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We report a technique to realize reconfigurable colloidal crystals by using the controlled motion of

particle defects above an externally modulated magnetic substrate. The transport of particles is

induced by applying a uniform rotating magnetic field to a ferrite garnet film characterized by a

periodic lattice of magnetic bubbles. For filling factor larger than one colloid per bubble domain,

the particle current arises from propagating defects where particles synchronously exchange their

position when passing from one occupied domain to the next. The amplitude of an applied

alternating magnetic field can be used to displace the excess particles via a swapping mechanism,

or to mobilize the entire colloidal system at a predefined speed. VC 2014 AIP Publishing LLC.

[http://dx.doi.org/10.1063/1.4874839]

The flow of electrical current in a conductor arises when

electrons at the Fermi level are scattered from occupied

states into unoccupied ones due to the interaction with an

external electric field. Following this electronic analogy, it is

a compelling idea to find ways to separate an ensemble of

identical colloidal particles into a set of immobile low

energy particles, and colloids which can become mobile due

to an external field. When applied to microtechnological

devices like lab-on-a-chip, this concept has demonstrated

precise single particle operations based on the selective

motion of colloidal inclusions.1–3

Paramagnetic microspheres, which can be remotely con-

trolled via non invasive magnetic fields, are currently

employed in biotechnological applications.4–6 The surfaces

of these particles can be chemically functionalized allowing

to bind selectively to defined targets.7 For an ensemble of

monodisperse particles, the formation of a threshold energy

where only a fraction of particles will move in response to

an applied magnetic field is difficult to achieve. In most

cases, the field-induced interactions between the particles

favor collective motion rather than selected displacements.

Magnetic patterned substrates have shown considerable

potential to overcome the above limitation. These patterns

can generate strong localized field gradients, allowing con-

trolled particle trapping and transport along predefined mag-

netic tracks. Recent experiments include the use of arrays of

permalloy elliptical islands,8 cobalt microcylinders,9 domain

wall conduits,10 magnetic wires,11 exchange bias layer sys-

tems,12 and magnetic micromoulds.13

An alternative method consists in using epitaxially grown

ferrite garnet films (FGFs), where magnetic domains with the

width of few microns, i.e., on the particle scale, self-assemble

into patterns of stripes or bubbles.14 Originally developed for

magnetic memory applications15 and magneto-optical imag-

ing,16 the FGFs are ideal to manipulate paramagnetic col-

loids,17 or superconducting vortices.18 The highly localized

driving force originates from the stray field generated by the

Bloch walls (BWs) in the FGF. When properly synthesized,

the displacement of the BWs caused by an external field is

smooth and reversible, with absence of wall pinning, thus cre-

ating a precise and controllable driving force for the particle

motion. Here, we use a FGF to manipulate and transport an

ensemble of paramagnetic particles or a fraction of it, demon-

strating a technique to dynamically organize a colloidal sys-

tem into trapped immobile particles and particles which

become mobile above a threshold field.

A bismuth-substituted ferrite garnet of composition

Y2.5Bi0.5Fe5�qGaqO12 (q ¼ 0:5� 1) was prepared by liquid

phase epitaxy on a (111)-oriented gadolinium gallium garnet

(GGG) substrate. Oxide powders of the constituent elements,

as well as PbO and B2O3, were initially melted at 1050 �C in

a platinum crucible, while the GGG wafer was located hori-

zontally just above the melt surface. After lowering the tem-

perature to 700 �C, growth of the FGF was started by letting

the substrate touch the melt. Keeping it there for 8 min pro-

duced a FGF of 5 lm thickness, more details can be found in

a previous work.19 At ambient temperature, the FGF has a

spontaneous magnetization perpendicular to the plane of the

film. To minimize the magnetic energy, the FGF breaks up

into domains characterized by a labyrinth stripe pattern, eas-

ily observed by polarized light microscopy due to the large

Faraday effect in this material. High frequency magnetic

fields were used to transform this pattern into a regular trian-

gular lattice of “magnetic bubbles.” These are cylindrical

ferromagnetic domains magnetized oppositely to the remain-

ing continuous area of the FGF, and separated by BWs. The

magnetic bubbles have in zero field a diameter of 6:4 lm and

a lattice constant of l ¼ 8:6 lm, Fig. 1(a).a)Electronic mail: ptierno@ub.edu
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To avoid particle adhesion to the film, the FGF was

coated with a 1 lm thick polymer layer composed of a posi-

tive photoresist (AZ-1512, Microchem).20 Paramagnetic

microspheres with 2:8 lm diameter (Dynabeads M-270) were

diluted in highly deionized water (milli-Q, Millipore), and de-

posited above the FGF. After �5 min of sedimentation, the

particles became two-dimensionally confined above the FGF

due to balance between repulsive electrostatic interaction with

the polymer layer, magnetic attraction and gravity.

The magnetic field applied in the ðx; zÞ plane was gener-

ated by using two custom-made Helmholtz coils assembled

above the stage of an upright microscope (Eclipse Ni, Nikon)

equipped with a 100� 1:3 NA objective and a 0:45� TV lens.

The coils were arranged perpendicular to each other and con-

nected to two independent power amplifiers (KEPCO BOP)

driven by an arbitrary waveform generator (TTi-TGA1244).

In the absence of an external field, the BWs of the mag-

netic bubbles attract the paramagnetic colloids and without

the polymer coating, the particles sediment above the BWs.

However, due to the polymer film, the particles have an

higher elevation from the surface of the FGF and the mag-

netic potential becomes smoother, featuring energy minima at

the centers of the magnetic bubbles.21 Thus, once deposited

above the FGF, the particles form a perfect triangular lattice

for a normalized areal density q̂ � qa ¼ 1, Fig. 1. Here,

q ¼ N=A is the particle number density, N is the number of

particles located within the observation area A ¼ 140

�105 lm2 and a ¼ 64 lm2 is the area of the Wigner Seitz

(WS) unit cell around one bubble. For q̂ > 1, the excess par-

ticles redistributed within the magnetic domains, and each

bubble became populated by colloidal doublets, triplets, or

larger clusters.

We induce particle motion by applying an external mag-

netic field rotating in the ðx; zÞ plane, H � ðHx sinðxtÞ; 0;
Hz cosðxtÞÞ, with angular frequency x ¼ 2p� and amplitudes

ðHx; HzÞ, Fig. 1(a). In most of the experiments, we keep fixed

the amplitude of the in-plane component Hx ¼ 0:7 kA=m, and

change the ellipticity of the applied field by varying the ampli-

tude of the perpendicular component, Hz.

For amplitudes 0:8 kA=m < Hz < 1:2 kA=m, and load-

ing q̂ > 1, the particle transport takes place via a swapping

mechanism in doubly occupied domains, where adjacent par-

ticles synchronously exchange their positions. The bubble

lattice thereby preserves the overall occupancy of one parti-

cle per domain. Increasing the particle density, the swapping

motion occurs in the form of creation/destruction of dou-

blets, triplets, or even tetramers. However, for a wide range

of particle densities, we find that colloidal defects propagate

mainly via doublets swapping motion, and the latter is illus-

trated in Fig. 1(b).

To explain the mechanism leading to the defect propa-

gation, let us consider the arrangement of four bubbles with

their interstitial regions, as shown in right part of Fig. 1(a).

Energy calculations21 show that when the rotating field

becomes anti-parallel with respect to the bubble magnetiza-

tion, it generates in the interstitial regions two energy wells

with triangular shape and opposite orientations, I and �I ,

with corners pointing towards the 11 and �1� 1 directions,

respectively. In this situation, there are two equivalent path-

ways along which an excess particle can propagate towards

the �11 direction, either along the B�IB pathway (dashed

blue line) or along the BIB pathway (dashed green line).

Both pathways are energetically equivalent, and the par-

ticle’s choice is dictated by the initial orientation of the

doublet in the bubble domain. A doublet initially oriented

along the �21 direction will send a particle along the BIB
pathway (Fig. 1(b), first three images). Afterwards, this par-

ticle will form another doublet oriented towards the �12

direction, which will send a particle along the complemen-

tary B�IB pathway (Fig. 1(b), last three images). When the

moving particle encounters a vacancy in the colloidal lat-

tice, it will fill it and the defect propagation will end there,

as shown in Fig. 1(c).

We characterize the system conduction along the driving

direction by measuring the particle flux as J ¼ qhvi, where

hvi is the average speed as determined from particle tracking.

Fig. 2(a) shows J versus the dimensionless density q̂, for

three different frequencies. Below the loading q̂ ¼ 1, i.e.,

having less than one particle per unit cell, there are no excess

particles, and thus J¼ 0. For q̂ > 1, we measure a net colloi-

dal current which grows linearly with the loading up to

q̂ � 1:6. In this regime, only the excess particles contribute

to the current, while one particle per magnetic bubble does

not reach the mobility threshold. The speed of the particles

inside the WS unit cell is phase-locked with the driving field,

and given by v ¼ lx=2p where l is the lattice constant. Thus,

FIG. 1. (a) Sketch of the magnetic bubble lattice (lattice constant

l ¼ 8:6 lm) with paramagnetic colloids and subjected to a magnetic field

rotating in the ðx; zÞ plane. Schematic on the right shows four magnetic

bubbles (B) with two interstitials regions (I; �I) illustrating the two possible

particle pathways (dashed lines) and corresponding crystal directions. (b)

Sequence of images showing the transport via particle swapping. (c) A

particle defect transported via particle swapping, Video S1. Superimposed

are the trajectories of the particles, in green (blue) are trajectories along

the BIB (B�IB) pathway, Video S1. (d) Filling of a lattice vacancy in

the colloidal crystal, Video S2. In these experiments, the fields have

amplitudes Hx ¼ 0:7 kA=m, Hz ¼ 1:0 kA=m and frequency x ¼ 18:8 s�1.

(Multimedia view) [URL: http://dx.doi.org/10.1063/1.4874839.1] [URL:

http://dx.doi.org/10.1063/1.4874839.2]
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increasing the driving frequency increases the average speed

and, in turn, the slope of the curve in Fig. 2(a). The direction

of motion of the excess particles is dictated by the chirality

of the rotating field, thus, changing the polarity of one of the

fields (Hx or Hz) allows to invert the entire flow of particles

across the film. Increasing the loading further (q̂ > 2), the

current reaches a maximum, and jamming between closely

moving colloids forbids further particle transport.

Shown in Fig. 2(b) is the effect that the perpendicular

component of the applied field Hz has on the particle current.

This component acts directly on the size of the magnetic

domains, since the diameter of the magnetic bubbles

increases (decreases) when Hz is parallel (antiparallel) to the

bubble magnetization. The graph, obtained for a fixed den-

sity of q̂ ¼ 1:27, shows that the particle flux grows in dis-

crete steps as the amplitude of Hz increases. Below

Hz ¼ Hc
1 ¼ 0:7 kA=m, no current is observed. Increasing Hz,

the excess particles start to be mobilized and the flux raises

till reaching the constant value J ¼ 6:1 lm�1s�1 for

Hz > 0:7 kA=m. Increasing Hz further, reveals a second field

value, Hc
2 ¼ 1:2 kA=m, where the periodic displacements of

the BWs are able to drive all particles synchronously across

the film. The field values Hc
1 and Hc

2 are therefore the mobil-

ity edges where different sub-ensembles of particles can be

set into motion.

The effect of the in-plane component of the applied field

Hx on the flux J is shown in Fig. 2(c). While Hz controls the

size of the magnetic domains, the effect of Hx is to break the

spatial symmetry of the potential, inducing a net particle cur-

rent towards a defined direction. When Hz < Hc
1, no current is

observed for any value of Hx. For Hz ¼ 1:0 kA=m, the flux is

composed of excess particles; while for Hz ¼ 1:3 kA=m, all

particles are mobilized and, in both cases, when Hx >
0:7 kA=m it becomes independent on further increasing of Hx.

Fig. 2(d) shows the dependence of J on the driving fre-

quency for q̂ ¼ 1:27. The current displays a full participation

of the excess particles up to x � 44 s�1, where the flux

reaches its maximum value, J ¼ 13:8 lm�1s�1 corresponding

to an average defect speed of v ¼ 60 lm s�1. Beyond this fre-

quency, the participation of excess particles becomes partial,

and the current decreases monotonously, reaching zero near

x ¼ 110 s�1. In this second regime, the high frequency

motion of the particles is found to be intermittent, with the

excess particles randomly switching between immobile and

mobile phases, reducing the efficiency of our magnetic

device.

Controlling the motion of the excess particles makes it

possible to easily create or destroy a colloidal lattice by switch-

ing the applied field between the two mobility thresholds. This

concept is demonstrated in Fig. 3 (Video S3). Starting from a

triangular arrangement with one particle per WS cell (a)

(t ¼ 0 s), we apply an elliptically polarized magnetic field with

components Hx ¼ 0:7 kA=m, Hz ¼ 1:3 kA=m > Hc
2, and

angular frequency x ¼ 18:8 s�1, which mobilize the whole

lattice at a speed of 25:8 lm s�1 towards the 1� 1 direction,

Figs. 3(b) and 3(c), leaving the bubble substrate almost

unfilled. Since the moving particles are phase-locked with the

driving field for the used frequency, the translating lattice is

stable and preserves the initial triangular order during motion.

After t � 10s, we change the polarity of the in-plane field

(Hx !�Hx), in order to invert the particle flux towards the

�11 direction. We also decrease the field amplitude to

Hz ¼ 0:9 kA=m < Hc
2, inducing a current composed only of

excess particles which start filling again the bubble lattice in

the bottom part of the film, Figs. 3(d) and 3(e). Since, during

these operations the top part of the film is left unfilled, we

change the orientation of the applied field after t ¼ 26:7 s. The

field now rotates in the ðy; zÞ plane, and transports the excess

particles toward the �1� 1 direction, reforming the colloidal

crystal after 31 s. The colloidal assembly demonstrated here

can be further optimized by either controlling the particle den-

sity, and thus, the amount of excess particles propagating

FIG. 2. (a) Particle flux J versus nor-

malized density q̂ for different frequen-

cies. (b) J versus amplitude of the

perpendicular field Hz (Hx ¼ 0:7
kA=m). Dashed red lines separate the

regimes where all particles are immo-

bile (Hz < 0:7 kA=m), only propaga-

tion of excess particles occurs

(0:7 kA=m < Hz < 1:2 kA=m), and

all particles are mobilized (Hz > 1:2
kA=m). (c) J versus amplitude of the

in-plane field Hx for three different val-

ues of Hz. (d) Dependence of J on the

driving frequency x for q̂ ¼ 1:27.
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through the lattice, or by increasing the driving frequency, up

to a maximum speed of v ¼ 60 lms�1, which will further

speed up the re-writing process.

In conclusion, we demonstrate a technique to remotely

generate and control the motion of defects in two dimen-

sional lattices, while keeping track of the position of the indi-

vidual particles, which could be used as model system to

study the dynamics of impurities in crystalline materials.

The energy scales involved in our system (�150kBT, with

T � 293 K) are much beyond the effect of thermal fluctua-

tions, which could interfere with the colloidal transport pro-

cess. This makes our magnetic device fully controllable,

ensuring an extremely precise tuning of the particle speed

and dynamics in real time and space. Although our experi-

ments focus on using FGF films as functional platform, the

technique reported here should be applicable, within the con-

straint of colloidal particle size and lattice wavelength, to

other platforms where magnetic patterns are created by “top-

down” fabrication processes.

P.T. acknowledges support from the ERC starting grant

“DynaMO” (No. 335040) and from the Program Nos. RYC-

2011-07605 and FIS2011-15948-E. T.H.J. thanks the Research

Council of Norway.
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