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ABSTRACT: Uniaxial Compressive Strength (UCS) and sonic velocity correlations are used widely in 
the Australian coal mining industry to predict in situ rock strength. These models are cheap, fast and 
easy to produce, as well as easy to understand and have a number of practical applications in mine 
planning and design. The major downfall of these models is that there is a large variation in UCS values 
at high sonic velocities limiting their predictive ability. The aim of this research project is to improve the 
reliability of UCS/Sonic velocity correlations by reducing the variability in the underlying data. This is 
performed by identifying and eliminating sources of error affecting the data and looking at the impact of 
certain factors on the quality of the correlations. Results show that improved models can be obtained by 
filtering the datasets to remove samples with high length-to-height ratios, conglomerate or pebbly 
lithologies, and large sonic velocity ranges.  

INTRODUCTION 

Uniaxial Compressive Strength (UCS) testing is a common method for estimating in situ rock strength in 
Australian coal mines, either as a standalone measure or within one of the many rock mass rating 
systems. Researchers in the mining industry have been investigating alternatives to UCS testing that are 
cheaper and faster at predicting in situ rock strength (Hatherly, et al., 2007; Lawrence, et al., 2013; 
Sharma and Singh, 2008). One option currently adopted in a number of Australian coal mines is to 
correlate sonic velocity, a geophysical measurement of compression waves travelling through rock, and 
laboratory UCS results to obtain an equation to predict rock strength (McNally, 1990; Oyler, et al., 2010). 
This method has the potential to be cheaper and faster to develop compared to measured UCS 
modelling, and is easy to create and understand. It is also useful where rock is highly fractured and the 
ability to collect suitable UCS samples is difficult. The main disadvantage is the significant variability in 
measured UCS values for a given velocity. These models currently produce low quality correlations, 
which reduces their reliability for use in planning and design applications. 
 
Prediction of UCS from sonic velocity logs has been a widely accepted practice in the Australian coal 
mining industry for over 20 years. The first study was conducted by McNally (1987) who derived a 
general expression for all Australian sites, which has been widely recognised in the mining industry. 
Today most mines employ site-specific correlations rather than the generalised McNally equation, which 
has resulted in more accurate and reliable prediction of rock strength for sites (Oyler, et al., 2010).  
 
At Rio Tinto Coal Australia (RTCA), site-specific correlations have previously been created for several 
mines. The most recent and comprehensive analysis was performed by Stam et al., (2012) at Kestrel 
Mine. As a result of the Kestrel investigation, correlations have been produced for all other RTCA sites 
(Butel, 2012). It was found that site wide models were better predictors of rock strength compared to 
lithotype and regional models. However, the overall quality of the correlations was below the industry 
standard. The low quality was due to a number of uncontrolled sources of error in the data sets. It was 
recommended that the sources of error in the underlying data be identified and removed from the 
datasets to improve the correlations.  
 
The goal of this project is to increase the reliability of UCS/Sonic correlations for use in mine planning 
and design applications by reducing the amount of spread in the data.  To achieve this, sources of error 
present in the underlying data were investigated and removed. Factors causing the spread in UCS 
values at high sonic velocities were investigated by filtering the datasets and creating subset 
correlations based on these factors. Site wide and subset correlations were compared to determine if 
any improvement has occurred. This analysis is performed using data from eight RTCA sites, including 
six operating mines and two development projects. A case study of RTCA’s Hunter Valley Operations 
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(HVO) mine in the Hunter Valley (NSW) is presented in this paper as it is the best representation of 
overall results from all the sites.     

UCS TESTING 

The UCS of an intact rock sample is the amount of compressive force per unit area applied in a single 
direction required to induce failure. UCS is calculated by dividing the compressive load at failure by the 
cross sectional area of the sample, as shown in Equation 1. The UCS test is also called the unconfined 
compressive test as there is no confining pressure applied to rock samples (Peng and Zhang, 2007). 
The uniaxial compressive test can also measure the Poisson’s ratio and Young’s modulus of an intact 
rock sample.  
 

Compressive Load at Failure (kN)
UCS (MPa)    

Cross Sectional Area (mm)
          (1) 

 
This test is carried out according to the International Society for Rock Mechanics (ISRM) suggested 
method ISO9001 and Australian Standards under controlled laboratory conditions (Bieniawski, et al., 
1979). This standard specifies that cylindrical shaped specimens of intact rock core must be 
compressed parallel to their longitudinal axis. Sample dimensions must be within a height to diameter 
ratio of 2.5-3:1 and free from discontinuities or defects to be valid. Figure 1 shows a diagram of the UCS 
test setup and the direction of loading. 
 

 
 

Figure 1 - Diagram of UCS test setup (Brown, 1981) 
 

A geophysical log is a continuous record of measurements made by a probe able to respond to 
variations in some physical property of a rock mass (Firth, 1999). They are commonly presented as a 
line graph with depth on the vertical axis and the geophysical log type on the horizontal axis. 
Geophysical methods are divided into land and borehole, based on the location of the measurement 
device (Takahashi, et al., 2006). Land geophysics is measured from the ground surface, while borehole 
geophysics places the measuring device down the borehole. Borehole geophysical methods are the 
focus of this discussion. 
 
Sonic (acoustic) velocity logging is a form of borehole geophysical logging that measures the transit time 
of compression (P-wave) waves travelling through the rock mass surrounding the borehole (McNally, 
1987). Sonic logging tools contain a transmitter which generates high frequency sound waves that travel 
through fluid in the borehole and rock mass in the wall. These waves are generated by an ultrasonic 
source, typically operating at about 20 kHz and firing at about 0.1s intervals (McNally, 1990). An 
uncased water or mud filled hole is required to ensure adequate acoustic coupling is achieved. These 
frequencies are detected by multiple receivers located on the logging tool. Measuring the time difference 
between arrivals at two receivers eliminates the common time spent by the signal in the borehole, 
leaving the time spent in the rock. This produces an interval transit time, or delta-t log. When divided by 
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the receiver separation, the log becomes an inverse velocity or slowness log. Inverting the slowness log 
will produce the sonic velocity log shown in Equation 2 (Firth, 1999).  
 

Ri Rj

Ri Rj

Δd  (m)
Sonic Velocity (m/s)  

Δt  (s)





              (2) 

where, 
Ri,j = Receiver i,j  

Δd = distance between receivers i and j  
Δt = change in time between receivers i and j detecting signal. 

 
The most commonly used down hole sonic logging tool is the multi-channel P-wave compensated series 
(MS). Figure 2 illustrates the basic setup and principles of this tool. It has four receivers spaced 20 cm 
apart and is capable of measuring multiple sonic velocity values on four separate channels. Borehole 
data can be presented for 0.2, 0.4 and 0.6 m thick strata intervals on channels 1, 2 and 3 (McNally, 
1990). The different velocities are determined by the change in signal times between combinations of 
receiver pairs. Table 1 shows the available velocity measurements on the MS2 multi-channel sonic tool. 
The short-spaced option, VL2F, measures the transit time between receiver 1 and 2. It is the most 
commonly used log in UCS/Sonic correlations, since the interval length is approximately the same as a 
UCS specimen, and it is least affected by spiking (McNally, 1990). 
 

 
 

Figure 2 - MS logging tool in a water filled hole and wave propagation in the rock mass 
 

Table 1 - Velocity logs available on a MS2 logging tool 
 

Channel Velocity Log 1
st
 Receiver 2

nd
 Receiver Receiver Spacing 

1 VL2F R1 R2 20cm 

2 VL4F R2 R4 40cm 

3 VL6F R1 R4 60cm 

4 VL2A R3 R4 20cm 

UCS/SONIC CORRELATIONS 

According to Oyler et al., (2010) sonic logging has been routinely used for many years in Australia to 
obtain UCS estimates in coalfield strata. This is performed by collecting sonic log measurements of the 
compression P-wave velocity (m/s) and then correlating these with UCS measurements made on core 
samples from the same holes at the same depth. The sample points are plotted and an exponential 
regression line is fitted to determine the correlation for that dataset. An example of sonic velocity 
correlation from RTCA’s Kestrel Mine is shown in Figure 3. The generalised formula for UCS/Sonic 
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velocity correlations is shown in Equation 3. The constants K and r are derived from the regression line 
fitted to the data set. Only VL2F sonic velocity values are shown in this paper, although VL4F and VL2A 
values were also modelled but did not produce improved correlations. 

FVLaeKUCS 2                   (3) 

 
where K and a = site specific constants. 
 

 
 

Figure 3 - Kestrel Mine UCS/Sonic correlation (Stam, et al., 2012) 

 
The quality of a correlation is determined by the coefficient of determination (R

2
) value, the size of the 

dataset, and the visual fit of the regression curve. The coefficient of determination is a measure of how 
well a regression curve fits a data set. This value ranges from 0 to 1, with zero showing no relationship, 
and one being a perfect correlation. The commonly accepted R

2
 in the Australian mining industry for a 

good UCS/Sonic correlation is greater than 0.7 (Oyler, et al., 2010). This value was used as a 
benchmark for determining the quality of the correlations throughout this project. For descriptive 
purposes in this analysis, an R

2
 of 0.5-0.7 is average, 0.3-0.5 is low, and <0.3 is poor quality. The 

minimum required dataset size to produce a reliable correlation was set at 30 sample points to assume a 
normal distribution under the Central Limit Theorem. 
 
Classic studies 

 
Research into the relationship between dynamic rock mass properties and sonic logs was first 
performed by Carroll (1969). He identified that there were empirical relationships between rock 
characteristics including Young’s Modulus, shear modulus, bulk modulus and sonic logs in volcanic 
rocks. He recommended that this could be extended to siliceous rock types, as well as estimation of 
other rock parameters using sonic logs. 
 
Based on this research, McNally conducted two classic studies, in 1987 and updated in 1990, in which 
sonic velocity logs and drill cores were obtained and correlated from 16 mines throughout Australia’s 
coalfields. The first study in 1987 concluded that a single generalised correlation was sufficient for 
estimating in situ rock strength at all sites. The 1990 study indicated that these models may be lithology 
dependent. The findings from the 1990 study were used to predict geomechanical properties of various 
coal measures rock types (McNally, 1990). McNally (1987) derived a general correlation for sonic transit 
time and UCS, which is shown in Equation 4. This correlation has been extensively adopted in the 
Australian mining industry, and is still regularly quoted in literature (Oyler, et al., 2010; Hatherly, et al., 
2001; Hatherly, et al., 2005). 
 

0.035tUCS 1000 e                   (4) 

 
where,  

UCS = Uniaxial Compressive Strength (MPa); 
t = interval travel time of the P-wave (μs/ft). 
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One of the major problems identified by McNally (1987) is the level of error in the input variables, which 
subsequently reduces the overall accuracy of the models. He suggested that these correlations may be 
improved by carefully hand-picking sample locations to correspond with peaks or troughs on logs, and 
avoiding depths where the log gradient is steep. Samples should also be located at the centre of uniform 
(flat) log segments. McNally concluded that sonic logs provide a reliable and continuous record of rock 
strength in coal measures strata.  He also commented that correlations can vary with lithology, as 
conglomerates appear to specifically overestimate UCS values. Sonic velocity also appears to increase 
with confining pressure. Importantly, he commented that sonic logs appeared not to be site-specific.  
 
Current research 
 
Current research in this area has separated into two schools of thought. One side supports the 
traditional method suggested by McNally, correlating sonic logs to UCS (Oyler, et al., 2010; Lawrence, 
1999; Zhou, et al., 2001; Stam, et al., 2012; Sharma and Singh, 2008; Kelessidis, 2011; Peng and 
Zhang, 2007). However, other researchers suggest that this does not adequately account for variations 
in sonic velocity due to rock mass parameters (Hatherly, et al., 2009; Medhurst, et al., 2010; Barton, 
2006).  
 
Sharma and Singh (2008) support the traditional theory of correlating sonic velocity directly with UCS on 
a regional basis. However, they believe a linear relationship is most appropriate for this relationship. 
Oyler et al. (2010) also support the use of the traditional correlation established by McNally. They 
created UCS and sonic travel time correlations for a number of coal mines across the USA, aimed at 
increasing awareness and adoption of these models in the US coal industry. It was concluded that this 
correlation can also be adopted in US coalfield strata to estimate UCS. According to Oyler et al. (2010), 
it is not certain that site specific correlations would give better results than a generalised model such as 
McNally’s. They also highlighted that high-quality sonic logs are essential if the technique is to be used 
successfully.  
 
A number of recent papers have identified that site-specific UCS and sonic velocity correlations produce 
more accurate and reliable correlations than generic models such as the McNally equation (Zhou, et al, 
2001; Stam, et al., 2012; Butel, 2012). This is due to the fact that these models are able to more 
effectively account for variations in the local geology than generalised models. Today, mining operations 
are deriving their own correlations to suit local conditions. For example, at Kestrel Mine, German Creek 
Mine and Crinum Mine in central Queensland, where there is a well-defined and consistent geological 
environment, specific correlations have been derived (Zhou, et al., 2005; Hatherly, et al., 2009; Stam, et 
al., 2012). 
 
Some researchers believe lithology, or rock type, specific correlations are most appropriate for in situ 
strength modelling (Lawrence, 1999; McNally, 1990). In McNally’s paper in 1990, he identified that the 
generalised correlation curve steepens rapidly below 60 MPa UCS, indicating sonic logs are sensitive to 
low strength rocks. Lawrence (1999) produced linear correlations for individual rock types with 
reasonable success. This research indicated that the correlation gradient increases with grain size. For 
coarse grain rock types such as sandstone, there is expected to be a large range in rock strength values 
over a small range of sonic transit time. In contrast, finer grained material such as siltstone exhibits a 
smaller strength range, but a much larger range in sonic transit times. Peng and Zhang (2007) 
recognised that lithology specific models for a particular site can be effective estimators of rock strength, 
and that generalised lithology models across a region may produce less accurate results.   
 
A second school of thought suggests that UCS and sonic velocity correlations are inadequate account 
for all of the variation in sonic velocity logs. According to this group, the broad scatter exhibited by 
UCS/Sonic correlations is due to the fundamental difference between static UCS and dynamic sonic log 
properties (Zhou, et al., 2005). When the rock mass is homogenous and isotropic, sonic velocity will 
match the rock strength. However when structures and defects are present in the rock mass, sonic 
velocity can vary substantially from the UCS value due to its sensitivity to changes in conditions 
(Hatherly, et al., 2007). This has led to the development of several alternative models to estimate in situ 
rock strength incorporating rock mass parameters influencing sonic velocity (Barton, 2006; Hatherly, et 
al., 2007; Zhou, et al., 2005; Hatherly, et al., 2001). These models correlate sonic velocity to rock mass 
properties such as rock quality, joints or fractures per metre, rock composition, or a combination of these 
with varying degrees of success. 
 
The main alternative model to McNally’s generalised UCS/Sonic correlation is the Geophysical Strata 
Rating (GSR) developed by Hatherly et al., (2005). It is derived solely from geophysical log data to 
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develop a more complete strata characterization than the UCS/Sonic correlation (Hatherly, et al., 2009). 
It is designed to provide a measure of strata properties on a linear scale from 0 to 100.  The model 
takes into account moisture sensitivity, bedding and other factors besides rock strength (Oyler, et al., 
2010). This model was developed using data from the Australian coalfields, so it is suited to coal 
measures rock types at depths less than 500 m. The major problems associated with this model are the 
amount of input data required and the processing involved. Purchase of the required software and 
training is also required. However, this model is showing signs of acceptance in the Australian Coal 
Mining industry, and is increasingly being quoted in related literature (Stam, et al., 2012). 

CASE STUDY 

To determine the effectiveness of UCS/Sonic correlations for in situ rock strength estimation, models 
were created using data collected from six RTCA open cut mines and two development projects. The 
sites are located in the Bowen Basin in Queensland and the Hunter Valley in New South Wales. The 
geographic spread of the sites provides a good basis for determining the robustness of these 
correlations in a number of different geological environments. Creation of the models for each site and 
their analysis were conducted in a number of successive stages. The five stages were: 
 

1. Data collection and compilation; 

2. Review of datasets; 

3. Creation of site specific correlations; 

4. Creation of subset correlations; and 

5. Comparison of correlations. 

 
Data collection 

 
Data was obtained from existing repositories on the RTCA Brisbane computer network, as well as site 
specific networks. The two fundamental values required to create a valid sample point are the laboratory 
UCS test result and the average VL2F sonic velocity value over the same depth in the same borehole. 
Additional criteria were collected to identify potential sources of error, as well as a means of separating 
the full dataset into subsets for analysis of additional factors. Additional information collected included 
UCS test result information to identify any violations of ISRM Standards, the sample lithology, the 
minimum, maximum and range for each average VL2F velocity value, as well as the VL4F and VL2A 
velocities for comparison. Using the collected information, several values were calculated including the 
sample length, which is the difference between the depths of the top and base of the sample; 
Length-to-Height (L: H) Ratio, the ratio of the core sample length to the UCS sample height; and the 
Height to Diameter (H: D) Ratio.  

 
Review of datasets 
 
One of the major problems identified in the previous RTCA study was that underlying error in the data 
had not been identified and removed from the datasets (Butel, 2012). To reduce the impact of 
identifiable errors on the correlations, a review of the data was performed. Only sources of error in the 
UCS test procedure and the sonic velocity log were targeted in this review, as these were the only 
factors able to be adequately investigated from the data available. Importantly, during the project only 
samples containing identified errors were able to be removed according to the information provided. This 
limited the analysis significantly as only errors related specifically to the UCS test and spiking in sonic 
logs could be thoroughly measured. Major sources of error identified and removed from the datasets in 
this analysis included: 
 

 UCS Testing; 

o Non-compliant sample dimensions; 

o Defect or bedding in sample; 

o Failure mechanism indicating problem with test – end failure, conical; and 

o Test significantly different to ISRM standards; 

 Sonic Logging; 
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o Cycle skipping or spikes; 

o Problems associated with the water level downhole; 

o Measurement error, including poor vertical resolution (10 cm increments); 

 Other; 

o Lithology - conglomerate, pebbly, schist; 
o Outliers; and 
o Suspicious Legacy data – missing information. 

 
Subset correlations 
 
Subset correlations were created for each site to determine if factors other than UCS were affecting 
sonic velocity values, and therefore the quality of the correlations. This was performed by dividing the 
dataset into subsets based on the factor being analysed and creating new correlations from these. A 
factor was deemed to have a significant impact on the dataset if a strong correlation was able to be 
produced from the subset models. The factors analysed in this project included: 
 

 Lithology (rock type); 

 Overburden pressure (depth); 

 Mining horizon; 

 Velocity range; 

 L/H ratio;  

 Drilling program; 

 Regional location; and 

 Laboratory. 

 
Several factors were obtained from previous research including lithology, velocity range and overburden 
pressure (depth) (Lawrence, 1999; McNally, 1990). Other factors were identified as potential sources of 
error in the data review stage. 
 
Comparison of models 

 
Site-wide and subset correlations were compared at each site to determine which model was the best 
predictor of in situ rock strength. The criteria for determining whether the subset models were an 
improvement on the site wide models included: 
 

1. The coefficient of determination (R
2
) increased; 

2. The size of the subset was > 30 sample points; and 

3. Strong correlations were able to be obtained for all models within a subset where there were 
multiples (i.e. lithology) 

 
Site-wide and subset models were also compared across sites to determine if there were recognizable 
trends.  

RESULTS 

The figures shown are only for the site wide and subset correlations which showed significant impacts 
on the data spread. These factors included lithology, L/H ratio and sonic velocity range. The sonic 
velocities shown in all figures are VL2F although both VL4F and VL2A models were also produced. No 
signficant improvements in quality were identified in the VL4F and VL2A models.  
 
Figure 4 shows the site wide correlation for HVO. The R

2
 value for this correlation is 0.54, which is below 

the industry benchmark of 0.7. The initial dataset contained 406 samples. After the data review, 58 
points were removed due to errors, leaving 348 points in the final dataset. The data shows a regular 
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trend for this type of model with few points in the low velocity range, and becoming broadly spread in the 
high velocity range. The confidence interval is close to the regression line indicating the line fi ts the data 
well, although it does deviate above 4500 m/s. The data spread indicates that there is a ±30 MPa 
variation around the regression line in the high velocity range (>3000 m/s), and ±10 MPa in the low 
range (< 3000 m/s). This indicates that there is high variability in the predictive confidence of this model 
at high velocities. 
 

 
 

Figure 4 - HVO site wide correlation 
 

Two correlations have been created for sample points with velocity ranges less than 100 m/s and 250 
m/s (Figure 5). The correlations have very similar trend line equations and moderate R

2
 values. The 100 

m/s model has an R
2
 of 0.64 for a dataset of 99 points. The 250 m/s model contains 203 sample points 

and has an R
2
 of 0.62. These present a significant increase in R

2
 compared to the site wide model. 

 
The HVO dataset has been filtered by  L/H ratios of less than 1.5 and 2 (Figure 6). The equations for 
the two models are similar to the site wide model. The L:H < 1.5 model has a fair correlation at 0.58 
using a small dataset of 39 points, compared to a correlation of 0.51 using 139 points for the L:H < 2 
model. The L:H<1.5 model presents a slight increase in R

2
 compared to the site wide model, and the 

L:H<2 shows a slight decrease. 
 

 
 

Figure 5 - HVO velocity range correlations 
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Figure 6 - HVO L:H ratio correlations 
 
Lithology models have been produced for Interbedded Sandstone/Siltstone, Siltstone, Sandstone, and 
Shale (Figure 7). Sandstone displays a reasonable correlation with an R

2
 of 0.59 for a dataset of 180 

points. This represents an improvement compared to the site wide model. The other correlations are 
generally poor, with R

2
 values below 0.4. The siltstone, interbedded siltstone/sandstone, and shale 

models contain 73, 35 and 18 sample points respectively. 
 

 
 

Figure 2 - HVO lithology correlations 
 

Comparison of subset and site-wide models 

 
Tables 2 and 3 show comparisons of R

2
 values and dataset sizes between the L:H Ratio and Velocity 

Range models to the site-wide model for all sites reviewed in this project. In most cases there is a 
reasonable increase in R

2
 for subset models compared to the site-wide model. However, the datasets 

for the L:H < 1.5 and range < 100 m/s models are generally too small to be reliable, containing less than 
30 sample points.   
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Table 2 - Comparison of L:H and site models 

 

Model L:H < 1.5 L:H < 2 Site-Wide 

Site R
2
 n R

2
 n R

2
 n 

BA 0.82 14 0.69 36 0.64 49 

HCK 0.64 55 0.55 156 0.57 257 

WIN 0.73 15 0.75 36 0.73 52 

CLM 0.32 22 0.12 129 0.14 279 

HVO 0.53 49 0.51 148 0.54 348 

BMC/MTP 0.3 38 0.36 73 0.35 84 

MTW 0.23 46 0.25 219 0.15 387 

 
Table 3 - Comparison of range and site models 

 

Model < 100 m/s < 250 m/s Site-Wide 

Site R
2
 n R

2
 n R

2
 n 

BA 0.85 8 0.69 22 0.64 49 

HCK 0.46 41 0.48 146 0.57 257 

WIN 0.16 7 0.67 22 0.73 52 

CLM 0.02 46 0.09 147 0.14 279 

HVO 0.64 99 0.62 203 0.54 348 

BMC/MTP 0.23 18 0.49 51 0.35 84 

MTW 0.13 49 0.17 209 0.15 387 

ANALYSIS 

Site wide  
 
The overall results show that most of the site-wide models produced an R

2
 value below the industry 

benchmark for a good correlation of 0.7. Some of the site models are of such poor quality that they 
cannot be used in their current form with confidence. These site models include MTW, Clermont and 
Bengalla. Other sites show reasonable trends although they still do not meet the 0.7 benchmark. These 
include HVO, Hail Creek, Blair Athol, Mt Pleasant, and BMC/MTP Combined. These models can be 
used for in situ rock strength prediction but with caution. Winchester South is the only site-wide model 
that exceeds an R

2
 of 0.7 indicating that it is a good quality correlation. The main cause of these low 

values is the large spread in UCS values for sonic velocities greater than 4000 m/s. This indicates that 
there is a large amount of variability in UCS not being accounted for in these models.  
 
A number of subset correlations based on potential sources of error in the data were created to 
determine if these are affecting the spread in the data. The results indicate that lithology, velocity range 
and L/H ratio have the most significant impact on the data spread. In most cases correlations with 
stronger R

2
 values compared to the site wide models were able to be produced from the subsets. This 

analysis indicates that these factors are contributing to the spread in the data shown in the site wide 
models. 
 
L / H ratio 

 
One major source of potential error found during the data review was that the sample depth quoted in 
UCS test result sheets did not correspond to the height or position of the sample tested.  The sample 
depths were generally much larger than the actual sample height. This was up to four times in some 
samples. This is because the core lengths sent to the laboratory needs to be large enough to ensure a 
good quality sample of sufficient height and without defects. However, the location at which the test 
sample is taken from along this length is not recorded. The problem is that average sonic velocity values 
must be taken over the entire sample depth range, which introduces a large amount of uncertainty into 
sample points where the ratio of sample length to sample height is high. Furthermore, it is speculated 
that where a large core length has been provided, this may indicate that the core was fractured or poor 
quality, which would also cause problems for the sonic log measurement at this depth.  
To determine whether this discrepancy was having a major impact on the models, the datasets were 
filtered by sample points with L:Hratios of less than 1.5 and 2. For L:H less than 2, this typically resulted 
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in a reduction in the size of the dataset by approximately 40%, and for less than 1.5 the dataset was 
reduced by 80%. The reduction in the dataset size for the L:H < 1.5 model generally made them 
unusable as there were less than 30 sample points. The improvement created by filtering the dataset 
using L:H can be seen in  Hail Creek and for MTW, as well as for Blair Athol, Winchester South, 
Bengalla, Mt Pleasant, and HVO. Table 2 highlights the differences in R

2
 between the site-wide model 

and subset models for all sites. The largest improvement was shown by MTW, with a 0.10 increase in R
2
 

by applying the L:H < 2 filter. This indicates that L:H ratio does have an impact on the variability in the 
data, and that by filtering the dataset using this factor the correlation can be improved. 
 
Sonic velocity range 
 
A second source of error in the correlations is large velocity ranges in sample points. These points are 
likely to be affected by fractures in the rock, or changes in lithology, which skew the average velocity 
value. These velocity values are probably not representative of the corresponding UCS sample, as UCS 
samples are intact rock core without bedding or changes in lithology. McNally (1990) suggested that 
correlations may be improved by choosing samples corresponding with flat sections on logs, and 
avoiding sections where the log gradient is steep. McNally’s recommendation has been applied to this 
research and it has been found to improve the quality of correlations. Site datasets were filtered by 
sample points with sonic velocity ranges of less than 100 m/s and 250 m/s. These filters reduced the 
size of the dataset by on average 50% for 250 m/s and 80% for 100 m/s. These correlations generally 
produced higher R

2
 values than the full dataset models (Table 3). The HVO velocity range < 250 m/s 

correlation showed a significant increase in R
2
 to 0.62, compared to 0.54 for the site-wide model (Figure 

4). The largest increase occurred in the combined Bengalla and Mt Pleasant model, which showed a 
14% increase in R

2
 (Table 3). This indicates that this filter can help to reduce some of the underlying 

variability in the data.  
 
Lithology 

 
Lithology correlations showed varying levels of success in explaining the spread in the data. At most 
sites reasonable sandstone models were able to be produced, such as Blair Athol, Winchester South, 
and HVO. At some sites strong siltstone and interbedded sandstone/siltstone models were also able to 
be produced, including Blair Athol, Winchester South and Bengalla/Mt Pleasant combined. Other 
lithologies were not able to be adequately modelled due to the small size of the subsets. One 
observation that was noted is that Clermont Mine dataset contains a significant amount of samples 
points with conglomerate, basalt and schist lithologies. From the Clermont dataset, a strong correlation 
for Basalt was able to be created with an R

2
 of 0.74. However conglomerate data correlated very poorly, 

with an R
2
 of only 0.22. The quality of lithology correlations is due to the composition of the rock. 

Conglomerate consists of high strength clasts (pebbles, rock or boulders) within a low strength fine 
grained matrix. This causes high sonic velocities as compression waves reflect off the clasts, but low 
UCS due to failure in the matrix. This effect was also noted in other lithologies containing a significant 
‘pebbly’ component, such as pebbly sandstone. Other rock types which have a more consistent grain 
size have been shown to correlate much better. To improve the quality of correlations, sample points 
with conglomerate or pebbly components should be removed from the dataset.  
 
A significant limitation of adopting lithology correlations over a site-wide correlation is the added 
complexity in applying these models to UCS contour mapping. Different models must be used in 
different zones where the geology changes, and then they must be amalgamated into a single map to be 
useful. This increased complexity makes the models less attractive and therefore less likely to be used 
in mine planning and design. Although strong correlations can be produced for some lithologies, overall 
these models are impractical and do not include all lithologies present on mine sites.  
 
Legacy data 
 
A third source of error identified in the analysis was that legacy data introduced a moderate degree of 
uncertainty into the datasets. For a number of sites, most of the additional information that would 
normally be used to identify errors was not available. This limited the ability to review the data for errors, 
so these sample points were treated with caution during the analysis. Attempts were made to identify 
irregularities by looking for significantly different trends in the drilling program and laboratory 
correlations. In the Hail Creek drilling program correlations, the 200 and 400 series sample points 
showed distinct trends from the rest of the dataset and had very little additional information available on 
the UCS test results. Therefore these sample points were removed from the dataset for all other 
correlations. 
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Another issue arising from the legacy data is that in some cases it has already been highly filtered. The 
Hail Creek Laboratory correlations show a very strong model for the Mackay laboratory, which includes 
legacy data from 2005. It appears that this data has already been filtered to produce the strong 
correlation shown by this model. Therefore this introduces bias into the dataset as the spread in the 
historical data is not fully represented. The unfiltered datasets for these holes were unable to be located 
during the data collection stage.  

 
Measurement error 
 
A major issue identified during the completion of this project was that where the site wide model showed 
a very low correlation, it was very difficult to produce significantly improved subset correlations. This was 
particularly evident in the Mount Thorley Warkworth models, which produced an R

2
 of 0.30 in the best 

subset correlation. This is likely to be due to sources of error in the main dataset being unable to be 
filtered out in the subset correlations due to a lack of available identifying information. Based on previous 
research conducted in this field, these unidentified sources may include measurement error, rock 
density, composition, porosity, and the impact of discontinuities on sonic logs.   
 
A key limitation of this research is that the cause of errors in sonic logs was unable to be identified from 
the data provided. Measurement error has been recognized at several sites which may have contributed 
to the poor quality of correlations (Guy and Bamberry, 2011; Turner, 2009). In the MTW dataset, a large 
number of the removed sample points had problems with the sonic velocity value caused by cycle 
skipping or spikes in the log. Two holes in particular contained a large number of issues in the sonic log. 
Although this cannot be confirmed based on the information available, it is suspected that these 
problems are associated with measurement error. Implementation of a standardised sonic velocity 
logging manual is expected to reduce the amount of measurement error present in samples in the future.   
 
Standardised sonic logging procedure document 

 
Currently there is no standardised procedure for sonic velocity logging across all RTCA sites. 
Furthermore, no comprehensive and informative international or Australian standards exist for sonic 
velocity logging. The quality and reliability of these models depends on the accuracy of sonic velocity 
data collected from site. This has been raised as a major potential source of measurement error, as 
different logging companies or individual loggers may use different standards (Guy and Bamberry, 
2011). Another problem is that it is very difficult to identify this error in the sonic logs. To address this 
problem at RTCA sites, a draft version of a standardised sonic logging procedure was created as part of 
this project. This document is to be reviewed and potentially implemented at all RTCA sites in the future. 
The purpose of this document is to ensure adequate calibration, measurement, quality control, and data 
presentation is achieved for all sonic logs, so that the best possible quality data can be collected. 

CONCLUSIONS 

The aim of this project was to create improved UCS/Sonic correlations that can be used with confidence 
for mine planning and design. Analysis of the correlations created for RTCA sites has shown that 
improved models can be obtained by filtering the datasets to remove samples with high L/H ratios and 
large sonic velocity ranges. There is some evidence indicating that lithology specific models could 
produce stronger correlations than site-wide models. However, it was concluded that these models 
should not be used in replacement of the site-wide models because of the increased complexity required 
to create UCS contour maps based on these models. Sample points containing conglomerate and 
pebbly components should be removed from datasets to improve the quality of correlations. Similarly, 
mining horizon, depth, localised, lease, and lab models did not show significant improvements 
compared to the site-wide model. Therefore the site-wide correlation filtered by length-to-height ratio 
and sonic velocity range is considered to be the most appropriate model for the purpose of in situ rock 
strength prediction for this dataset. If good quality data already exists for a site, UCS/sonic correlations 
can be used as effective predictors of in situ rock strength with confidence at virtually no cost. Sonic 
derived UCS contour maps can be easily created from these models, which can be used in a number of 
important mine planning and design applications such as: 
 

 High/low wall slope stability analysis; 

 Open cut blast design optimization; 
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 Underground principal hazard management plans; 

 Underground roof support design; and 

 Drill performance optimization.  

 
The overall quality of the models shown in this analysis has been significantly below the industry 
benchmark for a good correlation. The main reason for this is that a component of the variability in UCS 
has not been accounted for in the model. A source of this variability is believed to be measurement error 
from sonic velocity logging, which was difficult to identify and remove with the information available. This 
problem was particularly noticeable at NSW sites including MTW, HVO and BMC. This has previously 
been identified as a major issue in the sonic logs at these sites (Guy and Bamberry, 2011; Turner, 
2009). A draft standardised procedure for sonic velocity logging has been developed to reduce 
measurement error in data collected in the future. Other factors not accounted for in UCS/Sonic models 
are also contributing to the large spread in the data plots and low correlation quality. Research suggests 
these factors include rock density, porosity, composition, shale content and discontinuities. 

RECOMMENDATIONS 

To improve the quality of UCS and sonic velocity correlations, six key recommendations have been 
made based on this research. These include: 
 

1. Record the exact depth of UCS samples after cutting at the lab to reduce error associated with 
L/H ratio; 

2. Remove sample points with large velocity ranges affected by changes in lithology or 
discontinuities;  

3. Identify and remove suspicious legacy data skewing the data trend; 

4. Utilise a standardised sonic velocity logging procedure proposed as part of this research to 
reduce the amount of measurement error, and ensuring it is consistent across all samples; 

5. Develop Australian standards for geophysical logging to allow accurate UCS prediction to be 
undertaken, and for better comparison of data between sites; and 

6. Perform laboratory sonic velocity logging as a form of quality control by comparing lab and field 
results. 

 
This is expected to significantly reduce the amount of error currently present in the models, and improve 
confidence in applying these models to mine planning and design. 
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