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Cell attachment and proliferation on high conductivity PEDOT-glycol
composites produced by vapour phase polymerisation

Abstract
High conductivity poly(3,4-ethylene dioxythiophene) (PEDOT) was synthesised using vacuum vapour
phase polymerization (VVPP). The process produces PEDOT composites which incorporate glycol within
the polymer. To assess biocompatibility, a suite of analytical techniques were utilised in an effort to
characterise the level of glycol present and its impact on cell attachment and proliferation. A small decrease in
fibroblast cell attachment and proliferation was observed with increasing glycol content within the PEDOT
composite. Keratinocyte cell attachment and proliferation by comparison showed an increase. As such, the
results herein indicate that cell attachment and proliferation depends on the individual cell lines used and that
the impact of glycol within the PEDOT composite is negligible. This positive outcome prompted
investigation of this polymer as a platform for electro-stimulation work. Application of oxidising and reducing
potentials to the PEDOT composite were utilised to examine the effect on biocompatibility. Significant effects
were seen with altered protein presentation on the reduced surface, and lower mass adsorbed at the oxidised
surface. Keratinocytes interacted significantly better on the reduced surface whereas fibroblasts displayed
dependence on protein density, with significantly lower spreading on the oxidised surface. Understanding how
proteins interact at electrically biased polymer surfaces and in turn affect cell behaviour, underpins the
utilisation of such tunable surfaces in biomedical devices.
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Abstract:  

High conductivity poly(3,4-ethylene dioxythiophene) (PEDOT) was synthesised using vacuum 

vapour phase polymerization (VVPP).  The process produces PEDOT composites which 

incorporate glycol within the polymer.  To assess biocompatibility, a suite of analytical 

techniques were utilised in an effort to characterise the level of glycol present and its impact on 

cell attachment and proliferation.  A small decrease in fibroblast cell attachment and proliferation 

was observed with increasing glycol content within the PEDOT composite.  Keratinocyte cell 

attachment and proliferation by comparison showed an increase.  As such, the results herein 

indicate that cell attachment and proliferation depends on the individual cell lines used and that 

the impact of glycol within the PEDOT composite is negligible.  This positive outcome prompted 

investigation of this polymer as a platform for electro-stimulation work. Application of oxidising 
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and reducing potentials to the PEDOT composite were utilised to examine the effect on 

biocompatibility.  Significant effects were seen with altered protein presentation on the reduced 

surface, and lower mass adsorbed at the oxidised surface. Keratinocytes interacted significantly 

better on the reduced surface whereas fibroblasts displayed dependence on protein density, with 

significantly lower spreading on the oxidised surface. Understanding how proteins interact at 

electrically biased polymer surfaces and in turn affect cell behaviour, underpins the utilisation of 

such tuneable surfaces in biomedical devices. 

 

Keywords: Vacuum vapour phase polymerisation (VVPP); PEDOT; electrical stimulation; cell 

spreading; Quartz crystal microbalance (QCM) 
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1. Introduction 

 

The use of inherently conducting polymers (ICPs) as an alternative to traditional metallic 

materials for charge transport has, in recent times, seen these materials subjected to intense 

investigation.  Of the many conducting polymers that have been synthesised and studied, 

poly(3,4-ethylenedioxythiophene) (PEDOT) is arguably one of the most highly conductive and 

environmentally stable[1-4].  The facile manner in which PEDOT can be synthesised using a 

variety of protocols, such as wet chemical oxidation, electrochemical polymerisation or vapour 

phase polymerisation (VPP), has resulted in it becoming one of the most commonly used ICPs.  

Importantly the energetic state of the surface, the conductivity and the optical transmission of 

PEDOT can be altered by changing the doping level within the polymer.  This can be achieved 

either by electrical or chemical means and exploiting this phenomenon has resulted in a plethora 

of potential applications such as power storage and generation[5], organic transistors (OFETs)[6, 

7], and drug delivery devices, bioactive-platforms and biosensors[8].   

 

For biological applications, such as tissue engineering, it is important to create a structure 

or scaffold that provides physical and/or chemical support conducive to interactions between the 

substrate and cells, as well as between neighbouring cells.[9-11]  As such, the surface properties 

of biomaterials are critically important in that they determine the nature of interactions with cells 

via the protein mediators of such interactions.[12] Modification of the conducting polymer 

surface properties can be effected by altering the polymer composition[13], surface 

roughness[14], the type of dopant[15], and the doping level[16], as well as the redox state of the 

polymer.[15]  Each of these properties has been shown to affect cell behaviour.[17-20]  

Furthermore, the application of electrical stimuli has long been known to influence the manner in 

which nerves,[21] cartilage[22], skin tissue[23] and bone[24] heal.  Therefore, careful 

manipulation of these physical, chemical or electrical cues has the potential to influence cell 

behaviour in some desired manner. 

 

While numerous bio-compatibility studies have been performed on polypyrrole[25-28] 

and to a lesser extent PEDOT[29, 30], interestingly, a survey of the current literature revealed no 
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bio-material studies with VPP PEDOT.  Previous studies[31, 32] have shown that the 

conductivity of vapour phase polymerised (VPP) PEDOT can be as high as ca. 1500 S.cm-1, 

which is only one order of magnitude smaller than some metals or alloys.  Such a result opens up 

the possibility of using VPP PEDOT as both the bio-platform and the electrode material for use 

in electrically  active devices.  One of the most commonly used oxidants in the VPP process is 

Fe(III) Tosylate; however, its use is not without problems.  Due to its high (apparent) reactivity, 

PEDOT films having poor conductivity due to conjugation defects have been reported[33].  To 

overcome this problem, various methods have been employed to reduce the (apparent) reactivity 

of the oxidant.  One method utilises a glycol based surfactant as a means of reducing the 

reactivity of the oxidant solution via a steric hindrance mechanism[34].  The consequence of 

using glycol, however, is that a PEDOT/glycol composite is formed during polymer 

synthesis[32].  Even though glycol on a biomaterial surface is known to inhibit the attachment of 

proteins and cells[35, 36], and is at odds with the general requirements for most tissue 

engineering applications, the possibility of utilising such a high conductivity polymer for 

electrically stimulated cell studies would seem to be highly desirable.  The effect of glycol on 

protein adsorption and cell adhesion is dependent on the molecular weight and distribution (i.e. 

surface density) present on the surface, as it is generally attributed to being a steric hindrance 

phenomenon[37, 38].  Previous studies[39-41] using various glycols have either coated the entire 

substrate in an effort to inhibit cell attachment, or have patterned the surface in some manner in 

an attempt to produce directed/preferential cell attachment and proliferation.  Irrespective of the 

desired outcome being sought, these previous studies have coated glycol onto the respective 

substrates.  To the best of our knowledge, biological studies have not been performed with 

polymers containing glycol inherently within the polymer matrix, rather they have simply being 

adsorbed onto the surface. An interesting question is whether incorporated glycol produces, by its 

inherent surfactant activity, a surface concentration high enough to affect cell attachment and 

spreading. 

     

One of the first steps in establishing the suitability of a new material for bio-engineering 

purposes is to confirm its biocompatibility using in vitro tests with a variety of cell types.  As 

stated, previous studies with different cells have shown that PEDOT is indeed capable of 

supporting cell attachment and proliferation.  This study outlines the synthesis of ultra-high 
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conductivity PEDOT using the VPP technique, and its fabrication into thin films suitable for in-

vitro use.  Furthermore, a suite of surface characterisation techniques were employed in an effort 

to elucidate the manner in which glycol is incorporated into the PEDOT polymer composite.  Our 

results indicate that the incorporation of glycol has minimal impact on cell attachment and 

proliferation. The conducting nature of the polymer was also exploited to examine the effects of 

applying oxidising or reducing potentials on the adsorption of proteins and cell behaviour on this 

biased surface.    

 

2. Materials and methods 

 

2.1 Materials 

Fe(III) Tosylate (Fe(Tos)3) was purchased from H. C. Starck as a 40 wt.-% solution in 

butanol (Baytron CB 40). 3,4-ethylenedioxythiophene (EDOT) monomer and the tri-block 

polymer poly(ethylene glycol-propylene glycol-ethylene glycol) (PEG-PPG-PEG, referred to as 

‘glycol’), Mw = 2900 Da. were obtained from Aldrich. Tris base, ethylenediaminetetraacetic acid 

(EDTA), Triton X-100 and phosphate buffered saline (PBS) tablets were purchased from Sigma. 

Dulbecco’s Modified Eagles Medium (DMEM), Fetal Bovine Serum (FBS), Trypsin-EDTA, 

QuantIt Pico-Green Reagent, Phalloidin-Alexa 488, 4',6-diamidino-2-phenylindole (DAPI) and 

human plasma fibronectin (Fn) were purchased from Invitrogen. All chemicals were used as 

received. 

 

2.2 Vacuum Vapour Phase Polymerisation of PEDOT 

PEDOT samples were synthesised on glass microscope slides. The slides were washed 

using a mild detergent, followed by an ethanol and high purity water rinse. Prior to spinning the 

oxidant the substrates were air plasma treated (PDC-32G, Harrick Inc.) for 2 min.  The 40 wt.-% 

Fe(Tos)3 solution was further diluted with butanol to produce either a 16 or 26.6 wt.% solution.  

Glycol in the weight range 0 to 65 wt.-% (with respect to Fe(Tos)3) was then added to the oxidant 

solution.  The solution was spin-coated (400B-6NPP, Laurell Technologies Inc.) at a speed of  

1900 RPM for 20 seconds and placed on a 70 oC hot plate for 1 minute to evaporate the butanol.  

Samples were removed from the hotplate and immediately placed into a 115 L vacuum chamber 

oven (Binder, Germany) set to 35 oC.  The chamber was pumped down to 45 mbar before 
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allowing EDOT monomer and water vapour ingress.  Samples were removed after 25 min and 

placed on a 70 oC hotplate for 2 min to anneal the polymer.  The sample was then carefully rinsed 

in an ethanol bath to remove the spent oxidant.  

 

2.3. X-Ray Photoelectron Spectroscopy 

X-ray photoelectron spectroscopy (XPS) was performed using a Kratos AXIS Ultra DLD 

spectrometer, using monochromatic AlKα radiation (hν = 1486.7 eV).  The unit is equipped with 

a magnetically confined charge compensation system. Spectra were recorded using an 

acceleration voltage of 15 keV at a power of 225 W.   

Survey spectra were collected with a pass energy of 160 eV and the analysis area was 

300 × 700 μm.  High-resolution spectra were obtained using a 20 eV pass energy and an analysis 

area of ≈ 300  700 μm. Data analysis was performed using CasaXPS software (Casa Software 

Ltd). All binding energies were referenced to the low energy C1s peak at 285.0 eV.  Core level 

envelopes were curve-fitted with the minimum number of mixed Gaussian–Lorentzian 

component profiles. Curve fitting was performed with a Gaussian–Lorentzian mixing ratio 

(typically 30% Lorentzian and 70% Gaussian functions), and the full width at half maximum and 

the positions and intensities of the peaks unconstrained.  

 

2.4. Time-of-Flight Secondary Ion Mass Spectrometry 

ToF-SIMS analyses were performed with a PHI TRIFT V nanoTOF instrument (PHI 

Electronics Ltd, USA).  A 30 keV, pulsed primary 197Au+ ion beam was used to sputter and ionise 

species from each sample surface. Spectra were acquired for 60 seconds from an area of 100 × 

100 μm. The corresponding total primary ion fluence was less than 1 x 1012 ions per cm2 

(operating within the static SIMS regime [1]).  A dual beam charge neutralization system using a 

combination of low energy ions (≤ 10 eV) and electrons (≤ 25 eV) was employed to provide 

improved charge neutralisation.  Mass axis calibration was performed with CH3
+, C2H5

+ and 

C3H7
+

 in positive mode and CH-, C2H- and Cl- in negative mode.  A mass resolution of m/∆m  > 

7000 at nominal m/z = 27 amu (C2H3
+) was achieved. 
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2.5. Conductivity  

Resistivity, R, ( Ω/) was measured using a four-point probe (RM3, Jandel Engineering), 

tip radius 100 μm, 60 g preset load and measurements were taken at room temperature (22 ± 2 
oC) and humidity (35% ± 5%).  Results are the average of at least nine measurements. AFM 

images and measurements (NTEGRA, NT-MDT) were performed in tapping mode. Polymer film 

thickness, t, was measured by carefully scoring the surface using a soft scalpel and performing 

line scans across the groove.  Reported thickness is the average of at least 4 line scans.  PEDOT 

conductivity, σ, (S.cm-1) is given by ; 

 

σ = 1/(R × t)        (1) 

 

 

2.6. Contact angle goniometry measurements  

Contact angle measurements were performed on a custom made goniometer.  Droplet 

shapes were recorded with a M-852 colour CCD camera attached to an Olympus SZ-PT 

stereomicroscope. Droplet shapes were analysed using the drop snake software.[42]  The 

advancing contact angle was recorded by slowly increasing the drop volume and ensuring that the 

contact line was not “pinned” by any chemical or physical defect.  The advancing contact line 

was halted and then an image captured after 3 seconds.  The receding contact angle was recorded 

by allowing the drop to evaporate and waiting until the contact line transitioned from an 

advancing state to a receding state, allowing the contact line to move freely.  Care was taken to 

ensure that the receding contact line did not exhibit any “pinning” prior to capturing the image 

used to calculate the contact angle.  The results are the average of at least 5 captured images and 

use both the right and left contact lines of the drop.  
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2.7. Atomic Force Microscopy 
 
 PEDOT film roughness measurements (RMS) were performed by scanning the surface 

with an atomic force microscope (NTEGRA, NT-MDT).   Scans were performed over two length 

scales (area of 100 µm2 and 1 µm2) at a scan speed of 1 Hz. The root mean square (RMS) 

roughness values were calculated using the NT-MDT image analysis software.    

 

2.8. Protein Adsorption 

 

Static Protein Adsorption: PEDOT was synthesised as previously described onto 

piranha cleaned gold coated quartz crystal microbalance (QCM) crystals. AFM scans were 

performed on each sample to determine surface area of coated QCM sensors utilising an MFP-3D 

ARM (Asylum Research, CA). Scans (5 x 5 µm) were undertaken and surface area and RMS 

roughness were quantified to compare between PEDOT samples. Samples were hydrated in PBS 

until stable f and D measurements were obtained. The samples were then exposed to fibronectin 

at 50 µg/mL for 1 h, followed by rinsing with PBS until consistent f and D measurements were 

observed. The Q-tools software package v.3.0.10.286 (Biolin Sci, AB) was used to apply the 

Voigt model to determine the mass (ng/cm2) of protein adsorbed to the modified sensor surface, 

using specific input parameters that provided the best data fit for the layer density (1150kg/m3), 

fluid density (1020kg/m3), layer viscosity (1-6 ≤ 1-2 kg/ms), layer shear modulus (14 ≤ 17 Pa), and 

mass (115 ≤ 1.155 ng/cm2). The 5thovertone was used for all modelling calculations. 

Biased Protein Adsorption: QCM crystals coated with PEDOT synthesised with 48 

wt.% glycol were loaded into a QSense Electrochemistry module and the same method as above 

was employed to obtain hydrated PEDOT films. The Electrochemistry module consists of a 

platinum counter-electrode acting as the top wall of the chamber above the sensor and an 

Ag|AgCl reference electrode included in the outlet flow channel. Samples were then stimulated 

with a nominated voltage (+/- 100mV, slightly oxidising/reducing; or +/- 300mV, strongly 

oxidising/reducing; vs. Ag|AgCl reference) using an eDAQ potentiostat until stable f and D 

measurements were observed (approx. 15 min). Fibronectin (50 µg/mL) was then applied to the 

samples followed by rinsing with PBS until consistent f and D measurements were observed.  
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2.9. Cell Culture 

 

Mouse fibroblast (3T3) and human keratinocyte (HaCaT) cell lines, were originally sourced from 

the ATCC (American Type Culture Collection) and were used as models for epidermal cell types. 

Each cell type was cultured in DMEM (Dulbecco’s Modified Eagle’s Medium, Invitrogen, 

Sydney, Australia) containing 4 mM L-glutamine and 10% Fetal Bovine Serum (FBS). Cells 

were cultured at 37 °C in a humidified, 5% CO2 atmosphere and were subcultured twice weekly. 

 
2.10. Cell Adhesion and Proliferation on VPP PEDOT 
 

Static Cell Culture: Prior to cell seeding onto each material, surfaces were rinsed with 

70% EtOH and allowed to air dry in a sterile environment. Materials were then soaked in DMEM 

for 1 h, the media removed and cells seeded at a density of 4000 cells/cm2 on each substrate. 

Cells were then incubated in a humidified 37⁰C incubator with 5% CO2 atmosphere with media 

changes every 48 h. Following cell incubation on polymers the medium was removed and cells 

were rinsed with PBS to remove loosely bound cells. Cells were then incubated with Tris/EDTA 

buffer (10 mM Tris, 1 mM EDTA) containing 0.5% Triton X-100 for 10 min at room temperature 

followed by collection of cell lysate. DNA content was quantified using QuantIt PicoGreen 

reagent, and compared against standard cell numbers to quantify cell numbers at each time point. 

Experiments were performed in quadruplicate on at least two separate batches of polymer. 

GraphPad Prism 4 was utilized to determine statistical differences between net fluorescence 

measurements observed at specific timepoints using a 1-way ANOVA at a 95% confidence 

interval. 

To quantify the metabolic activity of cells attached to the polymers at various times, unbound 

cells were removed, and polymers/cells washed twice in serum free media before cell number 

was quantified using the CytoTox96TM LDH Assay Kit (Promega) according to manufacturer’s 

specifications. Cell lysate was incubated with assay reagent for 30 min at room temperature, 

before the reaction was stopped. Absorbance measurements (adjusted for background) were taken 

at 490 nm using a SpectraMax 190 (Molecular Devices). 
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Biased Cell Culture: To evaluate the effect of differences in protein layer properties on the 

adhesion of cells to PEDOT surfaces, substrate samples synthesised on glass slides were treated 

as follows. Samples were sterilised in 70% (v/v) EtOH, hydrated in PBS for 2h prior to 

application of a nominated voltage using an eDAQ potentiostat for 15 min. Complete media 

containing serum was then applied to the samples for 30 minutes prior to cell seeding at a density 

of 15,000 cells/cm2. Samples were placed into a humidified 37⁰C incubator with 5% CO2 

atmosphere for 12 h prior to application of CalceinAM (1/200 dilution in culture media) and a 

further 15 min incubation. Media was then removed and replaced with PBS prior to imaging 

using an AxioImager microscope fitted with an AxioCAM Mrm camera. Average cell area per 

cell body was then calculated using ImageJ software and compared between bias conditions. 

2.11. Immunocytochemistry 

 

Cell morphology was investigated on the polymers at different time points following cell 

incubation on each substrate as described above. Cells were rinsed twice in PBS to remove 

unbound cells, then fixed using 50% (v/v) methanol:acetone for 5 min on ice, followed by two 

subsequent PBS washes. Samples were then incubated with the actin stain Phalloidin-Alexa 488 

(diluted 1:200 in PBS/1% BSA) for 20 min at room temperature in the dark, rinsed twice in PBS, 

and incubated with 1μg/mL 4',6-diamidino-2-phenylindole (DAPI) in PBS for 5 min at room 

temperature in the dark. Solutions were removed and replaced with fresh PBS then imaged using 

an AxioImager microscope fitted with an AxioCAM Mrm camera and overlayed using 

AxioVison 4 software (Zeiss).  

 
3. Results 
 

3.1. Vapour Phase Polymerisation and PEDOT conductivity 

The goal was to produce PEDOT having as high a conductivity value as possible, with the 

aim being to utilise this substrate in electro-stimulation cell work.  With this in mind a series of 

VPP PEDOT films were synthesised by systematically increasing the amount of PEG-PPG-PEG 

(glycol surfactant) in the oxidant solution from 0 to 65 wt.-%.  Given that the oxidant is spin-cast 

onto the substrate and then dried on a hot plate to remove unbound solvent, the glycol content 

presented in Figure 1 is given as a weight percent of the dry-oxidant layer, rather than as a weight 
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percent of the original solution.  With no glycol addition, the conductivity of the PEDOT film 

was 200 S.cm-1.  As the glycol weight percentage was increased, a corresponding increase in 

conductivity was recorded, with a maximum conductivity of 1486 S.cm-1 being achieved at a 

glycol loading of 48 wt.-%.  Increasing the weight percentage beyond this level resulted in 

decreased conductivity, with 783 S.cm-1 being recorded at the highest loading of 65 wt.-%.   The 

rationale for pursuing high conductivity PEDOT as a bio-compatible material is that the polymer 

could serve as  an effective electrode biomaterial for electro-stimulation cell work, a feature 

which has received an increased level of investigation.[43, 44] To ascertain whether any of the 

glycol that is contained within the oxidant layer becomes embedded in the synthesised PEDOT 

polymer, a combination of analytical techniques were used.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. VPP PEDOT conductivity as a function of weight percentage of the glycol surfactant 

within the oxidant layer. (Glycol content within PEDOT capped at 16 wt.%, See Fig. 2)   
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3.2. XPS analysis of VPP PEDOT 

Surface located glycol is known to have detrimental effects on cell attachment and 

proliferation. Previous work[45] synthesising PEDOT had indicated that using oxidant solutions 

with glycol additives resulted in films that contained glycol, in effect producing a PEDOT-glycol 

composite material.  This being the case it was of paramount importance to quantify the amount 

of glycol present and its distribution and domain sizes.  Does the glycol reside uniformly within 

the polymer matrix or does it become enriched at the surface?  Is it a homogeneous or 

heterogeneous distribution?  XPS spectra were collected for the various PEDOT samples and the 

O1s peak was used to quantify the amount of glycol by de-convoluting the peak into its 

constituent peaks (example given in ref. [45]).  Not surprisingly, peak fitting revealed no glycol 

peak for the sample made without glycol in the oxidant layer, but did show glycol present in 

increasing amounts for all other samples.  Figure 2 shows the level of glycol within the PEDOT 

film as a function of glycol content within the oxidant layer.  As can be seen, the glycol content 

within the PEDOT film increased until it formed a plateau (≈16 wt.-%) at a corresponding glycol 

content within the oxidant layer of ≈48 wt.-%.  Since XPS measures the approximate top 7-10 nm 

of a sample[46] the question still remains; is the glycol present only on the surface, or embedded 

evenly throughout the PEDOT matrix, or distributed in an inhomogeneous manner. 
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Figure 2. Weight percentage of glycol surfactant within the PEDOT polymer as a function of the 
glycol content in the oxidant layer.  
 

 

3.3. Contact angle measurements 

Contact angle (CA) measurements are extremely sensitive to the energetic state of a 

surface but unambiguous quantitative analysis requires smooth homogeneous surfaces, whereas 

our PEDOT samples possess substantial roughness (Fig. 3).  Thus, we have used (CA) 

measurements as a qualitative measure.  The results (Table 1) for both advancing, θa, and 

receding, θr, contact angles show a general trend downwards with increasing glycol content 

originally contained within the oxidant layer.  This result is at odds with the XPS data which 

showed that glycol within the PEDOT film reached a plateau of ≈16 wt.-% at a corresponding 48 

wt.-% glycol within the oxidant layer.  Based on the XPS data one would reasonably have 

expected the same contact angles to be recorded for both 48 and 61 wt.-% glycol within the 

oxidant layer, but this was not the case.  Separating the effects of physical roughness and 

chemical heterogeneity is problematic.  To resolve the issue, AFM imaging was performed in an 

effort to obtain physical topography measurements and ToF-SIMS analysis was conducted, as the 

latter technique provides compositional information at the uppermost surface of a sample (i.e. top 

1-2 nm). 

 

Table 1. Advancing, θa, and receding, θr, contact angles as a function of glycol surfactant within 
the oxidant layer. 
 

Glycol in Oxidant Layer  

(wt.%) 

Contact Angle  

(θa) 

Contact Angle  

(θr) 

0 63 ± 4  24 ± 2 

24 61 ± 2 22 ± 4 

48 54 ± 2 21 ± 4 

61 49 ± 3 16 ± 3 
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3.4. AFM analysis 
  

Figure 3 shows 3D-images and RMS roughness for PEDOT films synthesised with 

varying amounts of glycol in the oxidant layers.  Calculated RMS roughness values were 

obtained for 1 µm and 10 µm scans (length scales appropriate to cell size) and are given in Figure 

3E.  Qualitatively the images show that there is a clear difference between the topography of the 

PEDOT film without glycol and the films synthesised with glycol. While the topography images 

of the PEDOT films that have glycol incorporated show a homogenous distribution of roughness 

over the scan areas of interest, the film without glycol (Fig. 3A) shows an inhomogeneous 

distribution. This can be seen by comparing the difference in roughness between the 1 µm and 10 

µm scans where a marked increase in roughness between the two length scales is observed.  

Within the series of PEDOT films containing glycol, the roughness increased with increasing 

glycol content, with a maximum roughness of 9.3 nm recorded for the 61 wt.-% glycol sample at 

a scan size of 10 µm.  Interestingly, phase contrast imaging showed no discernible differences at 

length scales down to 500 nm indicating that the incorporation of the glycol surfactant within the 

PEDOT film was either homogeneous and, importantly, at a length scale below that examined 

(i.e. < 500 nm), or that the glycol resided below the top surface layer. To resolve this ToF-SIMS 

analyses were performed on the PEDOT films.    
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Figure 3. AFM topography images for samples made with: A) 0%; B) 24%; C) 48% and; D) 
61% glycol in oxidant layer. E) The RMS roughness measured at length scales of 1 and 10 μm 
(Note: RMSstd dev. < 10% relative for all samples and measured scan areas) 
 

 

3.5.  ToF-SIMS analysis of VPP PEDOT 

Positive ToF-SIMS spectra were analysed to study the extent of changes in surface 

chemistry with the incorporation of glycol into the PEDOT films.  As ToF-SIMS has a high 

surface sensitivity (ca. 1-2 nm), only the top most surface layer is analysed.  This aspect is 
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important, as it is the top layer which governs the interactions of proteins and cells with the 

substrate.   

 

In Figure 4 the normalised counts for major fragment ions assignable to PEG (45 amu) and PPG 

(59 amu) from the glycol surfactant are shown. The peak intensities were normalised using 126 

peaks in each ToF-SIMS spectrum.  The data show that both moieties were present on the 

PEDOT surface, and that their concentration increased as the amount of glycol within the oxidant 

layer was increased.  Small counts were recorded at 45 and 59 amu for 0 wt.-% glycol due to 

PEDOT-derived fragment ions with very similar masses to the glycol-derived fragment ions.   

Since glycol is a  high-energy material, a corresponding decrease in the contact angle should 

result as the concentration increases at the surface of the PEDOT film.  Thus, the Tof-SIMS 

spectra are in qualitative agreement with the contact angle data.  The XPS data on the other hand 

are not in agreement as they show a glycol plateau at 16 wt.-%, yet the contact angle decreased 

further as glycol within the oxidant layer was increased beyond 48 wt.-%.  Given the fact that 

XPS measures the first 7-10 nm of a material, compared to ToF-SIMS which measures the top 1-

2 nm, one can reconcile the two results by inferring that a glycol-rich surface is formed with a 

relatively less concentrated region just below, as the glycol within the oxidant layer is increased 

beyond 48 wt.-%.  This surface enrichment is not measurable by XPS due to its monolayer nature 

and the modest additional amount on the surface.  
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Figure 4. ToF-SIMS relative measurements of the PEG and PPG moieties in the glycol 
surfactant, which now resides within the PEDOT polymer surface (i.e. top 1-2 nm) for the 
different glycol weight percents originally in the oxidant layer. (95% confidence level with N = 
10 samples) 
 

 

3.6. Protein adsorption on VPP PEDOT 

Static PEDOT: The effect of surface characteristics of the VPP PEDOT 

formulations on protein adsorption was examined by studying the protein adsorption kinetics by 

QCM. Surface properties including the surface roughness and surface charge can significantly 

affect the behaviour of proteins at material surfaces, which can in turn influence cell attachment 

and proliferation at the surface. Fibronectin was chosen as a model serum protein whose 

adsorption characteristics have been well studied on different surfaces, particularly to understand 

cell adhesion dynamics at surfaces as it has been shown to be a mediator for cell attachment.[47, 

48] AFM measurements were taken prior to commencement of QCM analysis to evaluate relative 

surface area, allowing comparison of mass adsorption per unit area. The roughness and surface 

area of the 0 wt.-% PEDOT film was slightly higher than the other three PEDOT films tested 

(Fig. 3 and Table 2).  

 

Frequency versus dissipation curves indicated that there was no significant difference in 

the properties of the adsorbed protein layer, with a single binding event occurring.[47] The 

viscoelastic properties of the protein layers appeared to be comparable between the three surfaces 

containing glycol, with the exception being the layer deposited on the PEDOT without glycol 

(Table 2, Δf/ΔD ) which was slightly stiffer.  The conformation of the protein is thus likely to be 

similar on each surface, which is important as alterations in surface morphology, chemistry or 

surface charge can cause differences in the viscoelastic properties of the protein layer.  These 

properties indicate a similar water content of the adsorbed protein layer on each surface, allowing 

comparison between mass adsorbed per unit area for each surface.[47, 49]  

 

The mass of protein adsorbed to each surface was examined as the surface properties of 

the PEDOT films, particularly the contact angle and ToF-SIMS results suggested that there might 
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be significant effects on the adsorption of protein due to the increased level of glycol present 

(Fig. 4).  AFM indicated that no phase segregation was evident on the length scales investigated.  

The protein adsorption, however, did not appear to be significantly affected by the physical or 

chemical surface properties (Table 2), indicating that the glycol coverage on all samples was 

below the density required to significantly reduce protein adsorption.  

 

 
Table 2. Protein adsorption on PEDOT formed with different amounts of glycol in the oxidant 
layer as determined by QCM analysis. Surface area was determined from AFM measurements. 
Mass measurements are the mean of two independent samples and the error indicated is the range 
of these samples.  
 

Glycol in Oxidant 
Layer (wt.%) 

Surface area 
(% increase) 

Mass adsorbed 
(ng/cm2) Δf/ΔD 

0 7.6 1319 ± 137 -20.7 
24 0.7 1558 ± 103 -15.5 
48 2.8 1271 ± 106 -16.1 
61 1.5 1539 ± 62 -15.8 

 

 
 

Biased PEDOT: Application of charge to the PEDOT surface was examined to 

determine any direct effect of applied charge on the properties of the protein layer as it adsorbs in 

situ. The highest conductivity PEDOT formulation (48 wt.-%) was chosen to investigate the 

effect of charge application on fibronectin adsorption as this material showed no significant 

differences in protein behaviour, or cell adhesion or proliferation on its surface compared to TCP 

or the other PEDOT-glycol formulations tested (refer to next section).  

 

The mass adsorbed to biased surfaces was determined utilising the Voigt model method as 

previously explained. A general trend is seen with more mass adsorbed to the reduced samples 

compared with the oxidised samples (Fig. 5). In order to compare the masses directly, the 

mechanical properties of each layer should be similar. The Δf/ΔD ratio provides an indicator of 
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this measurement and shows that the mechanical properties of the fibronectin layers adsorbed to 

the biased surfaces are indeed different.  

 

 Following the application of +/- 100mV or +300 mV to the PEDOT substrate, the 

adsorbed layer of fibronectin did not appear to be significantly mechanically different to the 

adsorbed layer on the unbiased surface. However the application of higher reducing potential 

significantly altered the mechanical properties of the fibronectin layer. The -300 mV reducing 

potential caused the adsorbing layer to form a denser, less hydrated protein film, as indicated by 

the significantly higher Δf/ΔD ratio.  Whereas the application of an oxidising potential did not 

alter the Δf/ΔD ratio significantly from the unbiased protein layer properties. These results might 

suggest a significant difference in protein presentation on biased surfaces[50], particularly at 

reducing potentials.  

 
 

 
 
Figure 5. Properties of the fibronectin protein layer adsorbed to the 48 wt.-% PEDOT surface a) 
Representation of the trending change in adsorbed mass as a function of charge applied. Means 
represent the average of two samples and error bars represent the range. b) Changes in 
mechanical properties as a function of charge applied represented by the Δf/ΔD ratio. 
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3.7. Cell adhesion and proliferation on VPP PEDOT 

The following PEDOT samples were selected for cell work: 0, 24, 48 and 61 wt.% glycol 

addition. The adhesion of both fibroblast and keratinocyte cell lines was examined following a 2h 

incubation on the surface of the polymers (Fig. 6). Unbound cells were removed by washing and 

cell numbers quantified. The highest number of fibroblast cells were retained on TCP substrate 

after 2h incubation (Fig. 6a). This number was significantly higher (p<0.05) than adhesion to any 

of the PEDOT surfaces. Comparing between the PEDOT surfaces however, there was only a 

significant difference between the number of cells bound after 2h on 0 and 61 wt.-%.  This 

indicated that at the extremes of glycol incorporation there is a significant effect on cell adhesion; 

however, mid-range glycol incorporation does not significantly alter fibroblast cell adhesion.  A 

similar response was seen with keratinocytes, where a significantly higher number of cells 

(p<0.05) adhered to the TCP surface than to any of the PEDOT surfaces at 2h (Fig. 6b).  

 

Following 48h incubation on the surfaces, the fibroblast population remained at a higher 

number on the TCP substrate compared to the PEDOT substrates, however, good proliferation 

was maintained on all surfaces tested. The PEDOT substrates supported the proliferation of 

fibroblasts regardless of the amount of surface exposed glycol (i.e. surface energy) or the 

physical roughness.  The initial difference in cell adhesion observed at 2h did not impact on the 

proliferation of cells on the PEDOT surface with 0 wt.-% glycol, with this surface supporting a 

higher growth rate than the other PEDOT substrates. At 48 h a significantly higher cell number 

was reached on the 0 wt.-% glycol than on 61 wt.-% glycol surface. The keratinocyte cell line 

proliferated best on the 48 wt.-% substrate, with a significantly higher cell number reached than 

on 0 or 61 wt.-% after 48 h. The 0 wt.-% PEDOT material supported the lowest proliferation rate, 

significantly below that on TCP, 24 and 48 wt.-%.  

 

Taken together, these results suggest that the cell behaviour on these surfaces is cell line 

dependent, with 0 wt.-% supporting the lowest adhesion but highest proliferation rate of 

fibroblasts, and the lowest adhesion and proliferation rate of keratinocytes. The 0 wt.-% glycol 

substrate supported the lowest cell adhesion after 2h compared to the glycol composite PEDOT 

surfaces. This was contrary to speculation that the surface presence of glycol would inhibit this 
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binding event. Based on these results, it is likely that there are other physicochemical factors 

acting on the cell adhesion and proliferation kinetics.  

 

  
 

Figure 6: Cell adhesion and proliferation data of a) 3T3 fibroblasts and b) HaCaT keratinocytes 
on PEDOT substrates over 48 h. Means are averages of 4 replicates and error bars are standard 
error. * indicates significant difference between indicated measurements, ** indicates difference 
from all other measurements at the same time point.  
 

3.9. Cell morphology on VPP PEDOT 

Static PEDOT: The morphology of cells grown on the different polymers was 

visualised by staining the F-actin filaments of the cytoskeleton. Cells were imaged following 72h 

incubation on each surface and the morphology of the two cell types were compared to cells 

seeded onto the control TCP surface. There were no distinct differences observed between the 

different polymers tested with cells displaying similar morphology to those cultured on the TCP 

substrate, and with cell densities slightly higher on the TCP substrate compared to the PEDOT 

substrates (data not shown). This correlated well with the small differences seen in the cell 

proliferation studies. 

 

Biased PEDOT: Cell viability and morphology was visualised using Calcein AM 

cell permanent dye following 12h incubation on biased surfaces. Keratinocytes (Fig. 7 a-c) and 

fibroblasts (Fig. 7 d-f) each appear of similar morphology on biased and unbiased surfaces. The 

graph in Figure 7 shows analysis of average cell area per cell body on each treated surface for 
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keratinocytes (Fig. 7g) and fibroblasts (Fig. 7h). Statistical analysis shows that keratinocytes 

spread significantly better on reduced 48 wt.-% PEDOT (p≤0.05) while fibroblasts spread 

significantly worse on oxidised 48 wt.-% PEDOT (p≤0.05). As the presentation of protein at the 

surface is similar under similar treatment, these results indicate that the adhesion of cells to these 

treated surfaces is cell type dependent.  

 
 
Figure 7. Calcein stained images of live cells on PEDOT 48 wt.-% glycol which were biased 
prior to incubation with complete media, followed by cell seeding. Keratinocytes on variously 
charged surfaces (as indicated on image) are shown in a) to c); with fibroblasts shown in d) to f). 
Graphs shown in g) and h) show relative % area per cell body for each cell type. Means are 
averages of >6 analysed images with error bars indicating the standard error of the mean. * 
indicates significant difference to other measurements within the group. 
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4. Discussion 
 

4.1. Physical aspects of VPP PEDOT polymers   

Ex vivo tissue engineering offers a long term adjunct to conventional cell replacement 

methodologies, such as donor transplants or grafting, for the repair or replacement of damaged 

tissue.  Within the context of materials engineering, the ability to successfully create an artificial 

environment conducive to desired cell proliferation will depend on the characteristics that can be 

tailored into the candidate host materials.  Of the many possibilities, conducting polymers have 

shown considerable potential and, as such, have received significant attention in the bio-materials 

literature.  The ability to alter the physical, chemical and electrical properties of these polymers 

opens the door to a vast array of possibilities.  The focus of this study was to investigate whether 

VPP PEDOT could be used as a host substrate that would support in vitro studies, with the longer 

term goal of also using the polymer as the electrode in electro-stimulation studies. 

 

The synthesis of high conductivity PEDOT can be accomplished using several facile 

methods, of which one is VPP.  One of the easiest and most reproducible methodologies employs 

the surfactant glycol to moderate the polymerisation rate, resulting in high conductivity PEDOT. 

This comes at a cost, however, as the use of glycol results in the formation of a PEDOT-glycol 

composite material.  There are numerous studies reporting that the addition of glycol onto 

substrate surfaces has an adverse or inhibiting effect on the adhesion and proliferation of different 

cell lines.  To this end a systematic study was conducted to ascertain the presence of glycol on the 

surface of VPP PEDOT, and whether it was at a surface density that would be problematic. 

 

The highest conductivity PEDOT obtained in this study was ca. 1500 S.cm-1.  This was 

achieved using an oxidant layer loading of 48 wt.-% glycol, which produced a PEDOT polymer 

composite with 16 wt.-% (refer Fig. 2) glycol.  Increasing the glycol loading within the oxidant 

layer did not result in any additional glycol being present in the PEDOT according to XPS data.  

Interestingly, however, the advancing and receding contact angles decreased further when the 

glycol loading in the oxidant layer was increased to 61 wt.-%, even though XPS data indicated 

that the level of glycol had reached a plateau.  XPS is able to measure down to a depth of 

approximately 7-10 nm, and so cannot be considered a true surface sensitive technique.  To 
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elucidate this apparent conflict ToF-SIMS was utilised, as the penetration depth is only of the 

order of 1-2 nm.  The results (Fig. 4) showed that the topmost layer did indeed contain more 

glycol, even though XPS had indicated that the total glycol content had reached a plateau of 16 

wt.-%.  The XPS and ToF-SIMS results can be reconciled by suggesting that there is surface 

enrichment of glycol after the PEDOT matrix becomes saturated with glycol.  Such a conclusion 

is supported by the contact angle data which showed a monotonic decrease in both advancing and 

receding angles.  Given that there is a significant level of glycol present on the surface of the 

PEDOT film, AFM phase contrast imaging was employed to examine the glycol presentation at 

the surface. The technique however was unable to detect any phase changes at the length scales 

measured (i.e. 1 and 10 μm).  The result indicates that the incorporation of glycol within the 

PEDOT composite is at a length scale well below the typical dimensions of the cell lines used in 

this study.  Such a result suggests that the impact of glycol within the PEDOT polymer may be 

minimal in nature, and this aspect is discussed in the following section.  

 
4.2. Biological aspects of VPP PEDOT substrates  

 Glycol is well known for its antifouling capability, and for its non-toxic and non-

immunogenic behaviour. Its inclusion in biomaterial formulations is generally to inhibit 

interaction with proteins though it is also exploited for its mechanical properties. The PEDOT 

glycol composites examined in this study were prepared to exploit the high conductivity of the 

material. This desirable property as well as the good biocompatibility of PEDOT deems the 

material a good candidate for applying stimulus to cells and tissues. Protein adsorption is a good 

indicator of cell interactions at a surface, as cell adhesion is mediated by certain proteins. 

Fibronectin was examined as a model serum protein involved in the adhesion of many cell types. 

The interactions of fibronectin at the surface of each material was examined by QCM and 

indicated that there was a single binding event occurring to form the adsorbed protein layer. 

Similar properties observed on each PEDOT glycol composite surface despite the significantly 

different amounts of exposed glycol moieties at the material surfaces. The 0 wt.-% PEDOT 

surface was significantly rougher and displayed a slightly stiffer protein layer. The mass of 

protein adsorbed on the surfaces per unit area showed slight variations with 24 and 61 wt.-% 

adsorbing slightly higher amounts of protein than 0 and 48 wt.-% PEDOT, however these 

differences were not significant. These observations did not correlate with surface energy or 
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exposed glycol, indicating that there may be other contributing physicochemical factors which 

impact on protein adsorption. 

 The properties of the cell interactions with the PEDOT materials were then examined to 

determine any correlations with observed glycol content or protein behaviour. Initial adhesion of 

both cell types examined was lowest on the rough 0 wt.-% PEDOT surface, though this surface 

showed slightly higher adsorption of protein mass, indicating a possible role of surface 

topography on cell adhesion. Following initial adhesion however, each cell type behaved slightly 

differently on the surfaces, with fibroblasts proliferating best on 0 wt.-% PEDOT, even though 

initial adhesion was low, and keratinocytes proliferating best on 48 wt.-% PEDOT. Effects of 

glycol at the surface on the cell morphology also appeared to be insignificant with cells on 

PEDOT retaining a similar morphology to those on TCP at comparable time points. 

 Taken together, these high conductivity PEDOT surfaces with different amounts of 

surface exposed glycol appear to provide good support for cell adhesion and proliferation. These 

results indicate their suitability for further investigation into the delivery of electrical stimulus via 

the materials in the development of biomedical devices. 

 Examination of the effect of the application of charge to a material on protein interactions 

occurring at its surface provides insights into how a material will interact with cells and tissues in 

vivo. This study has shown that highly conductive PEDOT glycol composites are certainly 

compatible with different cell types. Charge application altered the surfaces in such a way that 

they interacted with the model protein tested here, fibronectin, in a manner dependent on the level 

of potential applied, and whether the material was pushed toward a reducing or oxidising 

potential. Oxidised PEDOT adsorbed less protein onto its surface, however the mechanical 

properties of the protein layer were maintained similar to unbiased PEDOT. This correlated with 

significantly less area covered by fibroblast cells, indicating lower adhesive properties of this 

protein coated surface. Reduced PEDOT however, while it demonstrated higher mass adsorption 

to its surface, also displayed altered mechanical properties of this adsorbed layer. This alteration 

towards a denser, less hydrated protein layer with increased reducing potential in turn altered the 

adhesion of keratinocytes, with these cells displaying more area covered per cell on this surface. 

The difference in cell spreading of the cell types tested indicate a difference in dependence on 

protein presentation vs. protein density at material surfaces between the two cell types.  
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5. Conclusions 
 
High conductivity PEDOT glycol composites display conductivities only one order of magnitude 

lower than some metals and alloys. This desirable property combined with its demonstrated 

ability to support the adhesion and proliferation of a number of cell types indicate this material to 

be a useful alternative to current metal technologies for implantable devices. An examination into 

the effect of biasing the PEDOT surface by the application of oxidising or reducing potentials 

revealed significant effects on the protein layer adsorbed at the surface, and hence cell-type 

dependent behaviour at the surface. This observed difference opens up the possibility of tuning 

PEDOT surfaces by the application of potential to alter cell behaviour at the material interface by 

influencing the mediating protein layer. 
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