to the worst case. Empirical studies show
A

that on the average KN = log2N + 0.25.

In the derivation of (53) a total of four approximations weI

made. Keep in mind that the courage to make approximations is a

sign of mathematical maturity.

2.7 Insertions and deletions in AVL trees

Insertion of a new record in a balanced binary search tree

37

holding N records is in the worst case an O(N) process in that

the restructuring necessitated by the insertion may change

every parent-successor relationship in the tree. An example of

this is provided by Fig. 12.

Figure 12

In an AVL tree, on the other hand, restoration of height

balance after an insertion is a local phenomenon confined to a

path from root to a terminal node, and, since the height of an

AVL tree is O(log N), insertion is an O(log N) process. In what

follows it will be assumed that each node in the tree.carries a

"balance flag", which is 0 if the height of the left subtree

of the node exceeds that if the right subtree, ($I 1'f the right

subtree has greater height, andeif both subtrees are of the

same height. All terminal nodes carry balance flage.

If height balance is violated by the insertion of a new

(terminal) node, it can be restored by the single application of

one of two rotation operations defined below. On the path from

the root of the tree to the point of insertion of the new node

consider a subpath (A,B,C), where A is the root of a subtree

that does not have the AVL propert¥, but the subtree rooted at

B does have this property. The cause for the lack of balance is

the newly inserted node, and to restore balance it would suffice

to shift just this one node in such a way that its level number

is decreased. However, we also have to maintain the search tree

property, which complicates matters somewhat, and we find that

conservation of the search tree property requires that nodes A,B,

C, be rearranged, and ,that the subtrees suspended from these

nodes (if there are any) be shifted around as well. There are

four cases, corresponding to the four forms that subpath (A,B,C:

can take. In tFO of the cases we speak of a single rotation

38

of nodes A, B, C, in the other two of a double rotation of these

nodes. Fig. 13 shows the rotations (a and b are single rotations,

c and d are double rotat':.ons), and Fig.14 shows the rearrangement

of the subtrees. Figs. 15 and 16 show two examples: they represeI

respectively, cases c and a.

1\

c

d:

Figure 13

6

C1

39

C1 B

y 6

B y

B y

Figure 14

40

Figure 15

I
I

CD
Figure 16

The following restructuring process takes place after an

insertion: For every arc on the path from root to newly inserte!d

node, moving upward toward the root, perform the action indicate!d

by the table of Fig. 17. Note that in the instances in which

rotation is required the flags of C and B will have been a1teredl

before A is reached. These flags may then have to be reset. T~le

flag settings follow the scheme of Fig. lB.

Deletion differs from insertion in that deletion can take

place anywhere in the tree, i.e., the deleted node may be internla

One way of solving this problem is to initiate an inorder traver'S

of the right subtree of the node that ,is to be deleted, and to 5:11

Balance flag
nf tail of arc

orientation
of arc

Orientation
of arc examined
before this arc

Action

41

e R set flag ~

e L set flag 0
0 R set flag e ; stop

0 L L a: rotate; stop

0 L R c: d.rotate; stop

(:)) R L d: d.rotate; stop

(:)) R R b: rotate; stop

(:)) L set flag e ; stop

Figure 17

Cases a,b: set flags of A,B to e leave flag of C unchanged

Case c: setting of flag of C new settings of flags of

A B C

e e e e
0 IS> e e
IS> e 0 e

Case d: setting of flag of C new settings of flags of

A B C

e e e e
0 e ~ e
s 0 e e

Figure 18

the key associated with a node in this traversal sequence into its

predecessor node in terms of the inorder sequence. Ultimately the key

associated with a terminal node is so shifted, and this terminal node

becomes vacant. Now a procedure analogous to that for insertion can bE

used to restore balance in the tree. No more than O(log N) nodes are

examined, i.e., deletion is also an O(log N) process.

42

3. GRAPHS AND K-TREES

3.1 Representation of digraphs by K-trees

Consider the digraph of Fig. 19. For each node, let us

generate a tree consisting of the node as root and the arcs

originating from this node. The result is Fig. 20. There

trees are called atomic K-trees. and the atomic K-tree having

node x as root is the atomic K-tree of noce x. The following

algorithm merges atomic K-trees into one or more composite

K-tree(s). For our example the result is the K-tree shown in

Fig. 21. Since we are dealing here with both digraphs and

K-trees representing digraphs, a distinction must be ,made

between nodes of the original digraph and nodes in the K-tree

representation. We shall use the terms D-node and K-node to

differentiate between the two.

Figure 19

~ ~ JR ep ~ JR ~
~,~ ~ ,~ ~ ~ ~ ~ ~'~ ~'~ ~ ~ ~~

Figure 20

43

Figure 21

ALGORITHM. The input to the algorithm is a list of atomic

K-trees T=t1 ,t
2

, ..• ,tn , where t i is the atomic K-tree of node i

(for some D-node j there may not exist a t j because no arcs

originate from j in the digraph). The output consists of lists

K and K' of composite K-trees. Lists T' ,K, and K' are assumed

to be initially empty.

Comment determine D-nodes with zero indegree;

for i:=l to n do idnonzero[i]:= false;

for i:=l to n do

if t. exists then
1. --

begin for all terminal nodes of t i do

begin y:=labe1 of terminal node;

idnonzero [i J:=true

end

~;

for i:=l to n do

if idnonzero~~t. exists then transfer tJ.' from T to T
- 1.

~ T not empty do

44

begin comment: tree building phase;

k:=any atomic K-tree still in T;

delete this atomic K-tree from T;

for all terminal nodes in k while k traversed under preorder ~

begin y:= label of terminal node;

if t is in T' then
y

begin replace terminal node y by atomic K-tree t y ;

delete tyfrom T'

end

end;

add k to list K

end tree building phase;

while T' not empty do

begin comment: merge atomic K-trees that may still be in T t
;

k:=any atomic K-tree still in T ' ;

delete this atomic K-tree from T ' ;

for all terminal nodes in k while k traversed under preorder do

begin y:=label of terminal node;

if t is in TO then- y ._-
begin replace terminal node y by atomic K-tree t ;

Y
delete t from T

y
end

end;

add K-tree k to list K'

Any set of trees that contain precisely the arcs of a

digraph D is a K-tree representation of D, but it helps to

narrow this definition somewhat. Let a list of K-trees k l ,k 2 , ••• ,

ku represent D. This list is a depth-first representation of D

iff the following holds for every D-node s from which arcs

originate: there is a unique internal K-node s, and, if this

internal K-node is in K-tree k
i

, then there is no terminal node

s in any of kl ,k2 , ••. ,ki _ l , and in k i no terminal node s

precedes the internal. s in the preorder sense. If, moreover, u

is equal to the cardinality of the node base of D, then the depth

first K-tree representation is minimal.

The node base of a digraph comprises all nodes with zero

45

indegree, and one node form each nontrivial strong component that

has zero indegree as a whole. It is easy to see that the roots of

the K-trees in a minimal representation constitute a node base.

The output of the algorithm above consists of list K, followed

by list K',~ where either ~f the lists may be empty, and this

output has the depth-first property. Moreover, if K' contains no

more than one K-tree, there is minimality. If K' co~~ains more

than one K-tree, then a determination has to be made 'Jf whether

or not the roots of the K-trees belong, as D-nodes, to strong

components of zero indegree. If they do not, then the K-trees

rooted at these nodes can be absorbed by other members of K', and

a minimal representation results. More detail of this at the

start of Section 3.3.

The digraph of Fig. 22 provides an example of a digraph

for which our algorithm builds a representation consisting of two

K-trees, although a representation in terms of a ·single K-tree

is possible.

Figure 22

For many algorithms based on K-trees it is not necessary

to go through this second phase to ensure that a minimal represen

tation is obtained. For an ayclic digraph the basic algorithm

produces a minimal representation. .For an acyclic digraph it can

be shown that in a depth-first K-tr¢e representation all arcs

belonging to a given strong compone$t of the digraph define a

connected substructure of a single ~-tree of that representation.

a corollary of the second result we have that a digraph is

c.elic iff a K-tree in its depth-first representation contains a

path of the form (a, ••• ,a).

The primary advantage of the K-tree representation of a

digraph is that is contains precisely the arcs of the original

digraph, but in such a way that much of the structure of the

digraph is still explicitly there. This contrasts with a direct

representation of a digraph by a linked storage structure,

which retains all the structural information, but is awkward to

operate on, and the representation of the digraph by its

adjacency matrix in which the structure becomes totally

obscured. Adjacency lists conserve no ~ore structure than does

the adjacency matrix; the compression of rows of a matrix

into adjacency lists is a standard technique for the represen

tation of sparse matrices in general.

3.2 Depth-first search algorithms and K-trees

In this section the utility of K-trees will be demonstrated

by means of algorithms for the critical path analysis of a

scheduling network. All the algorithms will have time complexity

O(max(m,n», where m is the number of arcs and n is the number of

nodes. For any reasonable digraph, m is at least n/2, and

O(max(m,n» becomes O(m). It will be seen that some of the

algorithms are similar to recursive algorithms known as depth

first search algorithms, which have been extensively described in

the literature. However, there a~e significant differences.

First, the K-tree approach permits heavy use to be made of the

standard tree traversal disciplines, which are well known and weI]

understood. Second. because of the dependence on tree traversals,

algorithms can be written non-recursively in a natural manner.

Third, the reliance on tree traversals permits one to regard the

K-tree and a small number of operations on the K-tree as an

abstract data type, a point that will be taken up again in

in Chapter 4.

47

A scheduling network is a 6-tuple <E, e s ' e t , A, W, w> ,

where E is a set of nodes (for convenience we put E = {l,2, ••. ,n}

e
s

is the only node with zero indegree, e t is the only node with

zero outdegree, A is the set of arcs, W is a set of weights,

w is a function on A into W that associates the weights with the

arcs, and the digraph D = <E,A) is acyclic. Then lEI = n, and

we set IAI = m. Members of E, A, and Ware called, respectively,

events, activities, and durations. The weight associated with a

arc <x,y> will be denoted by w!.X ,YJ. Events e s and e t are called

start and termination, respectively. If, for every <x, y> E A,

the relation x< y holds, then the activities are in topological

order, and e s = 1 and e t = n. With each node y E E there are

associated two times, the earliest event time eet[yJ, and the

latest event time let[yJ. Assuming topological order, they are

defined as follows:

eet[l] 0;

eet[yJ maxx<y(eet[x J + w[x,yJ), y 'I- 1;

&et[n] eet [n J;

let[yJ miny>x (let [x J - w[x,yJ) , y 'I- n.

With activities in topological order, the earliest event times

can be evaluated for all nodes in the order l,2, ••• ,n, and the

latest event times in the order n, n-l, ••• ,l. With each activity

<x,y) £ A there is associated a time, called the float of the

activity, defined

float[x,yJ = let[yJ - eet[xJ - w[x,yJ.

An activity with zero float is critical, and a path (es "" ..• ,et)

consisting entirely of critical activities is a critical path.

The purpose of critical path analysis is to evaluate the floats,

and hence identify critical paths.

Before one begins with the critical path analysis proper,

the absence of certain anomalies has to be established. The

anomalies are: (1) the presence of cycles in the network; the

presence of "holes" due to (2) more than one node in the network

having zero outdcgree, and (3) more than one node having zero

indegrec.

Anomaly (3) exists iff there is more than one K-tree in

list K when the tree-building algorithm of Section 3.1 stops.

Tests for the other two anomalies can be easily built into the

tree-building algorithm. Here, however, we shall put the tests

for anomalies (1) and (2) into our next algorithm, which finds

a topological ordering of the nodes of an acyclic digraph.

Although the depth-first K-tree representation of a scheduling

network consists of a single K-tree, topological order can be

imposed on the nodes of any acyclic digraph. For this reason the

input to the algorithm will be permitted to consist of a depth

first representation containing more than one K-tree.

ALGORITHM. An O(m) nonrecursive depth-first K-tree algorithm for

the topological ordering of nodes in an acyclic digraph. When

the algorithm stops, topno[l], ... , topno[n] contain the labels

that have been given to D-nodes 1, ... ,n, respectively, to induce

topological order.

for i:=l to n do topno[i]:=C:

j:=l: cycles:=~:

fQL all K-trees in list K in right-to-left order do

for all K-nodes while K-tree traversed in R(postorder) £Q.
begin

y:=label of K~node:

if K-node y is internal~~ topno[y]:;j: j:=j+l end

~ if topno[y]10 then cycles:=true

end:

comment: cycles = ~ implies anomaly (1);

if j=n~ topno[y]:=n

~ begin comment: anomaly (2) exists;

.f!;rr i :=1 to n do

if topno[i]=O. ~ begin topno[i]:=j; j:=j+l end

Of the n D-nodes of a scheduling network, n-l should have

nonzero outdcqrce. The D-nodes with nonzero outdegree are in

one-one corrc9!>ondence with internal K-nodcs, and j is incremented

each time one of the latter is processed. Hence jln after the

traversal has been completed implies the existence of fewer than

n-l O-nodes with nonzero outdegree, i.e., more than one O-node

with zero outdegree. The latter are identified by searching

through topno for elevents that are still zero.

The demonstration that the algorithm detects the presence

of cycles is only slightly more complicated. The alqorithm subjects

the K-trees of list K=k l ,k 2 , .•. ,Yu to reverse postorder traversal

in the order ku,ku_l, .•• ,kl • Under this strategy all terminal

K-nodes labeled yare processed before the one internal K-node

y is processed, with a single exception: if there exists a

path (y, ••• ,y) in a K-tree, the terminal K-node y on this path

is processed after the internal K-node y has already been

processed. Hence, in terms of our algorithm, topno[y]~O when a

terminal K-node is being processed implies the existence of path

(y, ••• ,y), i.e., it implies cyclicity of the digraph.

Actually there is no need to have the events·topologically

ordered by a separate algorithm. For critical path analysis it

suffices to sweep through the single K-tree-representing the

scheduling network just twice: a reverse postorder traversal gives

earliest event times; a sUbsequent postorder traversal gives

latest event times and floats.

ALGORITHM. A depth-first K-tree algorithm for critical path

analysis. It is assumed that the network contains no anomalies.

Earliest and latest event times for the n events are stored in

arrays eet and let. Although wand float are indicated as two

dimensional arrays, they are actually "arc d~ta". Every K-node

except the root of the K-tree is the head of an arc: the K-node

labeled y whose parent is K-node x can therefore be made to

represent arc <x,y). This means that w[x,y] and float[x,y] can

in practice be represented by appropriate fields in a record that

we associate with arc'<x,y> by associating it with this K-node y.

50

~ i:=l .tQ. n QQ.. eet[i]:=O;

for all K-nodes except the root while K-tree traversed

under R(postorder) do

begin y:=label of K-node;

x = label of parent of y;

eet[y]:= max(eet[y], eet[x]+w[x,y])

end;

comment: y is still the label of the K-node reached last under

R{postorder) traversal, and no let that will be computed

can exceed eet[y];

ful: i:=l :to. n .do...let[i]:= eet(y];

for all K-nodes except the root~ K-tree traversed under

postorder ..llQ

begin y:=label of K-node;

X:= label of parent of y;

let[x]:=min(let[x], let[y]-w[x,y]);

floattx,y]:=let[y]-eet[x]-w[x,y]

In other critical path algorithms the,eet of a node y is

computed in one go, which requires' rather costly bookkeeping in

that one has to access at this' time the tails of all arcs that

terminate at y. In our algorithm the K-tree is. itself the

bookkepping device. Suppose there are j arcs with D-node y as

their head. Then, in the K-tree, there are j K-nodes labeled

y, and the labels of the parent K-nodes of these j nodes

identify the tails (in terms of the network) of the j arcs.

We begin with eet[y] set to zero. Then, whenever one of the

j K-nodes labeled y is visited during the tree traversal, the

sum of the eet of the tail of the arc and the duration associated

with the arc is compared with the current value of eet[y], and

the larger of the two becomes the new value of eet[y]. The

computation of the eet(y1 by successive adjustments spread out

in time is similar to the method used by Dijkstra in his

algorithm for the shortest paths from a single source in a

digraph. Computation of latest event times is precisely analogous

In a proof of the algorithm the crucial step is to show that

whenever one of the K-nodes labeled y is visited, the eet of its

parent be already established, and it is easy to show that this

51

holds true in a depth-first K-tree traversed under reverse

postorder. By symmetry it ~hen follows that latest event times

are also computed correctly. Finally, to justify the initializ

ation of all elements of let to the value of eet[y] it has to be

shown that the K-node processed last under reverse postorder

carries the label of D-node e
t

"

If one is interested merely in the determination of critical

paths, then there is no need to apply the algorithm in its

entirety. The earliest event time of a node is the length of

the longest path form e s to this node. In particular, ee~et]

is the length of the longest path from e
s

to e t • All longest

paths form e s to e
t

are critical, and only these paths.

ALGORITHM. Given a depth-first K-tree o~ an acyclic digraph D

that contains the source as its root, and all nodes reachable

~ the source. The algorithm computes in array length the

lengths of longest paths form the source to all other D-nodes

reachable from the source, and specifies the longest paths in

array before. One longest path =rom the source to node i is
["~,.,,rc.

defined, in reverse order, by i, before [i] , before [i]]
A

If before[j]=O when the algorithm stops, then j is the source,

or it is a node that is not reachable in D fro~ ,the source.

for.i :=1 !£ n do length[i 1:=before[iJ :=0;

for all K-nodes except the root while K-tree traversed

under R(postorder) do

beqin y:=label of K-node;

x:=label of parent of y;

newlength: =length LX J + W [x, y] ;

!! newlength) lengthLY] then

begin length(y]:=newlength;

before[yJ:=x

end

end;

As given above, the algorithm determines just one longest

path from the start node to any other node reachable from it.

52

To generalize the algorithm, one has to make before[y] a list

of node lab0ls, and refine the comparison step to the following:

li newlength;> length[y] ~

begin lengthly]:=newlength;

make beforety] an empty list;

add x to list before [y]

end

else if newlength=length(y] then add x to list before[yJ;

If all length (i) are initialized to a number greater than

any feasible path length, length[root] is then set to zero, and

greater than (» replaced by less than «), the algorithm

becomes one for shortest paths in an ac~clic digraph. Fig. 23

shows the K-tree of a acylic digraph with arc lengths as shown.

The algorithm would compute the length of the shortest path

(1, ••• ,5) as 5 instead of the correct 4.

Although our topological ordering algorithm detects

cyclicity and either the tree building algorithm or the critical

path algorithm can be modified to do so as' well,' there still

remains the task of identifying all arcs that lie on cycles.

Strong component analysis seems to provide the fastest means

of identifying such arcs: an arc lies on a cycle iff it belongs

to a strong component of the digraph. The algorithm given below

is therefore a strong component algorithm that identifies~

that lie on cycles. It is an easy matter to modify it so that

it defines strong components in terms of nodes: delete the

statement that effects output of the arcs, and output the node

labels as they are popped up from the stack. The labels that are

.popped up in the one pop-up sequence define a strong component.

ALGORITHM. A non-recursive strong component algorithm for a

depth-first K-tree representation of a digraph. The output

consists of arcs that belong to strong components (if there are

any such arcs). Each D-node is pushed down exactly once. Each

arc is traversed once under preorder, once under postorder,

and the traversals are intertwined. The first time "advance 'to

next K-node under preorder" is executed, the "advance" is to

2

1

Figure 23

53

54

the root of the K-tree. The K-node that is the first to be

processed each time the -repeat ... until alldone loop is entered

is the one that was the last to be processed in the preorder

phase of the algorithm.

for i:=l to n do begin ordinal(iJ:=O: root[iJ:=true end:

count:=O:

for all K-trees in left-to-right order do

begin rootdone:=false:

repeat terminal:=alldone:=false:

repeat advance to next K-node under preorder:

y:-1abel of K-node:

j! ordina1(y]=O ~

~ ordinal[y1:= count:= count+1:

push down y

~

if K-node terminal tllilll termina1:=~
until terminal:

repeat advance to next K-node under postorder;

jL K-node is root of K-tree~

begin alldone:= rootdone:= ~:

pop up labels until stack empty

~

else

begin y:=label of K-node:

..i!.. y on stack~

begin x:=label of parent of y:

if r~ot[y}- (ordinal y >ordinal(x])~

pop up labels until y has been

popped up

else begin output<x,y>:

if ordinal[yJ(ordinal(x] then

begin ordinal[x]:=ordinal[y);

root[x):=~

end

end

end;

if next K-node in postorder sequence not

vet visited

55

under preorder~ alldone:=true

~

until alldone

until rootdone

end;

It was stated earlier that in a depth-first K-tree represen

tation all arcs that belong to a given strong component of the

digraph define a connected substructure of a single K-tree of

that representation. This connected substructure is itself a

tree. Denote it by sl , and suppose that its root is labeled a.

In the preorder traversal phase ordinal numbers are assigned to

D-nodes in an increasing sequence. Hence the ordinal assignment

made to any D-node in the same strong component as a is initially

greater than that made to a. If S' represents a nontrivial

strong component, then it must contain a path (a, ••• ,b,a). In

the postorder phase tne ordinal assignment that was made to a is

propagated upward along this path using the criterion that if the

current ordinal of a node q is smaller than that.of its parent p,

then the ordinal assignment of D-node p is changed to that of q.

D-node a is the only node in sl whose ordinal assignment does

not get changes this way. Moreover, on reaching root node a of

S/, the ordinal associated with its parent is smaller than that

associated with a (unless a is the root of the K-tree and hence

has no parent). Thus the root of s is identified by the

double criterion the (i) its ordinal assignment has not been

manged (Boolean array root is used to detect this), and (ii) its

parent carry a smaller ordinal assignment that it itself carries.

When the root of S has been identified all node labels up

to and including a are porped up from the stack, and they define

S. Here, although our concern is with the arcs that make up S' ,

the stack is still needed. Suppose in the postorder phase arc

<c,a) is being examined, and label a is not on the stack. This

means that <c,a) cannot belong to a strong component. Output of

this arc is therefore'prevented, and so is the upward propagation

of the ordinal associated with a, which might otherwise take

place. Note that the output of the arcs of S may be interspersed

with the output of arcs belonging to other strong components,

i.e., arcs that define the one strong component need not be

written out in a contig.lOuS sequence.

The K-tree of Fig. 24 shows that both of the conditions

given above are needed to identify a node as the root of a strong

component. Without condition (i) node v would be interpreted as

the root of a strong component. Without condition (ii), terminal

K-node s would trigger the popping up of nodes u,t,s from the

stack. Consequently node v, which belongs to the same strong

component, would not be recognized as such.

Figure 24

3.3 Algorithms that change the structure of K~trees

Our basic K-tree building algorithm changes the structure·of

a K~tree. For the construction of K-trees by this algorithm an

operation is required that takes an atomic K-tree and grafts it

on at a terminal node of the composite K-tree. Further, if we

were required to produce a minimal K-tree representation of a

digraph, the K-trees in list K ' after the basic algorithm stops

would be partitioned into a set A of K-trees whose roots belong,

as D-nodes, to strong components of zero indegree, and set B of

K-trees \o?hose roots do not define such strong componen~s. Then

the K-trees of set B would be completly absorbed into those of

set A by traversing the latter, and at each terminal node

checking whether an internal node with the same label exists

within a K-tree belonging to B. If so, the entire subtree

rooted at the internal node would be pruned away from its present

cost for machine j •

57

location and grafted on at the terminal node that has been

reached in the traversal of the K-tree belonging to A.

We next have a K-tree algorithm for the simple cycles

of a digraph. This is not a particularly efficient algorithm,

and it is included here only as another illustration of pruning

and grafting. The best input data to this algorithm is a set

of K-trees each of which represents one of the nontrivial strong

components of the digraph. The following procedure is applied

to every K-tree in this set.

push down root;

far all K-nodes except root while K-tree traversed under preorder do

hesin y:=label of K-node;

x:=label of parent of y;

pop up from stack all nodes up to but not including x

if y is internal then push down y

~ if y not on stack then

~ prune subtree suspended from internal K-node

y (if it exists)

and graft it on at the terminal node y being

processed;

push down y which has been marked

fm2.
~ if neither y nor any node below it in the stack

carries a marker

then output cycle defined by y and the nodes above

it in the stack, and the terminal node y

being proc::essed

Consider now the scheduling of a job on three machines,

where some time is required on each of the machines, which may

be used in any order. The changeovers from machine to machine

differ in cost, and this may make some orders in which the

machines are used more expensive than others. The costs are

given by matrix C below, where C.. is the cost of changing over

from machine i to machine j, and1~ . is the initial tooling-up
oJ

o
1

2

3
[

41 32 35]
- 3 8

4 9

98-

58

1 2 3

The exhaustive enumeration of Fig. 25 shows that the best

sequence is 2-1-3, with cost 44. The method of backtracking is

used to derive the best sequence without an enumeration of every

possibi1ty. Under backtracking the tree of Fig. 25 is built in

stages, arid, hopefully, a solution can be established before the

entire tree has been constructed.

53 57 44

Fig. 25

50 47 47

There are several basic backtracking schemes, which differ

in the way the node is selected from which the tree is to be

extended. Here we consider o~ly one such strategy because its

implementation presents the most interesting data structuring

problems. This is the method of best cost in which one branches

from the node that has the currently lowest cost value. Costs

are evaluated for all successors of the root of the tree. There

after branching takes place from the node that has the lowest

cost value associated with it.

ALGORITHM. Best cost backtracking algorithm for the n-machine

job scheduling problem. Priority queue pqueue is used to find

the node of lowest cost value. When the algorithm halts an optimal

59

solution is given by the path in K from its root to the node

pointed to by P.

L:="';

y:=start-up node;

set cost of start-up node to zero;

K:=atomic K-tree of y;

done:-false;

repeat

fill: all successors of y do

~ x:=node being processed;

cost:=(cost of y) + (cost of yx);

if cost < L tbgn

if x not on level n then

enter in pqueue a record consisting of cost and of a

pointer to node x in K, using the value of cost to

determine the position of the record in pqueue

else begin L:~cost;

P:=pointer to terminal node x

end:

~ pqueue empty thgn done:=tLue
>'

~ if (lowest cost value in pqueue) = L~ done:=tr~

else

begin extract lowest cost record from pqueue:

use it to gain access to a node in K:

y:=the node accessed in K:

attach atomic K-tree to y in K

~

until done:

Two remarks. First, the same atomic

in more than one place at the same time.

requirements for the tree may become very

that a procedure should be built into the

away parts of the tree for which there is

K-tree may be attached

Second, the storage

high, which suggests

program that prunes

no further need.

60

3.4 K-trees of undirected graphs

An edge {a,b} of an undirected graph may be represented by

the pair of arcs <a,b>and <b,a>. Fig. 26 shows a graph and the

K-tree of the arcs obtained when edges are replaced by arc pairs

in this manner. However, since one of the arcs then invariably

implies the other, there is redundancy. A systematic way should

therefore be sought for selecting just one of the arcs in the pair.

Figure 26

One approach suggests itself immediately: for the

representative of {a,b} take that ordered pair (arc) of a and b

in which the first coordinate is smaller than the second. Under

this scheme, if the K-tree of the arcs.is next interpreted as

representing a digraph, the digraph that it represents has to

be acyclic because it is topologically ordered. It is debatable

whether this is the best appr~ach•. Applying it to the graph of

Fig. 26 we obtain the representation shown in Fig. 27, and this

representation consists of two K-trees. It may be argued that

an increase in the number of constituents of a representation

(K-trees) cannot be regarded as a simplification.

Figure 27

61

We therefore try a different approach. For each node x in

the graph construct an atomic K-tree consisting of x as root and

nodes adjacent to x as leaves. Then apply the tree-building

algorithrnof Section 3.1. For a connected graph the result must

be a single tree (because all arcs that belong to the same strong

component must be in the same K-tree). Fig. 26 provides an

example of the approach to this point. Next subject the K-tree

to the following "clean-up" procedure.

for all terminal nodes while K-tree traversed under preorder do

begin x:=label of node;

y:=label of parent of Xi

z:=label of parent of Yi

if x=z then delete <Y,}(;> from K-tree

else delete <x,y> from K-tree

Fig. 28 shows a K-tree before and after application of this

procedure.

Figure 28

This representation has the interesting property that it

holds within itself in easily accessible f~ the fundamental

circuits of the graph. They are all paths of form (a, •.. ,a) in

the K~tree. For the example of Fig. 28 they are (1,2,3,1),

(1,2,3,4,1), (2,3,4,2).

62

3.5 K-trees and K-formulas

A K-tree can be represented by a K-formula, and the latter

is very easily constructed: carry out a preorder traversal of

the K-tree~ listing nodes in the order they are encountered; in

the case of an internal node precede the node label by as many

K-operators (stars) as there are arcs originating from this node.

The K-tree of Fig. 21 yields

123***813***73***434*5**63758 (54)

Such a representation is very convenient if it is to be stored

in secondary memory or transmitted between the nodes of a

computer network. The utility of the K-formular representation

increases if one can avoid too many translations between the

representations, and one would therefore wish occasionally to

perform operations directly on a K-formula. Operations that

induce structural changes do not lend themselves well to this,

but the operations associated with depth-first search can be

easily expressed in terms of K-formulas.

Consider in the K-tree of Fig. 21 internal node 4. Suppose

one were required to find its right neighbour. It can be seen

easily enough in Fig. 21 that this neighbour is terminal node 5,

but its identification in the K-formula is not all that obvious.

One has to skip across the representation of the subtree rooted

at 4, namely

***434*5**~37

and take the next symbol.

The representation of a subtree of a K-tree is a K-formula

in its own right, but how does one identify this K-formula?

A test derives from a definition of K-formulas as algebraic

objects:

a. A node symbol. is a K-formula.

b. If a and Bare K-formulas, then *aB is a k-formula.

From this it follows that string sls2, •. si ..• sm is a K-formula

63

iff, lettin'.! 111 and lei denote rCl;p<,ctivcly the number of node

symbols and of K-opprators in sl ••• si' the following holds:

< i:=1,2, ••• ,m-l
(55)

K-formula (54) contains 33 symbols. The storage requirements

can be reduced somewhat if one introduces a bit vector of 33

elements in which an entry is 0 if the carresponcing symbol in

the K-formlua is a K-operator and 1 if it is a node symbol.

Another convenient representation, which does not, however,

reduce storage requirements, is

220

123

3 0 0 3

813 7

030

343

o
4

1

5

2

6

o
3

o
7

o
5

o
8

(56)

where above each node symbol is a count of the stars that precede

it.

Reverse postorder is symmetrical to preorder in that

R(past) := C(pre). Hence a K-formula "symmetrical" to (54) can

be produced in a reverse postorder traversal of the K-tree of

Fig. 21:

182***8***75***4*5**673433313

This beocmes, in analogy to (56),

(57)

2 0

1 8

2 3 3

2 8 7

o 3

5 4

1 2 0 0

567 3

o 0

4 3

o .0

3 3

o
1

o
3

(58)

we give now algorithms for the preorder and postorder

traversals of a K-formuia in representation (56). The two arrays

will be assumed to be named star and riode, respectively, and to

be both of size top. Both algorithms make use of stacks node

stack and starstack. The greatest depth to which they are used

in either algorithm is equal to the height of the K-tree from

64

which the K-formula derives. The complexity of either algorithm

is O(top). The preorder algorithm seems redundant in that the

preorder sequence is simply node [1], .node[2] , ••. , node [top].

This algorithm would be used only if, during the traversal, it

would be required to identify the parent of the node currently

being processed. In both algorithms, at the time node k is

being processed, the top element in nodestack is the parent of k.

ALGORITHM. Preorder traversal of a K-formula stored under

representation (56).

process node[l];

f.w;: k:=l to n-l do

begin if star[k]tO then begin nodestack ~ node[k];

starstack ~ starCk]

process node[k+l];

i ~ starstack;

i:=i-l;

if ito then starstack ~ i else pop nodestack

The "pop nodestack" indicates that a datum is popped up and

discarded.

ALGORITHM. Postorder traversal of a K-formula stored under

representation (56).

for k :=1 19.. top .do.

if star[k]tO then beain nodestack ~ node[k];

stars tack ~ starCk]

end

else begin process node[k];

moretodo:=~;

ltlhJ.l.e moretodo /\ nodestacktO do

begin i ~ starstack;

i:=i-l;

if ito~ hegin starstack ~ i;

moretodo : =.fsU..ag.

65

.el.s.e. he.gj.n x + nodestack;

process x

end

end

Reverse postorder traversal is effected by applying the

preorder algorithm to representation (58). Again it should be

noted that (58) is already in reverse postorder, i.e., the

algorithm would be used only if parents of the nodes that are

being processed had to be identified.

Binary trees cannot be represented directly by K-formulas

because'of the left or right orientations associated with their

arcs. Here one shoilld fi'rst convert the binary tree to a general

tree by a reverse Knuth transformation. However, no arc with

right orientation can be suspended form the root of a Knuth

transform. Consequently, before one applies the transformation,

one should introduce a dummy arc in the binary tree. Fig. 29

shows where the dummy arc is added, and Fig. 30 is the K-tree

that results when next the reverse transformation is applied.

Figure 29

66

Figure 30

A binary search tree is not a good candidate for implemen

tation as a K-formula because the whole point to using binary

search trees is that is is easy to add new nodes to them. This

is certainly not so for K-formulas. Similarly, a binary tree

functioning as a priority queue is expected to be constantly

changing. Still, there exist binary trees which do not undergo

structural changes. One example is the ancestor tree of a

person in which for every node, the left and right successors

represent, respectively, mother and father of the individual

represented by this node. In some cases only the mother (or

father) might be known, and then only the left (right) successor

is present. In such a binary tree one might be .interested in

determining the parent node of a given node, or the left or

right successor of the node.

An algorithm was given above for the determination of the

parent of a node. Note that this is the parent of a node in

terms of the K-tree, not in terms of the binary tree from which

the K-tree derives. This parent node is still important

because its determination is the first step in the determination

of the parent node in terms of the binary tree.

Consider a node symbol v in a K-formula K. This v is the

leading node symbol of a string embedded in K that is itself a

K-formula representing the subtree rooted at node v in the K-tree

represented by K (if v is terminal, then the embedded K-formula is

merely the symbol v). Denote this embedded K-formula by k .. Now
'f ~
~ we consdier two nodes u and v, where u is the parent of v in

terms of the K-tree represented by K, then we have in K an_

embedded K-formula with leading node symbol v, in which there is

67

the further embedded K-formula k i with leading node symbol v,

i.e., we haVe

where kl, ••• ,k
t

are K-formulas, and u is preceded by t K-operators.

Now, in terms of the binary tree from which the K-tree

represented by K derives, the par~nt of v is the leading node

of k
i

_ l if i> I or ~ if i=l. Node q is found using the

procedure given above, and one then skips k l , ••• ,ki _ 2 to reach

k i _ l , where k
l
, .•. ,k

i
-

2
are identified as well-formed K-formolas

by use of (55). A left successor of v exists only if v is

preceded by K-operators, and it is then the next node symbol to

the right of v. A right successor exists only if itt, and it

is the leading node of k i +l . Since a well-formed K-formula may

be embedded as a proper substring of k
i

to ~he right of symbol v,

the only way of finding the right successor of v is again to

identify u, and then skip over k l ,· •• ,k
i

.

68

4. A PHILOSOPHY OF DATA STRUCTURES

~.l Trees as abstract data structures

There is still considerable uncertainty as to what is meant

by abstract data structure , but all seem agreed that the defini

tion of an abstract data structure has more to do with operations

than with relationships between components of the structure.

~s an example, consider the mathematical object acyclic digraph,

~hich is to be topologically sorted. We can introduce the~

structure K-tree, about which all that we need to know is that

it comprises certain elements, and that an element may have

successors. We need further an operator that selects the

successors of an element one by one in a particuI~r order (right

to-left) •

Just as it would be very unusual for a programmer to be

concerned whether a negative integer is represented by its

absolute value and sign, or by the 2's complement of the absolute

value, so he~e consideration of the storaae structuIe or

implementation is largely irrelevant as far as the topological

sort program is concerned. The storage structure could be an

adjacency matrix, a set of arc lists, a general tree, a binary

tree, or even a K-formula. This permits changes to be make to

storage representations without affecting higher level programs.

What complicates matters is that we need a fairly large

number of operations. In addition to operations that provide

access to individual elements in a structure, one needs operations

that associate data records with the elements and permit one to

access the data, and operations that enable structural changes

to be made. The first-observation then is that a set of opera

tions, including the aCCess operations, has to be predefined, but

how far is one to go? The n nodes of a tree can be processed in

69

n: ways, and surely we cannot provide this many traversal

procedures. Perhaps the solution here for binary trees is to

predefine just twelve traversals, made up of the three classical

orders, RL-level, RL-down, LR-up, and the converses of these

six.

There are two problems that have to be solved. First, what

happens when a traversal is broken off prematurely? An example:

Suppose a heap that is represented by an explicit binary tree

as in Fig. 8 is to be converted into an array. The binary

tree could be traversed in LR-levelorder, and each node processed

by placing its successors into their appropriate locations in the

array. If the height of the tree is k, then one can terminate

the process after all nodes on level k-l have been processed

because no node on level k can have any successors. Second,

how do we deal with intermeshed traversals? An example of this

is provided by the strong component algoritrun of Section 3.2 •

First suppose that each traversal discipline is implemented by

by providing a start and a ~ operator for the discipline.

Intermeshed traversals can be implemented in a straightforward

manner. The two operators hide from the user the" fact that

there still exists some device that drives the traversal. On

premature termination of the traversal everything has to be

restored to the state that prevailed before the traversal

began. In our case, however, premature termination cannot even

be detected unless complicated scope rules are defined for the

operators, e.g., an operator is assigned to a structure with

this assignment holding just within the block in which it is

made.

Our second solution is to use the following construct,

which was introduced in Section 3.2:

for all K-nodes while K-tree traversed under t do

Premature termination is now easily dealt with: exit from the

loop triggers a clean-up. Intermeshing of traversals appears to

have become next to impossible. Even for a single traversal there

are difficulties. Bot~ the traversal and the processing of the

sequence of nodes are essentially procedures, and we have an

intermeshing of the two. We would provide a composite traversal

package -- the discussion of Section 1.3, particularly Fig. 5,

70

suggests how this can be done efficiently. Then, however, we

have still to provide the programmer with a facility for defining

traversals additional to the twelve predefined traversals. The

best approach seems to be the use of coroutines. In any case,

the provision of traversals as components of data structures

would bring about changes in the programming language that is to

be used of more than superficial nature.

Another problem relates to traversals and changes to the

structures being traversed. In the algorithm for cycles of

Section 3.3 the K-tree being traversed undergoes structural

changes. We certainly could not in a case like this consider

the implementation of a reverse traversal by pushing down an

entire direct traversal sequence and then popping up from the

stack the reverse sequence. More to the point, what should we

permit? Many traversals are undertaken precisely to change the

structure that is being traversed. Too restrictive an attitude

can therefore not be tolerated. A very permissive approach, on

the other hand, exposes the programmer to dangers. For example,

it would seem wrong to permit a subtree to be pruned away from

the node that is currently being processed, this to be grafted

on at a node that has already been processed, and for the

traversal to resume from this point of attachment. It is this

context that would also give most difficulty with any attempts

at program validation.

Note now that the nodes of a K-tree do not possess identifying

names. They do carry labels, but these labels identify nodes in

the digraph or graph from which the K-tree derives -- the label

is part of the data record associated with a K-node. We introduce

the concept of an active element. During the execution of a

program many different elements in many different structures may be

accessed, but one particular element in one particular structure

is the last element to have been reached. This is the active

element, and it remains active until a different element is

reached subsequently. This permits us to access the data in

the record associated with an element even though the element is

not named. The active element is also useful in indicating an

element at which structural changes are to be undertaken.

Let us now consider pointer data. Pointer variables have

71

been criticized in much the same way as goto statements. One

concern has been with dangling pointers, i.e., pointers that

continue to point to objects that have ceased to exist. Another

problem may be caused when pointers introduce aliases. Suppose

a file is to be updated, and the old file retained for security

reasons. If there were no additions or deletions, the simplest

approach would be to copy the file and then to traverse the copy

and make changes. The intenced purpose would not be achieved

at all if the "copying" \'i'ere just the setting of a pointer to

the old file. This, admittedly is an extreme and contrived

example, but it illustrates quite well the type of problem that

can arise.

Hence, in general, pointers are dangerous. We certainly

demonstrated sufficiently well in Chapter 3 that K-trees can be

constructed and used without explicit pointers. The only

exception came with the. best cost backtracking algorithm of

Section 3.3, in which pointers were used for indexing from the

priority queue to the K-tree. This is one use of pointers that

seems difficult to avoid. However, one can build in sufficient

protection to prevent abuses. ThUS, one might permit only the

currently active element to be assigned to a pointer variable,

and let this assignment, a deal location operation, and one

or two predicates be the only means of making reference to a

pointer. Whenever an element that has a pointer associated with

it becomes active, a move operation makes active the element

that is being pointed to. To prevent dangling pointers one

might require that all pointers that point to an element be

deallocated before the element can be erased. Alternatively,

erasure of the element might be made to trigger deal location of

all pointers that reference it. Both of these approaches could

become very costly if the node being erased were the root of a

large subtree. Strong typing as in Pascal would have to be

required.

4.2 Levels of abstraction

These days it is difficult to find an article on data

structures which does not have on its first or second page some

72

part or variant of the following:

forall-

endtype;

queue

new: ~ queue,

push: queue x item ~ queue,

pop : queue --? queue,

peek: queue --? item,

null: queue~Boolean;

q E queue, i E item let

null (new) ~,

peek (new) error,

pop (new) error,

null (push(q,i» false,

peek (push(q,i» if null(q) then i

~ peek(q),

pop (push(q,i» if null(q) ~ new

~ ~,: t~ push (pop (q) ,i)

This is an example of the axiomatic approach t~ the definition

of data structures. The properties of the operations are

expressed by axioms, i.e., expressions that relate the operations

to each other. Standish finds ten potential advantages in the

axiomatic approach. He states that it might eventually be

expected

1. To permit clear, rigorous definition of the concepts

of data representations and data types.

2. To specify precisely the requirements on data

representations.

3. To specify precisely the requirements on programs that

manipulate data representations.

4. To permit the widest possible selection of implement

ation detail.

~. To simplify program maintenance by allowing changes in

superstructure or underpinnings to be made independently.

IJ

7. To permit concise definition of the semantics of data

definition facilities.

8. To establish a framework for tackling the problem of

automatic synthesis or selection of data

representations.

9. To capture the behavior of composite information of

structures that are pervasive in programming.

10. To offer a better basis for machine independence.

A second approach to abstract data structures is to provide

an operational specific~tion. Instead of defining the operations

in terms of each other, they are described by procedures

expressed in some programming language. The two disadvantages

of this approach ~a that the operational specifications may

eventually become very long, and that it is difficult to keep out

extraneous detail from them, which may limit the independence

of data structures and storage structures somewhat.

On the other hadd, sooner or later one does have to

execute computer instructions, and there has not as yet been

found an algorithm to take one from abstract specification (59)

to computer instructions, Moreover, a new constraint has been

introduced. The selection of operations that are to be provided

cannot be but influenced by the ease with which the corresponding a

axiomatic specification can be set up. So, in (59) the sequence

of operations peek and pop has replace~ what we have traditionally

understood by the pop operation.

The last observation suggests that a system should be made

to provide an operation that does combine the two, and, in general.

that a superstructure can be created on top of the axiomatic

definition, where, because we are composing operations whose

properties are preciesly known, a lot of dependability is built in.

Otherwise we could not cope with anything as complicated as our

12 or 18 binary tree traversals.

A program is now expressed in terms of abstract data structures,

and mappings have to be provided for going from this level to that

of the storage structures. The mappings must certainly be

correctness preserving, and one would hope that they would be

complexity preserving as well. Moreover, the operations cannot

74

now be regarded in isolation. For example, if the program based

on a tree traversal requires examination of the path from root to

active node, then threads would not provide an efficient means for

driving the traversal. Suppose the parent of a node is to be

found. In our algori~hms, n order that O(m) complexity be

maintained, this has to be done in constant time. Again, if

threads were used, this determination could cost o(n), where n

is the number of D-nodes.

FURTHER READING

Texts on recurrence relations:

S. Goldberg, Introduction to Difference Equations, Wiley,

New York, 1958.
. .

H. Levy and F. Lessman, Finite Difference Equations,

Macmillan, New York, 1961.

Good introduction to generating functions and recurrences:

C. L. Liu, Introduction to Combinatorial Mathematics,

McGraw-Hill, New York, 1968.

Advanced text on recurrences:

J. Aczel, Lectures on Functional Equations and Their

Applications, Academic Press, New York, 1966.

Balancing of AVL trees after a deletion is treated in:

E. M. Reingold, J. Nievergelt, and N.Deo, combinatorial

Algorithms: Theory and Practice, Prentice-Hall,

Englewood Cliffs, N.J., 1977.

A proof of the cycles algorithm can be found in:

A. T. Berztiss, Data Structures: Theory and Practice,

2nd Ed., Academic Press, New York, 1975.

An excellent example of how one programs in a definitional and

a operational environment is provided by Codd's relational

algebra and relational calculus in:

C. J •. Date, An Introduction to Database systems, Addison

Wesley, Reading, Mass., 1975.

	Trees as data structures
	Recommended Citation

	tmp.1282605374.pdf.qsiK2

