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ABSTRACT.  

The controlled deposition of attolitre volumes of liquid inks may engender novel applications 

such as targeted drug delivery to single cells and localized delivery of chemical reagents at 

nanoscale dimensions. Although the deposition of small organic molecules from an atomic force 

microscope tip, known as dip-pen nanolithography (DPN), has been extensively studied, the 

deposition of liquid inks is little understood. In this work we have used a set of model ink-

substrate systems to develop an understanding of the deposition of viscous liquids using an 

unmodified AFM tip. Firstly, the growth of dot-size with increasing dwell-time is characterized. 

The dynamics of deposition are found vary for different ink-substrate systems and the change in 

deposition rate over the course of an experiment limits our ability to quantify the ink-transfer 

dynamics in terms of liquid properties and substrate wettability. We find that the most critical 

parameter affecting deposition rate is the volume of ink on the cantilever, an effect resulting in a 

ten-fold decrease in deposition rate (aL/s) over two hours printing time. We suggest that a 

driving force for deposition arises from the gradient in Laplace pressure set up when the tip 

touches the substrate. Secondly, the forces acting upon the AFM cantilever during ink deposition 

were measured in order to gain insight into the underlying ink-transfer mechanism. The force 

curve data and simple geometrical arguments were used to elucidate the shape of the ink 

meniscus at the instant of deposition, a methodology which may be used as an accurate and real-

time means of monitoring the volume of deposited dots. Taken together, our results illustrate that 

liquid deposition involves a very different transfer mechanism than traditionally ascribed to DPN 

molecular transport.  
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1. INTRODUCTION 

Dip-pen nanolithography (DPN) is a nanofabrication technique which uses an atomic force 

microscope (AFM) tip to direct-write functional materials at sub 50 nm resolution.
1
 The 

deposition of alkanethiol molecules onto a gold substrate by DPN has been studied extensively 

over the past decade.
2–11

 In molecular ink DPN, control of feature-size, and therefore pattern 

fidelity, arises from an empirical understanding of the rate of deposition over a range of ‘dwell 

times’ for dot printing or ‘write-speeds’ for line writing.
2,3

  Deposition rate is influenced by a 

multitude of critical parameters including ink loading,
4
 tip sharpness,

5
 relative humidity,

3
 

temperature,
6
 surface roughness,

7
 molecular diffusivity and dissolution kinetics

8
 and others.  The 

mechanism of molecular transport has been given a theoretical framework
9
 and progress in 

refining the technique has become a lively conversation involving the interplay of experiment,
4
 

theory,
8,12

 and numerical simulation.
7,10,11

  Recently, the DPN technique has been applied to the 

deposition of liquid inks.
13–19

 Liquid inks are attractive due to their versatility in depositing on 

various materials.
17,20

 They can also be used to generate 3D structures not achievable by 

molecular inks, such as spherical cap lenses for sub-wavelength optical lithography
18

 or for the 

molded fabrication of stamps.
19

 Liquid inks have also been exploited as universal ‘ink-carriers’ 

for functional materials or biological molecules
15

 and hydrogels loaded with proteins have been 

patterned for a novel drug-delivery approach targeting single cells.
21

 Confidence in any 

fabrication technique is built upon its ability to faithfully reproduce the user’s design.  The 

stringent control of feature size, however, is challenging in AFM deposition of liquid inks. For 

example, it is necessary to ‘bleed’ the pen of excess ink before reproducible deposition is 

obtained.
13,14,17

 Even after bleeding, the coefficient of variation in dot diameter is often quoted at 
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between 10-15%.
22,23

 A 10% variation in diameter would correspond to a 21% variation in 

feature area, and a 33% variation in feature volume (from spherical cap geometry).   

The explanation for such printing inconsistency is made difficult because, as opposed to 

molecular ink DPN, a solid framework of understanding does not presently exist for deposition 

of liquid inks from an AFM tip. In particular, although the driving force for deposition has been 

described as arising from ‘physioadsorption’ or ‘capillarity’,
13,14

 this mechanism has not been 

quantitatively treated. The relative effects of ink properties such as viscosity and surface tension 

are also poorly understood. A model describing the rate of flow of ink onto the substrate (dwell-

time dependence) has not been presented.  When discussing liquid ink deposition, the language 

(‘diffusion coefficient’) and the analysis procedures for molecular ink DPN are sometimes used, 

despite the patently different morphologies of resulting features (i.e. spherical caps as opposed to 

two-dimensional circles).
15,16

  

Although explicit studies of liquid deposition from an unmodified AFM tip are lacking, some 

groups have studied the related system of liquid deposition from a nano-fountain probe (or liquid 

nanodispenser).
24–31

 A nano-fountain probe is an AFM tip with a nanofluidic channel (typically 

with diameter <100 nm) emerging at the tip apex and through which liquid can be dispensed. 

The key parameters in nano-fountain probe deposition were found to be the aperture diameter as 

well as tip and substrate hydrophobicity.
24,26,27

 Despite some promising demonstrations of 

attolitre volume dispensing, this technique has not been widely adopted, possibly due to issues 

with blockage of the nano-channels. Other groups have also studied the capillary forces between 

an AFM tip coated in liquid and a surface.
32,33

 This system is highly pertinent to many fields as 

the nanoscale tip provides a ‘model asperity’ for studying the fundamental origins of adhesion, 

wear and lubrication.
34,35
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In this article we use model ink-substrate systems (exhibiting differing viscosities and 

wettabilities) to gain understanding of the ink transfer process in AFM deposition of liquid inks. 

This work provides new insight in two main areas: (1) By studying the dwell-time/dot-size 

relationship of various ink-substrate systems we find that, although dots with volume ranging 5 

orders of magnitude (0.1-5000 aL) can be deposited, the deposition rate decreases dramatically 

over the course of an experiment. We find that the volume of ink on the pen is the dominant 

factor affecting deposition rate. This has the practical consequence that the size of printed 

droplets cannot be predefined using dwell time.  (2) One way to circumvent this change in 

deposition rate, may be to monitor deposition in situ and calibrate on the fly.  By measuring the 

forces on the AFM cantilever during ink deposition we elucidate the shape of the meniscus at the 

instant of deposition. We illustrate that this method can be used to monitor the size of invididual 

droplets in real time. 

2. EXPERIMENTAL SECTION 

Materials. Octadecyltrimethoxysilane was obtained from Sigma Aldrich. Norland Optical 

Adhesives are highly viscous, UV curable, acrylic based liquid adhesives. The formulations 

NOA 68 and NOA 68T were obtained from Norland Products (Cranbury NJ, USA). A summary 

of the composition of each adhesive is included in Table 1. 
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Table 1: The composition of each NOA ink. 

 

Norland Optical 
Adhesive 68 

(NOA 68) 

Norland Optical 
Adhesive 68T  

(NOA 68T) 

   Mercapto-ester 45-65 % 45-65 % 

Tetrahydrofurfuryl Methacrylate 5-20% 5-20% 

Liquid properties. Viscosity measurements were performed on a (shear-controlled) AR-G2  

Rheometer (TA Instruments) using a cone and plate geometry at 22°C, 25°C and 30°C. The 

values quoted throughout the test were for 22°C. Surface tension measurements were made using 

the pendant drop technique on a OCA Contact Angle System (Dataphysics) at 22 °C. Contact 

angles were measured using the sessile drop method. In the case of highly viscous liquids the 

contact angle was measured as a function of time after deposition, and final results determined 

after a 24 hour equilibration period. Measurements repeated on the same drops 48 hours and 

several days later indicated no further change in drop morphology. The goniometer set-up 

consists of a horizontal microscope focused on the drop of interest which is illuminated by a 

diffuse-back light for increased contrast. A snap-shot of the drop is taken and the drop-shape is 

fit by the software to the Young-Laplace equation.  

Substrate preparation. Si/SiOx wafers were pretreated with a generic cleaning protocol 

consisting of bath sonication while immersed in various solvents (acetone, isopropanol, water). 

This was followed by a hot piranha treatment (immersion in a freshly prepared 1:3 ratio 

H2O2:H2SO4 mixture for 30 minutes at 80 °C) and final rinsing with copious deionized water 

(Milli-Q). Hydrophilic substrates were prepared by plasma treatment of a clean Si/SiOx wafer 

(Harrick Plasma Cleaner, O2 or air plasma at 1100 mTorr, 10 mins) immediately prior to DPN 

printing. Hydrophilicity of the substrate was confirmed by water contact angle (~0°). 
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Hydrophobic substrates were prepared by functionalization of the Si/SiOx substrate with 

octadecyltrimethoxysilane (ODTMS). Briefly; after pretreatment the substrates were plasma 

treated (as above), then immersed in a freshly prepared solution of 0.1% ODTMS in isopropanol 

for 5 minutes, before a further 5 minutes on a hotplate (80 °C) for 5 minutes.  The substrates 

were dipped in the 0.1% ODTMS/isopropanol solution and placed on the hotplate (80°C, 5 

minutes) a further three times to ensure consistent levels of silanization.  Hydrophobicity of the 

substrate was confirmed by water contact angle (~88°). This degree of hydrophobicity was 

maintained for several weeks as confirmed by repeated water contact angle measurements. 

AFM deposition protocol. AFM deposition experiments were performed using an Nscriptor 

system (NanoInk, Skokie, IL) in an environment controlled at 45% relative humidity and 22°C 

temperature.  The NOA ink of interest was wetted onto a single probe on an array of NanoInk M-

Type probes (NanoInk part # PEN-0300-03, material Si3N4, length 107 µm, width 22 µm, spring 

constant 0.5 N/m) by dipping into the filled microwell of a NanoInk Universal Inkwell (part # 

IWL‐0009‐03).  The tip was bled of excess ink in a method similar to that previously reported for 

AFM deposition of liquid inks by bringing it in contact with the substrate in several (typically 4-

5) locations, until deposition of large ~10 µm ‘bleed-spots’ ceased.
14,36

 Patterns were generated 

using the InkCAD software (v 2.7.1) provided with the Nscriptor system.  

AFM measurements. AFM force curve measurements were performed in air on an Asylum 

MFP-3D system (Asylum Research, Santa Barbara, CA). Resonance frequencies of all 

cantilevers were measured using the thermal noise method. The stiffness and sensitivity of each 

cantilever was measured prior to dipping in ink. Force maps were processed using Asylum 

Research software (based in the Igor-Pro environment, Wavemetrics). The raw data of cantilever 

deflection voltage versus z-piezo extension was converted to force vs tip-sample separation using 



 8 

the measured stiffness and sensitivity of the cantilever. In addition to block-processed force maps 

to calculated maximum adhesion, force curve analysis was performed manually for each force 

curve to extract extension length data. Topographical images were generated on the Asylum 

MFP-3D instrument in intermittent contact mode. Morphologies of the printed features were 

analyzed using the Particle Size plug-in for the Asylum Research software.  

3. RESULTS AND DISCUSSION 

3.1 Liquid properties 

The UV curable acrylic based liquid inks were chosen as they contain minimal volatile 

components and so their liquid properties remain stable over many hours. Deposited droplets 

could be imaged by AFM in A/C mode and were found not to change in volume or morphology 

over several weeks. A summary of the liquid properties for each ink is presented in Table 1. In 

particular, the inks are highly viscous, with viscosities of 5.49 Pa.s for the NOA68 ink and 24.86 

Pa.s for the NOA68T ink.  

Table 2. Liquid properties of all NOA inks and of water.  

  Density  

  

ρ  

(g/ml) 

Viscosity  

(22 °C) 

 μ  

(Pa.s) 

Surface tension  

 σ  

(mN/m) 

Static Contact Angles 

(macroscopic) 

 Si (-OH) 

(°) 

 Si (-CH
3
) 

(°) 

 Water  0.998  0.001 72.7 ~0 87.8  
(5.5) 

NOA 68 
1.136 

(0.001) 
5.49 

(0.13) 
34.2 

(0.04) 
4.5  

(0.5) 
37.0  
(4.2) 

NOA 68T 
1.156 

(0.001) 
24.86 

(0.56) 
26.7 

(0.5) 
6.6 

 (0.4) 
38.2  

(3.6) 
*Values in parentheses indicate the standard deviation over multiple samples (n=2 for density 

measurements; n=3 for viscosity measurements; n=6 or greater for surface tension 

measurements; n=8 or greater for contact angle measurements). 
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3.2 Dwell time dependence 

The growth of feature-size with dwell-time is a critical parameter in DPN of molecules as it 

enables feature generation from sub 50 nm up to ~10 µm length scale. Investigations of the 

‘transport rate’ relationship have been the basis for many studies into molecular ink transfer 

mechanisms.
3,4,37,38

 However, dedicated studies using liquid inks are lacking. 

We have systematically investigated the dwell time dependence of dot-size for each NOA ink 

on both hydrophilic (plasma cleaned) and hydrophobic (ODTMS functionalised) silicon 

substrates.  Varying deposition dynamics were observed for different ink-substrate systems. 

However, we found that the factor affecting transport rate most dramatically is not any intrinsic 

liquid or interfacial property; rather, it is the volume of ink on the cantilever at the time of 

printing. 

3.2.1 Growth of dot radius with dwell time 

Figure 1 shows the dependence of dot-radius on dwell time for each ink-substrate system. 

Figure 1A and 1B show dot radius (as measured by AFM) plotted against dwell time for the 

NOA68 (5.5 Pa.s) ink and the NOA68T (24.9 Pa.s) ink on hydrophilic Si/SiO2 respectively. 

Figure 1C and 1D show dot radius plotted against dwell time for the NOA68 ink and the 

NOA68T ink on hydrophobic (alkane functionalised) Si/SiO2 respectively. In each plot, data 

from two calibration-grids are shown, both obtained during the same experiment, under the same 

environmental conditions, by the same pen. The ‘early’ grids were printed soon after inking the 

pen and the ‘late’ grids were printed after two hours printing time, when much of the ink on the 

pen had been expended.  

Different ink-substrate systems followed different deposition dynamics. The NOA68 ink 

exhibited a power-law (r~t
1/2

) dependence of dot radius on dwell time (Figure 1 A). A similar t
1/2 
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dependence is often observed in microfluidics, for example in the Lucas-Washburn equation for 

filling of micro-channels.  In the case of microfluidic channels, the x~t
1/2 

filling rate arises from a 

situation of constant filling pressure acting over an increasing channel length (therefore 

increasing hydraulic resistance).
39,40

 However, the r~t
1/2 

 behavior was not general. The NOA68T 

ink on the shows a linear (r~t) growth of radius with dwell time on the hydrophilic substrate 

(Figure 1 B). On the hydrophobic substrate, both the NOA68 and the NOA68T inks exhibit two 

step deposition kinetics where feature radius at short dwell times (0.02-0.25s) grows faster than 

at longer dwell times (0.5-5s) (Figure 1 C and D). This two-step dynamics may arise from 

capillary induced spreading at short dwell times (nanoscale features), which is then limited by 

the rate of flow down the tip at longer dwell times.  

The varying deposition kinetics highlights the difficulty in using empirical dwell time 

relationships to control feature size. Though we do not attempt rigorous explanations of the 

differing deposition mechanisms, a summary of the observed dwell-time behavior, as well as the 

deposition rates (obtained from fitted trendlines) is provided in Table 3. 

In all systems, we observed a significant decrease in the rate of deposition for the late grid, 

compared with the early grid. This suggests a general influence of the volume of ink on the 

cantilever on the deposition rate. This aspect is discussed in detail in Section 3.2.2 below. 
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Figure 1: (A) Dot radius (as measured by AFM) versus dwell time for the NOA68 (5000 

mPa.s) ink on hydrophilic Si. The ‘early’ grid (filled green diamonds) was printed soon 

after inking the pen and the ‘late’ grid was printed when much of the ink on the pen had 

been expended. The deposition rate of the second grid is markedly different from that of 

the early grid due to a decreased volume of ink on the cantilever. The solid black and 

dashed black lines are fitted trendlines. A summary of the fitting parameters for the 

trendlines is shown in Table 3. (B) A similar dot-radius versus dwell time plot for the 

NOA68T (24.9 Pa.s) on the hydrophilic Si/SiO2.  (C) Dot-radius versus dwell time for the 

NOA68 ink on the hydrophobic (alkane terminated) Si/SiO2. (D) Dot-radius versus dwell 

time for the NOA68T ink on the hydrophobic (alkane terminated) Si/SiO2.   
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Table 3: Varying deposition dynamics for different ink-substrate systems 

Ink 
Substrate 

 

Deposition 

dynamics 

Deposition rate* Min dot radius (nm) 

Early Late Early Late 

NOA 68 Si/SiO2/OH r~t
1/2

 
1164 nm/s

1/2
 

(0.998) 

629 nm/s
1/2

 

(0.985) 
81 63 

NOA 68T Si/SiO2/OH r~t 
625 nm/s 

(0.997) 

426 nm/s 

(0.993) 
73 63 

NOA 68 Si/SiO2/CH3 Two-step 

1:  731 nm/s
1/2

 

(0.990) 

1:    N/D 

 
279 289 

2:  261 nm/s 

(0.996) 

2:   52 nm/s 

(0.79) 

NOA 68T Si/SiO2/CH3 Two-step 

1:   855 nm/s 

(0.903) 

1:      N/D 

 
114 215 

2:   314 nm/s 

(0.987) 

2:    84 nm/s 

(0.990) 

*  Values in parenthesis indicate R
2
 value of linear fit. 

 

3.2.2 Growth of dot volume with dwell time 

Control of feature-size for liquids is made more problematic by the 3 dimensional nature of the 

resulting features; small changes in radius can result in comparatively large increases in volume 

(        for a spherical cap). The control of deposition volume is crucial for many applications, 

for example those which involve monitoring of local fluorescence,
15

 drug delivery targeting 

single cells,
21

 or applications involving the fabrication or repair of electrical components.
14

 

Dwell time could be used to deposit feature-sizes ranging four orders of magnitude, typically 

from less than 0.1 aL (at 0.002 s dwell time) to over 1000 aL (at 5s dwell). Figure 2 shows the 

dot-volume/dwell-time relationship for all four ink-substrate systems. Figure 2A shows a 2D 

rendered AFM topography image of a typical dwell time calibration grid illustrating increasing 

dot size with dwell time. Figures 2B and 2C show dot volume (as measured by AFM) plotted 
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against dwell time for the NOA68 (5.5 Pa.s) ink and the NOA68T (24.9 Pa.s) ink on hydrophilic 

Si/SiO2 respectively. Figures 2D and 2E show dot volume plotted against dwell time for the 

NOA68 ink and the NOA68T ink on hydrophobic (alkane functionalised) Si/SiO2 respectively. 

Figures 2F-H show optical micrographs of an M-type probe prior to inking (figure 2F), just after 

filling with ink (figure 1G), and the same probe after printing for 2 hours and much of the ink has 

been depleted (figure 1H). 

Over the course of an experiment, there is a dramatic decrease in deposition rate for each ink 

on both the hydrophilic and hydrophobic substrates. Considering first Figure 2B. Data for two 

grids are shown, both printed during the same experiment, under the same environmental 

conditions, by the same pen. The ‘early’ grid (filled green diamonds with solid line) was printed 

soon after inking the pen and the ‘late’ grid (open black diamonds with dashed line) was printed 

when much of the ink on the pen had been expended. For identical dwell times, the early grid 

clearly deposits much larger features than the late grid. For example, at a dwell time of 5s the 

early grid yields an average dot volume of 1700 aL, whereas the late grid yields a dot volume of 

180 aL. A similar order of magnitude difference in feature size between early and late grids is 

observed for all dwell times.  The inset is a magnified view of the shortest dwell time features, 

illustrating the generality of the divergence. Similar behaviour is observed for the NOA68T (24.9 

Pa.s) ink on the hydrophilic substrate (Figure 2 C). Despite the varying deposition rates 

displayed for early and late grids, it is interesting to note that the minimum feature sizes remain 

similar in each case.  

On the hydrophobic substrate, the deposition rates for late grids are again much decreased for 

both inks. For the NOA68 ink (Figure 2 D), at a dwell time of 5s the early grid yields an average 

dot volume of 3200 aL, whereas the late grid yields a dot volume of 64 aL. As shown in the 
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inset, though dots were deposited for short dwell times in the early grid, none were observed for 

the late grid. Similar behaviour is observed for the NOA68T ink on the hydrophobic substrate 

(Figure 2 E). 

 

Figure 2. Controlling dot-size using the dwell time parameter: (A) 3D rendered AFM 

topography image of a typical dwell time calibration grid illustrating increasing dot size 

with dwell time, scale bar 10 µm; (B) Dot volume (as measured by AFM) versus dwell time 
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for the NOA68 (5000 mPa.s) ink on hydrophilic Si/SiO2.  The inset is a magnified view of 

the shortest dwell time features. (C) A similar dot-volume versus dwell time plot for the 

NOA68T (24.9 Pa.s) on the hydrophilic Si/SiO2.  (D) Dot-volume versus dwell time for the 

NOA68 ink on the hydrophobic (alkane terminated) Si/SiO2. (E) Dot-volume versus dwell 

time for the NOA68T ink on the hydrophobic (alkane terminated) Si/SiO2.  (F) Optical 

micrograph of a dry M-type probe (as used in this study) prior to inking, scale bar 10 µm. 

(G) Optical micrograph of an M-type probe just after filling with NOA68T ink. The 

deposition rate of this filled pen corresponds with the ‘early grid above. (H) Optical 

micrograph of the same probe after printing for 2 hours and much of the ink has been 

depleted.      

We suggest that this change in deposition rate may arise due to a decreased Laplace pressure 

gradient, arising due to the depletion of ink volume on the cantilever. According to the Young-

Laplace equation, the constricting force of surface tension on a droplet-air interface results in an 

increased pressure inside a liquid droplet relative to outside.  In general, the pressure difference 

(ΔPLap, known as the Laplace pressure or overpressure) is a product of the liquid surface tension 

(γ) and the mean curvature of the interface (κ): 

                (1) 

The mean curvature is given by    
 

  
 

 

  
 , where R1 and R2 are the principal radii of 

curvature of the interface. For spherical droplets R1=R2=R. For menisci, we designate R1 as 

positive and R2 as negative. Thus: 

        
 

  
 

 

  
       (2) 

In the concave shape of a meniscus, one of the radii of curvature (R2) is negative (Figure 3 

(A)Error! Reference source not found.). Thus, when the magnitude of R1 is greater than the 
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magnitude of R2, the Laplace pressure will also be negative. Such negative pressures have been 

measured for nano-scale menisci formed by capillary condensation between an AFM tip and 

substrate, with the magnitude of the pressure being up to 140MPa.
41

 

In Figure 3 we consider a liquid meniscus of micron scale where the sharpness of the tip is 

negligible. Due to the inclination angle of the tip pyramid (αtip~45°), R1~R2 and the Laplace 

pressure in the meniscus is approximately zero (ΔPm~0). The Laplace pressure in the ink at the 

base of the tip is positive (ΔPtip>0), a situation maintained because the base of the pyramid meets 

the cantilever at 135°, causing R1<R2. Thus, when an AFM tip touches the substrate, a pressure 

gradient is set up from the top to the bottom of the tip according to the difference in Laplace 

pressure. According to Pascal’s law the liquid must flow from the higher to the lower pressure 

region.
42

  

If the Laplace pressure in the tip reservoir (ΔPtip) is proportional to the volume of ink, then this 

driving pressure will decrease during an experiment as ink is depleted. Although we have not 

done so in this work, one method to quantify the Laplace pressure for a given volume in this 

geometry may be to use a simulation method based on energy minimization, such as the Surface 

Evolver software.
43

 In this analysis, tip geometry is a crucial factor. Deposition should be more 

difficult to achieve with high aspect ratio tips, and easier to achieve with lower aspect ratio tips. 

An investigation of how deposition rate depends on the inclination angle, αtip, could shed light on 

the degree to which Laplace pressure is driving deposition.   

The apparent increase in viscosity in cases of nanoscale confinement may also affect 

deposition, especially as the thickness of flow, along the tip and in the spreading meniscus, may 

concerns films of <10 nm thickness.
47

 The retraction rate of the tip is likely also an important 

parameter. Though we have only used one retract rate in this work, a study which systematically 
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varied retract rate and deposition volume could elucidate important information regarding the 

dynamics of deposition and the morphology of resulting droplets. 

 

 

Figure 3: The dependence of deposition rate on volume of ink on the pen. (A) Illustration of 

the Laplace pressure gradient as the suggested driving force for liquid ink deposition.  

In molecular ink DPN, the driving force and many intrinsic factors were elucidated before the 

effect of tip coating levels and ink depletion effects became apparent.
37,38

  On the contrary, we 

have found that ‘ink loading’ is the dominant factor affecting deposition rate for AFM deposition 

of liquids. Changes in ink loading can result in a tenfold decrease in deposition rate over two 

hours printing time. The volume dependence was so strong that no inherent effects resulting 

from the differences in ink properties (i.e. differing viscosity) or substrate wettability could be 

identified from our data. We conclude that the understanding of liquid ink deposition must begin 

with an understanding of the effect of changing ink volume on the tip. Our work has continued in 

that direction, with a manuscript detailing these results to be published separately.
44
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As deposition rate changes significantly during a print run, the empirical control of dwell time 

may not be the most useful means to control feature size. There arises a need to monitor, in situ, 

the size of each deposited feature. This will be further examined in the next section. 

3.3 Deposition monitoring using AFM force curves 

AFM force measurements have been used for two decades to model the formation of liquid 

meniscii at nanoscale apertures.
34

 For example, the adhesion force between a tip and substrate 

can be used to monitor the capillary condensation of a water meniscus at various relative 

humidities.
45

 More recently, AFM force measurements have been used to gain insight into the 

mechanism of liquid deposition from a nano-fountain pen.
27

 Besides the direct information 

acquired about the underlying ink-transfer mechanism, the force curves being generated may 

allow for a direct method to monitor feature size in-situ and in real time (without time-

consuming AFM imaging). Such a capability, besides being useful and time-saving in an ink-

development project, would also prove invaluable during a potential device manufacture; it 

would provide a means to instantaneous error detection (and correction). 

The ink-transfer mechanism was probed by monitoring the forces experienced by the AFM tip 

during deposition of the NOA68T (25000 mPa.s) model ink on hydrophilic Si/SiOx substrates. 

Grids of dots were deposited (Figure 4A) and the deflection of the cantilever was measured and 

used to generate a force curve.  The z-height has been adjusted to account for the bending of the 

cantilever (i.e. sensitivity) and so the curves are plotted as force versus ‘tip-sample separation’. 

After AFM imaging of the printed pattern, analysis of individual force curves could proceed with 

respect to the dimensions of the specific dot deposited. For example, Figure 4 (B) shows a force 
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map compiled by plotting the maximum adhesion force against the coordinates of each dot 

imaged in (A). 

The data of interest is within the force retraction curve, generated when the tip is being 

withdrawn from the surface. Each retract curve exhibits three stages (Figure 4C).  In stage 1, the 

tip maintains contact with the surface as it is pinned down by the capillary force of ink on the 

substrate. When the cantilever restoring force exceeds the pinning force of the meniscus, the tip 

pulls away and draws a thin ‘capillary bridge’ of ink between itself and the substrate (stage 2).  

The capillary bridge “necks” (becomes thinner) as it is drawn, and hence the force on the tip 

decreases.  When the neck of the capillary bridge breaks, the force returns to zero, and this 

indicates the completion of the deposition event.  In the third stage of the retract curve, the tip 

completes its retraction at zero deflection, with zero force on the tip. Detailed discussions of the 

changing adhesion force profile during retraction have been provided by both Chaudhury and 

Ondarçuhu.
27,32

  

 



 20 

 

Figure 4. Force monitoring data: (A) AFM topography image of a 6x6 array of NOA68T 

dots (5s dwell time) on hydrophilic Si/SiOx; (B) Force map generated from the maximum 

adhesion force (retraction curve) registered during the deposition of each dot; (C) The 

force curve (retraction) recorded during deposition of the bottom-left dot in the grid 

(radius 450 nm).  Three sections of the retract curve are labeled; contact with surface, 
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drawing of the capillary bridge, and final deposition; (D)  The force curve (retraction) 

recorded during the deposition of bottom right dot in the grid (radius 780 nm).  The 

cantilever experiences larger forces and greater capillary bridge extension when larger 

dots are deposited. 

To achieve reliable deposition monitoring, a direct relationship must be demonstrated between 

some feature of the force curve and resulting dot dimensions.  Figure 4 (C) and (D) show force 

curves for two separate deposited dots; one of radius 450nm and one of radius 780 nm.  It is clear 

that the force curve corresponding to the larger dot has a very different profile, with a stronger 

maximum adhesion force force (130 nN as opposed to 90nN), a greater total adhesion energy 

(40.43 fJ as opposed to 18.85 fJ), and a greater height of the capillary bridge (477 nm as opposed 

to 270 nm).  In general, deposition of a larger dot generates a larger force on the tip, a higher 

adhesion energy and an increased height of the capillary bridge at break-point. 

Though the maximum adhesion force exhibits a correlation with dot radius (see supporting 

information), it is not an ideal parameter with which to monitor deposition. The adhesion force 

arises from capillary, FCap, and Laplace, FLap, forces which depend on the geometry of the tip-

ink-substrate meniscus. As shown in Figure 5 (A), this geometry is complex, involving 

parameters such as the radius of ink contact around the tip, Rm,tip, the meniscus radius at the 

substrate (Rm,sub), the meniscus height on the tip (hm,tip), the ink-substrate contact angle (θadv), and 

the ink-tip contact angle (θtip). All of these parameters are difficult to independently verify, and 

many of them can change during the retract event.
27,32

  

As shown in Figure 5 (B) the meniscus at the instant of break presents a much simplified 

geometry. If we assume that only the bottom half of the meniscus bridge is deposited on the 

surface, then no knowledge of the ink-tip interaction geometry is required. To calculate the 
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volume of the half-meniscus, we first approximate the meniscus curvature to be semi-circular (a 

common assumption).
46

  We also assume the receding contact angle, θrec, is near zero (likely for 

low contact angle systems; θc~7° for this system). In this case, the height of the meniscus at 

break, hm, is equal to the radius of contact with the substrate, Rm,sub at that instant.  By rotational 

geometry the volume of the meniscus, Vm, is given by: 

   
   

 

 
            (3) 

If we assume that Vm also constitutes the volume of the deposited dot, Vdot, then the height of 

the meniscus bridge may, by itself, be used to calculate the size of the deposited feature.  

To investigate this, dots of the NOA68T ink were deposited on hydrophilic Si/SiO2 using a 

range of dwell times. The dot volumes ranged from 20 aL to 240 aL and force curves were 

recorded during each deposition event. The deposited features were subsequently imaged at high 

resolution using AFM. The dimensions of each dot were then analysed in terms of the force 

curve of its deposition event.  

As shown in Figure 5 (C), we have found a direct relationship between the height of the 

meniscus bridge at break, hm, (obtained from the force curve) and the radius of deposited dots. 

Furthermore, as shown in Figure 5 (D),  the volumes of deposited dots (from AFM topographical 

images) are in excellent agreement with the volumes calculated from meniscus height according 

to equation 3 (R
2
=0.9899), supporting our assumption that Vm = Vdot. Such a level of agreement 

is promising for an in-situ, real time, deposition monitoring system.  
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Figure 5. Obtaining deposited dot volume from the deposition force curve. (A) The 

adhesion force originates from the capillary and Laplace forces defined by the geometry of 

the meniscus between tip and substrate.  (B) At its break point, the meniscus attains a 

simplified geometry. If the receding contact angle is ~0°, then the height of the meniscus, 

hm, is equal to the radius of contact with the substrate, Rm,sub. Using simple geometry, the 

volume of the meniscus can be calculated using the meniscus height parameter only. (C) 

The height of the meniscus bridge (i.e. force curve ‘extension length’) exhibits a strong 

direct relationship (R
2
=0.99) with dot radius. (D)  The volume of deposited dots (as 

measured by AFM) plotted against the volume calculated from meniscus height according 

to equation 3. The measured and calculated volumes are in very good agreement, showing 
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that our assumptions are validated.  The linear trendline and line of perfect correlation, 

y=x, are plotted for comparison.   

3.4 Different mechanisms for molecular ink DPN and liquid ink deposition 

Throughout this paper, we have described several phenomena which have not been observed 

for DPN of molecular inks. The deposition dynamics were found to vary for different ink-

substrate systems. The deposition rate was found to decrease dramatically as the volume of ink in 

the cantilever reservoir was depleted. Deposition was found to occur, not via diffusion, but via 

the breaking of a meniscus bridge between tip and substrate. Since ‘DPN’ nominally refers to 

diffusive transport from an AFM tip, we suggest that a distinction should be drawn between 

molecular ink DPN and the deposition of liquids from an AFM tip. 

Figure 6 illustrates the differing ink transport mechanisms for molecular ink DPN and liquid 

ink deposition. DPN of molecular inks involves five distinct stages: (1) Pre-treatment of tip and 

substrate; (2) Coating the AFM tip with dried ink (typically alkanethiol molecules); (3) Contact 

of the tip with the surface and the formation of a water meniscus between the tip and substrate 

due to capillary condensation; (4) Diffusion of the ink molecules from tip to substrate. The 

diffusion may or may not be facilitated by dissolution in the water meniscus, depending on the 

hydrophilicity of the molecule; (5) Lateral diffusion of the molecules on the substrate and 

covalent attachment.  

In DPN of liquid inks, the deposition mechanism is very different:  (1) Pre-treatment of tip and 

substrate; (2) The DPN tip is inked by dipping it into a microfluidic inkwell, after which the ink 

is held in a reservoir etched into the underside of the cantilever; (3) When the tip is brought into 

contact with substrate, liquid ink ‘flows’ down to form a meniscus between tip and sample. The 
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volume of this meniscus grows with increasing dwell time; (4) When the tip retracts it distends a 

meniscus bridge between tip and substrate. (5) The meniscus bridge breaks and the deposited 

droplet forms a spherical cap on the substrate. 

 

Figure 6: Illustrations of the differing mechanisms of ink deposition in DPN of molecular 

inks and AFM deposition of liquids. Molecular ink transport involves diffusion from tip to 

substrate, often facilitated by a condensed water meniscus. Some of the key parameters 

affecting transport rate, R, are highlighted. Liquid ink deposition involves flow into an ink 

meniscus between tip and substrate. When the tip is retracted, the ink is distended into a 

meniscus bridge. Droplet deposition occurs upon breaking of the meniscus bridge. 

DPN of molecular inks and deposition of liquid from an AFM tip may not be mutually 

exclusive. For example, several molecular ink DPN studies have used liquid components to 

facilitate diffusive transport.
48,49

 (The liquids in these studies, such as ethanol, dimethyl 

formamide or dimethyl sulfoxide, are usually volatile and do not remain constituents of the 
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functional pattern.)  Conversely, some diffusive transport may occur as a component of liquid 

ink transport. (Though we have not explored the parameter in this study, relative humidity does 

affect the deposition rate of the NOA inks). Ultimately, as features of smaller dimensions are 

considered, a distinction between ‘liquid ink’ and ‘molecular ink’ may not be valid. 

Nevertheless, a distinction between diffusive molecular ink transport versus deposition via the 

breaking of a meniscus bridge is useful in many cases as each mechanism highlights different 

parameters which need to be controlled.  

4. CONCLUSIONS 

A set of model ink-substrate systems were used to develop an understanding of the deposition 

of liquids by AFM. We began by investigating the growth of dot-size with increasing dwell-time. 

The dramatic change in deposition rate over the course of an experiment limited our ability to 

quantify the deposition dynamics in terms of liquid properties and substrate wettability. We 

found that a critical parameter affecting deposition rate was the volume of ink on the pen.  

We analyzed the forces acting upon the AFM cantilever during ink deposition to gain insight 

into the dynamics of ink-transfer. The force curve data and simple geometrical arguments were 

used to elucidate the shape of the ink meniscus at the instant of deposition, a methodology which 

may lead to an accurate and real-time means of monitoring the volume of deposited dots. Such 

in-situ monitoring could be an important capability for future autonomous fabrication systems.  

For example, an algorithm could be incorporated using dynamic information from force curves 

to adapt to specific deposition conditions (level of ink on pen, humidity, local substrate 

hydrophilicity etc). Ideally, such a system would utilise optical feedback, and individual 

actuation, on every pen in an array. Although this would necessitate a vastly more complex 

instrumentation, feedback systems for 2 dimensional arrays of cantilevers were demonstrated 
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over a decade ago.
50

 We encountered limitations to the deposition monitoring technique due to 

the relatively low stiffness (k~0.5 N/m) of the M-type probes.  For example, the large adhesion 

forces generated during deposition of very large dots resulted in bending of the cantilever beyond 

the limit of detection.  This put an upper limit on the magnitude of adhesion forces which could 

be measured.  On the other hand, the meniscus bridge height of very small dots could not be 

measured as this information was washed out by the cantilever restoring force.  Higher 

sensitivity of detection (and greater control of overcoming the pinning meniscus force) could be 

achieved with the use of higher stiffness cantilevers.  

Taken together, our results illustrate how liquid deposition involves a very different transfer 

mechanism than traditionally ascribed to molecular transport. Different parameters, in particular 

the volume of ink on the cantilever, are important in defining deposition rate. In recent work, we 

have shown that deposition rate depends not just on the volume of ink on the cantilever, but on 

the relative location of the ink on the cantilever (and on the tip itself) and that this ink 

distribution is subject to dynamic reorganisation.
44

 The resulting feature-size variation 

emphasizes the utility of an in-situ deposition monitoring strategy.    
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