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PREDICTION OF ROCK MASS RATING USING FUZZY LOGIC 
WITH SPECIAL ATTENTION TO DISCONTINUITIES AND GROUND 

WATER CONDITIONs 

Hossein Jalalifar1,2, Saeed Mojeddifar1, Ali Akbar Sahebi1 

ABSTRACT: The Rock Mass Rating (RMR) system is a classification based on the six parameters which 
was defined by Bieniawski. This system may possess some fuzziness in its practical applications. For 
example, experts mostly relate discontinuities and ground water conditions in linguistic terms with 
approximation. Descriptive terms vary from one expert to the other, while in the RMR system; values 
which are related to these terms are probably the same. The other hand, sharp transitions between two 
classes create uncertainties. So it is proposed to determine weighting intervals for discontinuities and 
water condition. Two fuzzy models based on the Mamdani algorithm were introduced to evaluate 
proposed weights, so that the first fuzzy model includes 55 scores using fuzzy model and the remained 
scores which are related to discontinuities and ground water conditions are obtainable by the RMR 
system. But the second fuzzy model obtains all scores of the RMR system using fuzzy model. Results of 
fuzzy models are adapted with actual RMR, but second fuzzy model predicts more acceptable results, 
because it has the ability to use qualitative terms in fuzzy state. But first fuzzy model uses descriptive 
terms in classic state. So it seems, proposed weighting intervals can manage fuzzification of 
discontinuities and water conditions. 

INTRODUCTION 

Bieniawski developed a Rock Mass Rating (RMR) system based on six parameters: (1) The Uniaxial 
Compressive Strength of intact rock (UCS), (2) Rock Quality Designation (RQD), (3) Joint or 
Discontinuity Spacing (JS), (4) Joint Condition (JC), (5) Ground Water Condition (GW) and (6) Joint 
Orientation (JO). He assigned numerical rating values to all these parameters. Based on the value of the 
rock mass rating, Bieniawski divides the whole universe of rock mass into five classes, and then assigns 
stand up time to each class (Hudson and Harrison, 2005). 
 
The arithmetic sum of the rating corresponding to the five main parameters is referred to as “the basic 
RMR” (Figure 1). But the total RMR is obtained by adjusting the basic RMR for the influence of joint 
orientation for a specific excavation face (Figure 1) (Aydin, 2004). 
 

 
 

Figure 1 - RMR classification for characterization and design purposes (after Aydin, 2004) 
 

Bieniawski Rock Mass Classification often involves criteria whose values are assigned in linguistic terms 
and the other hand, sharp class boundaries are a subjective uncertainty in rock mass classification. 
Fuzzy set theory enables a soft approach to account for these uncertainties. Actually, fuzzy sets make 
them more objective, particularly through the process of construction of Membership Functions (MFs). 
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UCS, RQD and JS are the numerical criteria but JC and GW are expressed mostly in descriptive terms. 
For fuzzification of descriptive criteria (JC and GW), it is necessary to consider these criteria 
quantitatively. 
 
In this study, for quantitation of JC and GW, the weights are proposed for each of them. Also for validation 
of these weights two fuzzy models are introduced, so that, the first fuzzy system obtains basic RMR 
without descriptive criteria and the second one obtains basic RMR with descriptive criteria. 

FUZZY SET THEORY 

The fuzzy set was introduced as a mathematical way to represent linguistic vagueness. The fuzzy logic is 
useful to process the imprecise information by selecting a suitable MF. In a classical set, an element 
belongs to or does not belong to a set. That is, the membership of an element is crisp, 0 or 1, against; a 
fuzzy set is a generalization of an ordinary set which assigns the degree of membership for each element 
to range over the unit interval between 0 and 1 (Iphar and Goktan, 2006). The membership or non 
membership of an element x in the crisp set A is represented by the characteristic function  of A, 
defined by (Acaroglu et al., 2008) 
 
 
                                                                   (1) 
 
 
Where  is the membership degree of the variable x. An MF fulfils fuzzification of input/output 
variables. The shapes of the MFs normally were considered trapezoidal or triangular. Describing 
input–output relationship, conditional rules is an important aspect in the fuzzy system. The fuzzy 
proposition is represented by a functional implication called as fuzzy ‘‘if–then’’ rule (Iphar and Goktan, 
2006). 

FUZZY INFERENCE SYSTEM 

The Fuzzy Inference System (FIS) is a famous computing system which is based on the concepts of 
fuzzy set theory, fuzzy if–then rules, and fuzzy reasoning (Ross, 1995). Several FIS have been employed 
in different applications. The most commonly models are the Mamdani fuzzy model, Takagi– 
Sugeno–Kang (TSK) fuzzy model, Tsukamoto fuzzy model and Singleton fuzzy model (El-Shayeb, et al., 
1997), but among the aforesaid models, Mamdani is one of the most common algorithms used in fuzzy 
systems. The Mamdani fuzzy algorithm takes the following form (Iphar and Goktan, 2006). 
 

R = If “x ” is “A ” and “x ” is “A ” and “x ” is “A ” then “y” is “B ”    (for i=1, 2,…, k) (2) 
 
Where: x1 and x2 are input variables, A , A  and B  are linguistic terms (fuzzy sets), y is output variable 
and k is the number of rules. Figure 2 is an illustration of a two-rule Mamdani FIS which derives the 
overall output “z” when subjected to two crisp inputs “x” and “y” (Jang et al., 1997). Inputs in the FIS, “x” 
and “y”, are crisp values. The rule-based system is described by Eq. 2. For a set of disjunctive rules, the 
aggregated output for the “k’’ rules is given by 
 
                                                             (for k=1,2,...,r)     (3) 
 
Where: µC ,µA  and µB  are the membership function of output  “z” for rule “k”, input “x” and input “y”, 
respectively. Eq. 3 has a simple graphical interpretation as shown in Figure 2. 
 
In Figure 2 symbols A1 and B1 refer to the first and second fuzzy antecedents of the first rule, 
respectively. The symbol C1 refers to fuzzy consequent of the first rule, A2 and B2 refer to the first and 
second fuzzy antecedents of the second rule, respectively, C2 refers to fuzzy consequent of the second 
rule. The minimum membership value for the antecedents propagates through to the consequent and 
truncates the MF for the consequent of each rule. Then the truncated MFs for each rule are aggregated. 
In Figure 2, the rules are disjunctive so the aggregation operation max results in an aggregated MF 
comprised of the outer envelope of the individual truncated membership forms from each rule. If a crisp 
value is needed for the aggregated output, some appropriate defuzzification technique should be 
employed to the aggregated MF (Ross, 1995). There are several defuzzification methods such as 
Centroid of Area (COA) or Center of Gravity, Mean of Maximum, Smallest of Maximum, etc (Grima, 2000, 
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Hellendoorn and Thomas, 1993). In Figure 2, the COA defuzzification method is used for obtaining the 
numeric value of output. 
 

 
 

Figure 2 - The Mamdani FIS (after El-Shayeb et al., 1997) 

QUANTITATION OF DESCRIPTIVE CRITERIA 

Experts mostly relate JC and GW condition in linguistic terms with approximation and possibility. It means 
expression descriptive terms vary from one expert to the other, while in the RMR system (Bieniawski, 
1989), values which are related to these terms are probably the same. 
 
Therefore it is proposed to determine weighting intervals for descriptive classes in RMR system 
(Bieniawski, 1989) (JC and GW). Table 1 shows the proposed weights for qualitative criteria. As can be 
seen in table.1 JC and GW criteria are weighted in intervals [0, 1] and [0, 0.8], respectively. 
 

Table 1 - Proposed weights for JC and GW 
 

Descriptive 
of JC 

Smooth 
soft filling 
separation 

<5 

Smooth to 
slightly rough,

soft filling 
mud- weather

Slightly rough, 
highly-weathered 
Separation <1mm

Slightly rough 
Slightly 

weathered 
separation 

<1mm 

Very rough 
unweathered 

separation <0.1mm

RMR score 0 10 20 25 30 
Proposed 
weighting 0-0.1 0.1-0.45 0.45-0.65 0.65-0.8 0.8-1 

Descriptive 
of GW Flowing Dripping Wet Damp Completely rry 

RMR score 0 4 7 10 15 
Proposed 
weighting 0-0.1 0.1-0.25 0.25-0.4 0.4-0.6 0.6-0.8 

CONSTRUCTION OF TWO MAMDANI FIS FOR RMR PREDICTION 

Two fuzzy models based on the Mamdani algorithm are introduced and applied for basic RMR prediction. 
In both models, the COA defuzzification method is used for obtaining the numeric value of output and 
also “min” and “max” are employed as “and” and “or”, respectively. The crisp value adopting the COA 
defuzzification method was obtained by (Grima, 2000) 
 
 
                                                                  (4) 
 
 
Where:  is the crisp value for the “z” output and, 

(z) is the aggregated output MF.  
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As can be seen in Figure 3, the first fuzzy model (FIS A) constructed with three inputs and one output and 
the second fuzzy model (FIS B) constructed with five inputs and one output. To estimate RMR; UCS, 
RQD and JS are used as input parameters for FIS A and three aforesaid inputs mid JC and GW are used 
as input parameters for FIS B. 
 

 
 

Figure 3 - Main structure of fuzzy models: (a) FIS A; (b) FIS B 
 

In Figure 4 the MFs of input parameters were abbreviated and indicated. As can be seen in Figure 4, 
triangular and trapezoidal MFs were considered appropriate for the proposed fuzzy models. For example 
“VB” is used for “very bad”, “B” for “bad”, “M” for “medium”, “G” for “good” and “E” for “excellent”. 
 

 
 

Figure 4 - Fuzzy input parameters: (a) MFs of RQD; (b) MFs of UCS; (c) MFs of JS; 
 (d) MFs of GW; (e) MFs of JC 

 
In both models, the output MFs consists of eight fuzzy sets (Figure 5) in terms “Very Very Bad”, “Very 
Bad”, “Bad”, “Medium”, “Good”, “Very Good”, “Very Very Good” and “Excellent”. Also triangular and 
trapezoidal MFs were considered for the fuzzy model outputs. The range of rating FIS A output is interval 
[0, 55], but FIS B output is interval [0,100]. A total of 125 rules for FIS A and 375 rules for FIS B were 
utilized and a decision was made out of the combined input(premise part) and output(consequent part) 
membership functions based on expert experience and the applied database. An example of the if-then 
rules in FIS A and FIS B is as follows: 
 
Rule of FIS A: If (UCS is G) and (RQD is M) and (JS is E) then (SCORE is VVG)           (5) 
 
Rule of FIS B: If (UCS is E) and (RQD is G) and (JS is B) and (JC is B) and (GW is B) then (SCORE is G)  (6) 
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Figure 5 - Fuzzy output parameters: (a) MFs of FIS A output; (b) MFs of FIS B output 
 
In FIS A, the range of rating output belongs to the interval [0,55], and to achieve a basic RMR, it is 
necessary to add FIS A output to the sum of scores obtained from JC and GW. It should be noted that 
scores of JC and GW, which are achieved from the RMR system, were used as the reference 
classification structure. But FIS B output is equal to the basic RMR. The shape and range of FIS A inputs 
MFs are equal to the first three FIS B inputs MFs; in addition to this, the shapes of output MFs for both 
models are the same. But the range of output MFs in the FIS A model belongs to the interval [0, 55] and 
the range of output MFs in the FIS B model belongs to the interval [0,100]. So the range of JC and GW 
MFs in FIS B are modified upon proposed weights in Table 1. In fact, the purpose of expression of two 
fuzzy models (FIS A and FIS B) in this study is evaluation of proposed weights for the JC and GW. In 
other word, FIS A and FIS B are compared to show the importance of fuzzification JC and GW 
parameters in the classification system. FIS A obtains 55 scores with the use of fuzzy model and the rest 
of scores, which consist of descriptive terms obtained by the RMR system, but FIS B obtains the total 
scores of the RMR system (Bieniawski, 1989) from fuzzy model. 

SIMULATION RESULTS 

To validate and compare the acquired results between the FIS A and FIS B models, correlation R2 and 
Root Mean Square Error (RMSE) can be used . Here R2 is used to validate the predictive models based 
on the comparing predicted and measured (real) values, whereas, RMSE is used to compare the result of 
FIS A and FIS B models. RMSE is calculated by the following equation: 
 
                                                             (7) 
 
 
Where: A  is the ith measured element, 

A  is the ith predicted element and 
n is the number of dataset. 

 
Evaluating the performance of proposed models has been done using database from the TABAS Coal 
Mine (Daws, 1992). The data testing has about 20 datasets. Table 2 show the results of the FIS A and 
FIS B models. RMSE are 5.37 and 3.32 for FIS A and FIS B, respectively. As can be seen in Figure 6, 
correlation coefficients are 0.922 and 0.959 for FIS A and FIS B, respectively, which shows a very good 
agreement. 
 

 
 

Figure 6- Comparison between real and predicted RMR for fuzzy models: (a) FIS A; (b) FIS B 
  

2
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Table 2- Results of FIS A and FIS B 
 

 

CONCLUSIONS 

• In this study the fuzzy set theory is applied to one of the conventional RMR system (Bieniawski, 
1989) by two fuzzy models. RMSE was obtained equalled 3.32 and 5.37 for FIS B and FIS A 
respectively. Moreover, R2 was 0.959 and 0.922 for FIS B and FIS A respectively. 

• The results of fuzzy models were in good agreement with actual RMR. However, FIS B predicts 
more valuable results, which is due to the application of qualitative terms in the fuzzy model, 
while, FIS A uses descriptive terms in the classic method.  

• It seems, weighting intervals which were proposed for JC and GW, can manage fuzzification of JC 
and GW, because these proposed weights solve problem of sharp transitions between two 
adjacent excavation classes and the subjective uncertainties on data that are close to the range 
boundaries of rock classes. 
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