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Abstract. Electrically conducting films in a time-varying transverse applied
magnetic field are considered. Their behavior is strongly influenced by the
self-field of the induced currents, making the electrodynamics nonlocal, and
consequently difficult to analyze both numerically and analytically. We present a
formalism which allows many phenomena related to superconducting and Ohmic
films to be modeled and analyzed. The formalism is based on the Maxwell
equations and a material current–voltage characteristics, linear for normal metals
and nonlinear for superconductors, plus a careful account of the boundary
conditions. For Ohmic films, we consider the response to a delta function source-
field turned on instantly. As one of few problems in nonlocal electrodynamics,
this has an analytical solution, which we obtain in both Fourier and real space.
Next, the dynamical behavior of a square superconductor film during ramping
up of the field, and subsequently returning to zero, is treated numerically. Then,
this remanent state is used as initial condition for triggering thermomagnetic
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avalanches. The avalanches tend to invade the central part where the density
of trapped flux is largest, forming dendritic patterns in excellent agreement
with magneto-optical images. Detailed profiles of current and flux density
are presented and discussed. Finally, the formalism is extended to multiply
connected samples, and numerical results for a patterned superconducting film,
a ring with a square lattice of antidots, are presented and discussed.

S Online supplementary data available from stacks.iop.org/NJP/15/093001/
mmedia
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1. Introduction

The flux dynamics in electrically conducting films experiencing a time-varying transverse
applied magnetic field is governed by the Maxwell equations, with the material characteristics
supplied as an additional relation between the electric field and current density. The systems
to be addressed in this work range from superconductors to Ohmic materials. To solve these
equations it is necessary to determine the currents induced in the film as the magnetic field
varies. This is a nontrivial task since one must also account for the significant self-field of the
induced currents, which makes the final relations nonlocal [1].

The electromagnetic behavior of type-II superconductors is often well described by
Bean’s critical state model [2]. For bulk samples initially zero-field-cooled below the transition
temperature, Tc, and then exposed to an increasing applied magnetic field, Ha, the model tells
that the material sets up lossfree shielding currents of critical density, jc. This current flows
in the same macroscopic regions as where the magnetic flux is allowed to penetrate, while the
inner unpenetrated part remains free of currents. In films, on the other hand, the electromagnetic
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nonlocality implies that induced currents flow in the entire sample [3, 4]. Thus, the film
behavior is qualitatively different from that of bulks, and magneto-optical imaging (MOI) of thin
superconductors has revealed strong piling up of the magnetic field around the sample edges,
where values far above Ha are reached [5]. At internal boundaries, such as the inner edge of a
planar ring, the field can, due to the nonlocal electrodynamics, be in the opposite direction of
the applied field [6, 7]. Strongly modified behavior is found also in films patterned with regular
arrays of small holes (antidots), which tend to guide the flux into the superconductor [8–11].

The response of Ohmic films exposed to varying transverse magnetic fields is also
described by nonlocal electrodynamics, but here the material responds linearly. Numerical
solutions for strip and disc geometries have shown that the combination of nonlocality and
dissipation causes a rapid penetration of a suddenly applied magnetic field [12, 13]. Different
from superconductors, even regions deep inside an Ohmic film are quickly penetrated by the
magnetic field.

A phenomenon that involves both the critical-state and Ohmic properties is the occurrence
of flux avalanches or flux jumps. These are commonly observed in type-II superconductors
at low temperatures, and are caused by a thermomagnetic instability which drives the
superconductor from the critical-state to a high resistivity state [14]. The instability is triggered,
e.g. by a small temperature fluctuation which reduces the flux pinning locally, and some
quantized flux lines, or vortices, will start moving. This creates local heat dissipation and the
temperature will increase even further, thus forming a positive feedback loop. The result can
be an exponential growth in the temperature and a large-scale runaway of magnetic flux. In
superconducting films the thermomagnetic instability is seen by MOI to manifest as abrupt
avalanches of magnetic flux, which form complex branching filamentary structures, so called
dendritic avalanches [15–21].

These avalanches can be modeled using the equations describing nonlocal and nonlinear
electrodynamics coupled with an equation for the production and propagation of heat [22].
Linearization of the equations has been highly successful in parametrizing the conditions
for onset of the instability, confirming that the nonlocal electrodynamics makes a significant
difference between bulk [23] and film geometries [19, 24–27]. Numerical simulations of the full
time evolution of the avalanches have produced dendritic flux patterns in excellent agreement
with the experimental MOI results [26, 28]. The propagation of these avalanches is extremely
fast—velocities up to 180 km s−1 have been measured [29], and the process is driven by
adiabatic heating [30]. During an avalanche the local temperature is expected to rise above
Tc, thus bringing for a very short time interval the superconductor to the normal conducting
state. In such cases, the process is governed by the interplay between supercurrents and Ohmic
normal-state currents.

In this work, we consider the electrodynamics of normal and superconducting films
in transverse applied magnetic field; see figure 1. The basic idea is that a wide range of
physical problems in this geometry can be described by the same formalism based on the
Maxwell equations, only by supplying a relation between electric field E and sheet current
J to characterize the material. Thus, we will describe the formalism in detail, with particular
focus on enforcement of the boundary conditions. Having described the formalism, we apply
the solution method to various physical problems. As a first example, we calculate the remanent
flux in a superconducting square, after the applied magnetic field has been increased to reach full
penetration, and then decreased back to zero. Due to the nonlocal electrodynamics, the field and
current distributions in the square are highly nontrivial. From the remanent state, we consider
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Figure 1. An electrically conducting film in time-varying transverse applied
magnetic field Ha(t). Due to the induced current, J , the sample partly expels
the transverse field component, Hz.

the evolution of dendritic flux avalanches, which means that we must model the propagation
of heat in the system, in addition to the electrodynamics. Our numerical solution is compared
with a MOI experiment which maps the magnetic flux distribution in a NbN superconductor in
descending magnetic field. As a separate problem, we consider the response of an infinite Ohmic
sheet to a delta function source field. This problem is analytically solvable and the solution sheds
light on the dynamics of Ohmic films, as well as the dynamics of dendritic flux avalanches,
which is driven by a normal domain invading a superconducting phase. Finally, we consider a
superconducting ring patterned with a regular array of antidots. This system is interesting due
to the conflicting symmetries of the sample and the antidot array, but rather difficult to handle
numerically due to the complicated sample layout. In total, all these problems demonstrate that
our formalism is powerful and flexible, as it can be applied to a wide range of physical problems
in the thin-film transverse geometry.

This paper is organized as follows. Section 2 describes the transverse geometry. Section 3
finds the remanent flux distribution in a square superconductor, and calculates also the analytical
solution for the field and currents in a normal metal film subjected to delta function source field.
Section 4 considers dendritic flux avalanches in the remanent state, both numerically and by a
MOI experiment. Section 5 considers the dynamics of a superconducting ring patterned with
antidots. Finally, section 6 provides the conclusion.

2. The transverse geometry

2.1. Connecting magnetic field and current distributions

A key element in solving magnetic flux dynamics problems in films placed in a transversely
applied field, Ha, both Ohmic and superconducting ones, is the relation between the distributions
of electrical current and transverse magnetic field Hz(x, y) over the (x, y)-plane defined by the
film. To establish the formalism used in this work, we assume the film thickness to be much
smaller than any length characterizing the patterns of flux and currents. The current density in
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the film can then be expressed as

j = J(x, y)δ(z), (1)

where J is the sheet current. It is convenient to introduce the local magnetization g = g(x, y)

as

J = ∇ × ẑg , (2)

where ẑ is the unit vector transverse to the sample plane. The total magnetic moment of the film
can then be expressed as

mẑ =
1

2

∫
r× j(r) d3r = ẑ

∫
g dx dy. (3)

By neglecting the displacement field, the Ampère law becomes

∇ ×H =
(
∇ × ẑg

)
δ(z), (4)

and Fourier transforms along the Cartesian axes give

iky H [3]
z − ikz H [3]

y = ikyg[2],

−ikx H [3]
z + ikz H [3]

x = −ikx g[2],

ikx H [3]
y − iky H [3]

x = 0.

Here H [3]
= H [3](kx , ky, kz) is the three-dimensional Fourier transform of H and g[2]

=

g[2](kx , ky). Conservation of magnetic flux, ∇ · H = 0, yields

ikx H [3]
x + iky H [3]

y + ikz H [3]
z = 0,

so that

H [3]
x =

ikx ikz

k2
H [3]

z ,

where k =

√
k2

x + k2
y . Thus, Hx is nonzero, and the same holds for Hy , which is a general feature

of films in the transverse geometry. Isolating H [3]
z gives

H [3]
z =

k2

k2
z + k2

g[2],

and inverse Fourier transform in z direction results in the final expression

H [2]
z =

k

2
e−k|z|g[2], (5)

where H [2]
z = H [2](kx , ky, z). For inversion, e.g. of magneto-optical images [31–33] one often

uses a finite z to account for a small gap between the sample and the field sensing, i.e. Faraday
rotating layer. However, for the flux dynamics calculations in this work we only consider the
expressions at z = 0.

The Hz–g relation will henceforth be denoted as the Biot–Savart law, and it can be written
as [34]

Hz(x, y) = Q̂ [g(x, y)] ≡ F−1

[
k

2
F [g(x, y)]

]
, (6)
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where F and F−1 is forward and inverse Fourier transform, respectively. The inverse relation is
equally simple,

g(x, y) = Q̂−1
[
Hz(x, y)

]
≡ F−1

[
2

k
F

[
Hz(x, y)

]]
. (7)

The above equations are exact on an infinite sheet. For films having a finite area, they are good
approximations for short wavelengths [1].

2.2. Iteration scheme

Consider a planar conducting film surrounded by vacuum, and with Hz known inside the sample
area defined by its boundary. Given the task to determine the local magnetization, g, the intuitive
approach is to use (7). However, this fails to give the correct result unless Hz is known over the
entire plane. An approach allowing g to be found correctly was invented by Brandt [1, 35],
and is based on a matrix inversion scheme. The approach proved to work very well for simple
geometries which can be represented by a fairly small number of discrete grid points. Later,
the numerical performance of the matrix inversion was improved by using a congruent gradient
method [36, 37].

An alternative approach is to try and extrapolate Hz(x, y) to the outside area, and then
apply (7). For an infinitely long strip, this can be done by symmetry considerations, as shown
by Aranson et al [26]. In this work we consider far more general geometries, and will calculate
Hz making use of the fact that outside the sample one has g = 0. Our scheme is iterative, and as
will be demonstrated, computationally efficient [28].

To describe our approach, it is convenient to define a function representing the projection
on the sample,

S(x, y) =

{
1, inside the sample boundary,

0, outside the sample boundary.
(8)

The corresponding projection on the outside region is 1 − S(x, y). For brevity, the argument
(x, y) is omitted in the next expressions. The iterations start by defining a trial function H (i)

z ,
which has correct values inside the sample, i.e. SH (i)

z = SHz, and given by an initial guess
for the field outside, (1 − S)H (i)

z . The quantities to be determined by iterations are (1 − S)Hz

and Sg.
The local magnetization, the correct and anticipated one, is then expressed respectively as

g = Q̂−1
[
Hz

]
, g(i)

= Q̂−1
[
H (i)

z

]
.

Whereas g is initially unknown, the g(i) can be evaluated. Since Q̂ is linear one has

Hz = H (i)
z + Q̂

[
g − g(i)

]
or

Hz = H (i)
z + Q̂

[
(1 − S)(g − g(i))

]
+ Q̂

[
S(g − g(i))

]
,

and using that (1 − S)g = 0, this may be written

Hz = H (i)
z − Q̂

[
(1 − S)g(i)

]
+ Q̂

[
S(g − g(i))

]
. (9)
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Figure 2. An x-array of strips with thickness d, width 2w and center-to-center
distance 2L placed in a transverse applied magnetic field.

As a first iterative step, we neglect the term in (9) containing the deviation g − g(i), and label
the new approximation by H (i+1)

z , i.e.

H (i+1)
z ≡ H (i)

z + 1H (i)
z , (10)

where

1H (i)
z = −(1 − S)(Q̂[(1 − S)g(i)] + C (i)). (11)

Here the constant C (i) compensates for the omitted term, and is given the value required by flux
conservation ∫

H (i+1)
z dx dy = 0. (12)

The H (i+1)
z is an improved approximation to Hz, and we repeat the whole procedure s times

until (1 − S)g(s) becomes vanishingly small. In this case g(s) gives the correct magnetization
distribution, and we have successfully inverted the Biot–Savart law.

2.3. Test case: array of superconducting strips

In order to illustrate the iteration scheme, the algorithm will first be applied to a reference
case with known analytical solution. We consider a periodic arrangement of infinitely long
superconducting strips in the Bean critical-state, where an exact solution was obtained by
Mawatari [38]. The configuration is seen in figure 2, where three strips in an infinite array
are shown. Each strip has width 2w, thickness d and center-to-center distance 2L . Due to the
magnetic field applied in the z-direction, the magnetic flux penetrates from both sides of the
strips. For the strip centered at x = 0, the flux front position is at |x | = a, and the magnetic flux
distribution is given by

Hz(x) = Hc


0, |x | < a,

artanh(1/|ϕ(x)|), a < |x | < w,

artanh|ϕ(x)|, w < |x | < L ,

(13)

where Hc = Jc/π . The corresponding sheet current is

Jy(x) = Jc

{
−

2
π

arctan ϕ(x), |x | < a,

−sgn(x), a < |x | < w,
(14)

where the function ϕ(x) is

ϕ(x) =
tan(πx

2L )

tan(πw

2L )

√
tan2(πw

2L ) − tan2(πa
2L )

| tan2(πa
2L ) − tan2(πx

2L )|
. (15)
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Figure 3. The iterative scheme for inversion of the Biot–Savart law compared to
Mawatari’s analytical result. For increasing number of iterations i = 0, 1 and 5,
the magnetic field Hz, local magnetization g and sheet current Jy are closer to
the analytical results. At i = 5 they are almost identical.

The width of the fluxfree area, 2a, shrinks with the increasing applied field according to

sin
(πa

2L

)
=

sin(πw

2L )

cosh( Ha
Hc

)
. (16)

Let us now assume that the magnetic field distribution, equation (13), is known over the
area of the strip, |x | < w, and based only on that, set out to determine both the sheet current,
J , and local magnetization, g. We use (10) and iterate over an area 2L × 2L , discretized on
a 256 × 256 equidistant grid. The calculations were performed using L = 1.5 and Ha = 0.5 in
units where Jc = w = 1. As initial guess we set H (0)

z (x) = const. in the area between the strips.
The results obtained after zero, one and five iterations, are presented in figure 3. In spite

of a poor initial guess for the outside field, already after one iteration, the result is very much
improved. The largest deviation is that significant currents flow in the region between the strips.
However, after five iterations this unphysical feature is negligible, and the numerical and exact
solutions are practically the same. Thus, we conclude that our iterative inversion scheme is very
rapidly converging toward the exact solution in this nontrivial test case.

3. Flux dynamics

3.1. Superconducting films

Consider now the more general situation where a superconducting film of finite size is
experiencing a time-varying transverse homogeneous applied magnetic field, Ha(t). We want
to calculate numerically the electrodynamics as the field is gradually changing. In such cases,
electrical currents will be induced in the sample, setting up their own magnetic self-field. The
total transverse field, Hz, has therefore two contributions

Hz = Ha + Q̂ [g] , (17)

where the last term represents the induced field (6). Taking the time derivative and inverting this
equation, one gets

ġ = Q̂−1
[
Ḣz − Ḣa

]
. (18)
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Outside the sample, Ḣz is found by a boundary condition, as described in section 2.2. Inside
the sample area, Ḣz is found using the Faraday law, µ0 Ḣz = −(∇ ×E)z, which combined with
a material law E = ρ J/d gives

Ḣz = ∇ · (ρ∇g)/µ0d, (19)

where the resistivity ρ represents the material characteristics. The conventional material
characteristic used to describe a superconductor in the slow dynamics, or flux creep regime,
is a power law

ρ = ρ0

(
Hz

Hc2

)m (
J

Jc

)n−1

, (20)

where ρ0 is a resistivity constant, Hc2 is the upper critical field and Jc = d jc the critical sheet
current. The exponent m is typically small, while the creep exponent n � 1. For high-Tc

superconductors, e.g. YBa2Cu3Ox , one commonly finds n = 10–70 [39, 40], while for MgB2

exponents as high as n = 78 were found at T = 25 K [41]. In conventional superconductors flux
creep is not observed unless very close to Tc, so in simulations one may then set n sufficiently
large to make creep negligible.

In this work we present simulation results for both stable flux creep dynamics, and for the
far more dramatic flux avalanche dynamics. We illustrate first the numerical scheme by applying
it to the smooth dynamics when the applied field is ramped from zero and up to a value giving
essentially full flux penetration, and then back again. This produces a remanent state which
contains trapped flux, and is the state used in section 4 as starting point for simulations of
avalanches.

To solve the dynamical equations numerically we convert them to dimensionless form,
assuming that Jc and |Ḣa| are constants. Based on the sample half-width w, and the parameter

J0 ≡ Jc

(
dwµ0|Ḣa|H m

c2

ρ0 J m+1
c

) 1
n+m

, (21)

we choose dimensionless quantities as ˜̂Q
−1

≡ Q̂−1/w, t̃ ≡ t |Ḣa|/J0, g̃ ≡ g/(wJ0) and H̃ ≡

H/J0. In these units the ramp rate satisfies |dH̃a/dt̃ | = 1, and the only free parameters are
the exponents m and n. We will henceforth omit the tildes when writing the dimensionless
quantities. The sample of size 2 × 2 is embedded in a 2.6 × 2.6 square which is discretized
on a 512 × 512 equidistant grid. The results are obtained by solving (18) with constant creep
exponent n = 29 and m = 0. The number of iterations in (10) is i = 6.

Shown in figure 4 (left) is the flux distribution and current stream line patterns after
increasing the applied field to Ha = 1. The field along the sample edge is much higher, reaching
values nearly twice as large close to the mid-point of the sides. The flux front reaches almost to
the center of the sample forming a flux density pattern often observed in MOI experiments [5].
The current streamlines are in the flux-penetrated regions essentially equidistant, and display
sharp turns at the diagonals, as typical for a square sample in the critical state [1]. A slight
overall convexity of the streamline loops is due to the finite creep exponent.

The two panels on the right show the state after the applied field was ramped down to zero.
In this remanent state the edge field is reversed. As seen in the current map below the regions
of maximum current are now tongue-shaped extending from each side of the square. Here, the
nearly equidistant stream lines represent current flow in opposite direction as compared to those
in the left panel. Only in the central part of the sample is the J circulating the square in the
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Figure 4. Distributions of the magnetic field, Hz, and electrical current
magnitude, J , near full penetration (left) and in the subsequent remanent state
(right) in a square superconducting film. Note that the two flux density maps
have different scales. The current maps include also the stream line pattern of
the flow.

same direction as at maximum applied field. However, the magnitude J is in a large central area
far below Jc, and the current flows in a different pattern. The result is in good agreement with
scanning Hall probe measurements [42], MOI and previous numerical simulations [43, 44].

We return to this remanent state, when reporting simulations of avalanche dynamics. Since
the transient electromagnetic behavior during flux avalanches in superconductors involves rapid
localized variations in the field taking place in normally conducting regions, we present next, as
reference, a useful exact solution to a generic dynamical problem for an Ohmic film.

3.2. Ohmic films

When a uniform magnetic field is suddenly applied transverse to a normally conducting film,
electrical currents will be induced everywhere in the specimen. This global character of the
response has similarities to that of superconducting films. The case considered here, is a delta
function source-field applied instantaneously to an infinite sheet of normal conductor, with
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resistivity ρ0. Let the applied field be described by

Ha = H0 δ2(x, y) 2(t), (22)

where H0 is the field strength, δ2 is the two dimensional delta function and 2 is the Heaviside
step function. The dynamical response is described by (18), combined with Ohm’s law,
E = ρ0 J/d. One then gets

ġ = Q̂−1
[
v0∇

2g − Ḣa

]
, (23)

where Q̂−1 is the inverse Biot–Savart operator (7) and v0 = ρ0/(dµ0) is a constant of dimension
velocity. Fourier transforms yield

−iω
k

2
g[2+1]

= −v0k2g[2+1]
− H0, (24)

where g[2+1] is the Fourier transform of g in two spatial dimensions plus time. Isolation of g and
transforming back to time domain for t > 0 gives

g[2]
= −H0

2

k
e−2v0kt . (25)

This means that the eddy currents and magnetic fields decay with characteristic time

τ = l/(4πv0) = µ0 dl/(4πρ0), (26)

where l = 2π/k is the wavelength. Thus, the longest decay times are found for the largest
wavelengths. Note that the characteristic time for films is shorter by a factor d/ l compared
to the slowest decaying modes in bulk Ohmic samples [45]. Interestingly, (26) gives results in
fairly close agreement with the numerical evaluation of relaxation times after a uniform field is
abruptly applied to conducting strips and discs [12, 13]. This shows that the decay time is only
weakly sensitive to the spatial profile of the applied field excitation as well as the shape of the
Ohmic film.

Inverse Fourier transform in space of (25) yields the result

Hz = Ha −
H0

π

v0t

(r 2 + (2v0t)2)3/2
. (27)

At t → 0+, the self-field is proportional to a delta function, which means that it shields exactly
the applied field. At all times, (27) conserves flux, since

∫
d2r Hz = 0.

The corresponding decaying sheet current is given by

Jϕ =
H0

π

r

(r 2 + (2v0t)2)3/2
. (28)

The sheet current has a maximum at

r0 =
√

2v0t, (29)

i.e. the peak moves with a constant velocity
√

2v0, similar to the eddy current front in disc after
a uniform magnetic field is instantly applied [13].

Shown in figure 5 are the spatial profiles of the self-field, Hz − Ha, and the shielding
current, Jϕ , plotted at times t = 0.01, 0.1 and 1, in units where H0 = v0 = 1. In the beginning
the self-field is focused near x = 0, and with time it decays and becomes increasingly uniform.
The result shows that (23) produces a solution that is very different from that of a diffusion
process. In particular, there is no well defined diffusion front, since both magnetic field and
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ϕ

Figure 5. An Ohmic film exposed to a delta function source-field applied at
t = 0. At t = 0 the self-field Hz − Ha shields the applied field completely, while
at times 0.01, 0.1 and 1 the shielding is gradually reduced due to the decay of the
shielding currents Jϕ .

currents decay algebraically as J ∼ 1/r 2 and H ∼ 1/r 3 at large r . This contrasts the heat kernel
solution of the ordinary diffusion equation, which decays exponentially.

Although this calculation is exact only for an infinite film, the behavior of the shorter
wavelengths should be reasonable approximations for finite normal domains.

4. Dendritic flux avalanches in superconductors

Dendritic flux avalanches appear in descending as well as ascending magnetic field. Since
avalanches in descending field appear on a highly nontrivial background, it is interesting to
study their properties. However, a numerical simulation of the full process, from initially zero-
field-cooled state, to the reentrant stability at full penetration, and then back down, with the
thermal feedback turned on, is computationally demanding. Therefore, we will here consider
a simpler scheme, where the remanent state is prepared with the thermal feedback turned off,
i.e. we assume that there are no avalanches, the temperature is everywhere T = T0, and the flux
and current distributions are as described in figure 4. From this background, we will explicitly
trigger the dendritic flux avalanche by a heat pulse near the edge, and consider its development.

We will in this section describe the equations governing the flow of heat, the solution
method, the units and how to rescale the previous result for the remanent state to these units. We
will consider the time evolution of dendritic flux avalanches nucleated at two different locations.
For comparison, we show the flux distribution of a superconductor in descending field, mapped
by the MOI method. Videos showing the time evolution of the simulated avalanches are provided
as supplementary material (available at stacks.iop.org/NJP/15/093001/mmedia).

4.1. Preparation of the pre-avalanche state

Due to motion of vortices there is heat dissipation in type-II superconductors experiencing a
varying external magnetic field. Since many of the material parameters, most notably Jc and n,
depend on temperature, the dissipation will interfere with the electrodynamics. Thus, in order
to get a complete description of the dynamics it is necessary to model, in addition to the
electrodynamics, also the propagation of the produced heat.
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Consider a superconducting film in thermal contact with a substrate of constant temperature
T0. The propagation of heat can then be described by the equation

cṪ = κ∇
2 T − h (T − T0) /d + J E/d, (30)

where c is the specific heat, κ is the lateral thermal conductivity, h is the coefficient of heat
transfer to the substrate and the last term represents the Joule heating.

To transform (30) into a dimensionless form, one needs to decide on convenient scales
for normalization. The most difficult scale to decide is the time scale, since our problem is
composite, with physical processes at many different time scales. Under the assumption that
a dendritic flux avalanches mainly propagates due to a domain in the normal state invading
a superconducting domain, it is natural to chose a time scale appropriate for the decay of
normal currents, as discussed in section 3.2. Thus we let t̃ = tρ0/dwµ0, where ρ0 is the normal
resistivity of the superconductor at Tc. This means that the time t̃ ∼ 1 is characteristic for
the decay of modes with size 4πw. For the other quantities, we let T̃ = T/Tc, J̃ = J/d jc0

and Ẽ = E/ρ0 jc0, where jc0 is the critical current density at T = 0. Since this set of units
is appropriate for describing the fast decay of normal currents during the propagation of the
dendritic flux avalanches, the rate of change of the applied field is typically very small in
comparison, i.e. dH̃a/dt̃ � 1.

The heat propagation equation then becomes

dT̃

dt̃
= α∇̃

2T̃ − β(T̃ − T̃0) + γ γ̄ J̃ Ẽ . (31)

Here α is dimensionless heat conductance, β is dimensionless constant for heat transfer to the
substrate and γ is a Joule heating parameter. These constant parameters are defined as

α ≡
µ0dκ

ρ0wc
, β ≡

µ0wh

ρ0c
, γ ≡

µ0wd j2
c0

Tcc
, (32)

where the material parameters at the right-hand-sides are evaluated at Tc. The temperature-
dependence of γ is taken as γ̄ (T ) = c(Tc)/c(T ). In this work only the phonon contribution
to c, giving γ̄ = T̃ −3 at low temperatures, is taken into account. We have also assumed that the
fractions κ/c and h/c are temperature-independent.

Henceforth we will skip the tildes when reporting the results in dimensionless units.
In order to simulate the thermomagnetic instabilities one must specify temperature

dependences of Jc and n in addition to the thermal parameters α, β and γ . We let

Jc = Jc0 (1 − T ) , n = n0/T . (33)

The resistivity is

ρ =

{
1, T > 1 or J > Jc,

(J/Jc)
n−1 , T < 1 and J < Jc.

(34)

Equation (34) describes a flux creep regime at J < Jc and T < 1, normal resistivity at T > 1,
and a high-resistivity flux flow regime at J > Jc. The latter implies that we have taken into
account the flux flow instability [46, 47]. This instability, which must not be confused with the
thermomagnetic instability, makes the flux flow nonlinear at high electric fields. When the vortex
velocity is higher than a critical value, v∗, the resistivity jumps from the usual flux resistive
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ρ0 H/Hc2 to the much higher value ρ0. In (34), we have assumed that inside the avalanche, the
flux motion satisfies v > v∗, wherever J > Jc.

The simulation of the evolution of dendritic flux avalanches will be based on the remanent
state of figure 4. It must then be transformed from units where Ḣa = 1 to units with Ḣa � 1.
The relevant conversion factors are

u ≡ Jc

(
Ḣa/Jc

) 1
n , v ≡ u/Ḣa. (35)

The physical quantities will then transform as g → ug, J → u J , H → u H , t → vt and E →

uE/v.
In the runs, the dimensionless parameters that characterize the thermal properties of the

sample, equation (32), are selected as α = 2 × 10−5, β = 0.05, γ = 10. For the ramp rate and
substrate temperature, we chose Ḣa = 10−10 and T0 = 0.2. This gives Jc = 0.8 and n = 100
when n0 = 20. The conversions factors become u = 0.64 and v = 8 × 109.

The spatial disorder usually present in superconducting films manifests itself in a
nonuniform Jc0. Hence, a random disorder is added to model by assigning each grid point with
Jc0 → 1 + 1(r − 1/2), where 1 = 0.05 and r ∈ (0, 1) are random numbers.

4.2. Symmetric nucleation

Based on the remanent state, an avalanche is nucleated centrally at one side of the sample by
assigning T = 1.5 in a small area close to the edge. Figure 6 shows Hz, J and T at times t = 1,
5 and 40 after the nucleation.

At t = 1 (left column of figure 6) only the critical state region is affected, and the avalanche
is mainly visible in Hz and T as a long, thin filament with some tendency of branching. Some
of the flux is negative, which means that the avalanche partly consists of positive flux leaving,
partly of negative flux entering the sample. The heating is significant, with most of the avalanche
already heated above the critical temperature. Yet, the tip is still superconducting, in a flux-flow
state with high resistivity. The effect on the sheet current J is less visible, although the value
drops locally inside the avalanche. As typical for the remanent state, the direction of the J along
the edge is such that it favors positive flux leaving and negative flux entering the sample.

At t = 5 (middle column) the avalanche spreads out into the inner parts of the sample. At
this stage the avalanche prefers to invade the regions with highest flux density. The explanation
of this behavior is in the sheet current pattern, where the branch tips are seen to propagate
transverse to the current stream lines, i.e. in the direction of the Lorentz forces density
FL = µ0 Hz ẑ ×J . At the same time, due to the nonlocality of the equations, the propagating
avalanche distorts the current density in a large portion of the sample.

At t = 40 (right column) the avalanche has essentially reached its largest extent, and due to
the efficient heat removal to substrate, the branches are now colder. Because of the symmetric
nucleation, the avalanche is almost symmetric, but not entirely, since the state prior to the
avalanche was seeded with randomly distributed disorder.

The avalanche is large and destructive as it affects the distribution of flux and currents
in the entire sample. Another most dramatic effect is the strong change of the critical state
region around the edge. Before the avalanche took place, the state was just as described by the
critical state model, with constant current density and stream lines with almost equal spacing
starting from the edge. After the avalanche the critical state has vanished completely, leaving
a current density which is less than the half of the original value and stream lines that are no
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Figure 6. The development of a avalanche in the remanent state showing Hz, J
and T at times 1, 5 and 40 after the nucleation.

longer parallel. This means that the consequences are a lot more severe for the avalanches in the
remanent state than in ascending field, where the critical state is destroyed only in the vicinity
of the avalanche [30].

Worth noticing is also that at t = 40, there are small, embryonic avalanches appearing close
to the edge at both sides of the large avalanche. However, due to the above mentioned destruction
of the critical state, these are unable to develop into full avalanches, and therefore remain small.

4.3. Off-center nucleation

Here we investigate how the evolution of dendritic avalanches depends on the location where
it is initiated. We explore this by nucleating an avalanche away from the center of the side of
the square. We use the same remanent state and disorder configuration as for the symmetrically
nucleated avalanche in figure 6.

The results of such an asymmetrically nucleated avalanche is shown in figure 7, with Hz,
J and T obtained at t = 1, 5 and 40. The avalanche is nucleated close to the upper left corner,
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Figure 7. The development of an off-center nucleated avalanche showing Hz, J
and T at times 1, 5 and 40 after the nucleation. The vertical line in the upper left
panel defines the y-axis viewed in figure 8.

and spreads out and fills nearly the whole inner part of the sample. The size, shape and time
evolution of the avalanche shows much resemblance with the avalanche in figure 6, but the
symmetry of the final state is entirely different. The final state looks like a loop also in this case,
but it closes on the bottom right corner.

For the off-center triggered avalanche, all the main features discussed for the centrally
triggered avalanche are present: the enormous size, the extensive spreading into the regions
with highest flux density, the negative flux inside the avalanche, the destruction of the critical
state and finally the appearance of embryonic avalanches at the edge.

Some profiles of Hz, J and T along the y-axis (vertical line through the center of the
square) at times 1, 5 and 40 are shown in figure 8. At t = 1 all profiles are as expected for the
remanent state in the critical state model. In Hz(y) at t = 5 one sees the finger-like structures
penetrating the places where the flux density was highest. The fingers consist of positive flux,
while at t = 40 there is also significant amounts of negative flux in the avalanche. The overall
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Figure 8. The Hz, J and T profiles along the y-axis at t = 1, 5, 40, for the off-
center nucleated avalanche in figure 7.

|Hz(y)| after the avalanche, both inside and outside, is much closer the zero than the state prior
to the avalanche. The Jx(y) profiles are complex as the currents of the fingering structures go in
opposite directions on each side of the fingers. More than anything, the Jx(y) shows that after
the avalanche event, the critical state has vanished completely. Moreover, there is no clearly
preferred direction of the current. For example, one sees that close to the edge there is a thin
layer with reversed current direction. The T profiles at t = 5 shows individual hot branches
with temperatures just below Tc. At t = 40 it is no longer possible to distinguish the different
branches as the thermal diffusion has smeared the temperature profiles.

4.4. Validity of the model

The macroscopic model applied for simulation of dendritic flux avalanches in this work has
previously been shown to work quantitatively for superconducting MgB2 [30]. Quantitative
applicability of the model to other materials may, however, pose several questions. First, we
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have assumed that the temperatures of electrons and phonons are the same. In materials with
high normal resistivity, such as NbN, this assumption will not necessarily hold because of the
fast decay of normal currents. Indeed, using the estimate from section 3.2, τ = µ0dl/(4πρ0),
for the decay time of a mode of size l, with ρ0 = 10−6 � m, d = 100 nm and l = 1 mm, one gets
τ = 10−11 s. This is shorter than the electron energy relaxation time in NbN [48]. The second
issue is that the avalanches are very fast. As follows from section 3.2 and the simulations
of sections 4.2 and 4.3, the speed of the avalanche front was found to be of the order of
v0 = ρ0/(dµ0). With the above numbers for NbN, we get v0 = 8 × 106 m s−1, which exceeds
the speed of sound, and even the Fermi velocity. This fact should, however, not destroy the
validity of the model since a front motion is not related to the physical motion of electrons or
phonons. Instead the front moves by folding of flux lines through the vacuum at the sides of
the film (see figure 1). Therefore, v0 is a genuine characteristic of nonlocal electrodynamics
in thin films. The third point is that we have neglected the effects of finite film thickness. To
improve this one has to modify (4), preferably also with the finite London penetration depth, if
the film is superconducting. Fourth question is related to the validity of the nonretarded power
law E–J curve (34) for description of fast processes, as it is usually associated with the rather
slow thermally activated hopping of vortices [49]. Extension of the model to take into account
the retardation at a macroscopic level is a challenging task, which will not be addressed in this
work.

4.5. Magneto-optical imaging of avalanches

In order to validate the correctness of the numerical solution of the dendritic flux avalanches
in the remanent state, MOI experiments were performed. The sample was a 180 nm thick NbN
superconducting film shaped as a square of sides 5.35 mm. Placed on top of the sample was
an in-plane magnetization ferrite garnet film used as Faraday-rotation sensor [50]. Since the
Faraday rotation increases monotonously with the perpendicular component of magnetic field,
one can by polarized light microscopy create a map of the magnetic field distribution above the
film [31].

The sample was initially zero-field-cooled to 4 K and magnetic field was applied
perpendicular to the film. During the ascending field ramp, there were many avalanches, but
due to the reentrant stability in high fields, the full penetration state at 17 mT was critical state
like [20]. In descending field, the flux dynamics was for a long time smooth and at 10.5 mT the
flux distribution was as shown in the small image in figure 9. Then, suddenly, a large avalanche
stroke, and in a short time, it entered a large portion of the sample. This large avalanche, seen
in the main image of figure 9, is typical for avalanches in descending field, near the avalanche
threshold temperature [16].

Although the avalanche did not strike exactly in the remanent state it is close enough to be
used in a qualitative comparison with the simulation. First we note that the avalanche has a clear
similarity to the simulated flux avalanche in figure 7, as it avoids the critical state region close
to the edges and instead it invades the region with highest magnetic flux density. The size and
extent of the avalanche is also similar. The majority of branches are dark meaning that the flux
density is low. Some of the branches are white. In this case it is not clear if this means negative
flux, as was reported in the simulations, or positive flux, since the image only shows the absolute
value of Hz. One more detail worth noticing, is the appearance of embryonic avalanches at the
edge of the sample, just as predicted by the numerical simulations.
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Figure 9. The state before (left) and after (right) a large dendritic flux avalanche
in a NbN film, in descending applied field, mapped with MOI technique.

The main discrepancy between the flux distribution of the simulation and the magneto-
optical experiment is the width of the branches. In the experiment they are much more narrow
than in the simulation. This is an indication that the NbN film has lower value of the effective
heat diffusion parameter α, given in (32), than what was used in the simulation. However, due
to the limited spatial resolution one cannot run the simulations with smaller values of α without
at the same time increasing the number of grid points.

5. Film with antidots

The formalism described in section 2 for modeling the dynamics of thin-film superconductors in
transverse field, is valid only for simply connected samples. We will now extend the formalism
to multiply connected samples. This gives us the opportunity to study also the flux dynamics
of superconducting films with antidots (nonconducting holes). This is of interest since—due to
the nonlocal electrodynamics—the presence of antidots may strongly influence the distribution
of flux and current in the films. For example, it has been reported that patterning with regular
arrays of antidots makes the magnetic flux penetration anisotropic [8, 10]. Currently, there are
only few numerical simulation works that has considered the critical state flux penetration in

New Journal of Physics 15 (2013) 093001 (http://www.njp.org/)

http://www.njp.org/


20

samples patterned with antidots [9, 11, 51–54]. In order to improve the theoretical knowledge
on the field, we will here consider the numerically challenging sample configuration of a
superconducting ring patterned with a square array of disc-shaped antidots.

Let us first consider the boundary conditions. When the film contains holes of any shape
and number, their presence can be implemented by an iterative scheme similar to that described
in section 2.2. For each hole, labeled α = 1, . . . , N , we then define the hole projection

hα(x, y) =

{
1, inside hole α,

0, outside hole α.
(36)

Equation (10) now becomes

H (i+1)
z = H (i)

z + 1H (i)
z +

∑
α

1H (i)
z,α, (37)

where

1H (i)
z,α = −hα(Q̂α[hαg(i)] + C (i)

α ), (38)

which allows Hz in each hole to be reconstructed. The constants C (i)
α are fixed by the flux

conservation condition∫
1H (i+1)

z,α dx dy = 0. (39)

The operator Q̂α can be any implementation of the forward Biot–Savart law. In general, it
is beneficial to use different implementations for large and small holes. For large holes, the best
is to let Q̂α = Q̂, i.e. the full Biot–Savart law (6). The drawback of this approach is that it runs
over all grid points. The advantage is that the linear operator Q̂α can be moved outside the sum
in (38) when there are more than one large hole. For small holes one can use an implementation
of Q̂α which for each hole only loops over the grid points in the hole. For convergence of the
procedure the input to the operator Q̂α should first be shifted to minimize contributions from
the edge of the hole. This will reduce the damaging effect of the sharp cut made by hα.

Let us consider the flux penetration in a superconducting ring with antidots patterned in a
square grid. This layout allows us to illustrate the consequences of electromagnetic nonlocality
and nontrivial dynamics given the conflicting symmetries of sample and the array of antidots.
In units where the outer radius is R = 1 and Ḣa = 1 (same as the remanent state of section 3.1),
the inner radius is 0.8, and the antidots, 385 in total, have radii a = 0.013. The center-to-center
distances of the antidots are 4a. In order to apply the boundary conditions, the ring is embedded
in a square of size L x = L y = 1.3, which is discretized on a 1024 × 1024 equidistant grid.

The left panel of figure 10 shows the flux distribution at Ha = 0.2 when flux has fully
penetrated the ring, starting to fill the central hole with flux. The outer edge is white indicating
high flux density and the inner edge is dark indicating negative flux, as typical for the ring
geometry [6]. This means that the currents flow in a clockwise direction everywhere in the ring,
contrary to a strip where currents flow in both directions. The local flux distribution inside the
sample is much distorted due to the presence of the antidots. The current stream lines has to
bend around the antidots and this induces a large amount of flux in the antidots. The flux is
negative toward the outer edge and positive on the other side of the antidot. For the holes closest
to the inner edge of the ring the situation is opposite. This means that the inner edge to large
extent behaves like an outer edge subjected to a negative applied field.
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Figure 10. The flux and currents distribution in a ring with small round antidots
arranged in a rectangular pattern. The left image shows Hz in half of the sample,
the central panels show close-up views of Hz at 45◦ and 90◦ orientation, and the
right panels show the corresponding J .

The four right panels show close-up views of Hz and J around 45◦ and 90◦ direction. The
J -maps show that there are connected critical state region with J ≈ 1 extending from the outside
to the inner edge of the ring. The critical state connected regions follow the symmetry of the
antidot lattice and these act like channels for easy flux penetration [11, 52]. Hence, the antidot
lattice makes the flux penetration anisotropic, in good agreement with previous magneto-optical
experiments on superconducting discs patterned with antidots [8, 10].

Between the antidots there are places where J < 1. This is a feature that cannot be predicted
by the Bean model and it shows that it is necessary to solve the time-dependent equations to get
a correct description of the state. These sub-critical pockets may be of technological relevance
because they imply that sample patterned with periodic antidot arrays has better shielding
properties for local magnetic fields than unpatterned samples.

6. Conclusions

The macroscopic electrodynamics of thin films, either superconducting or Ohmic, in transverse
applied field can be modeled by the Maxwell equations. The formalism is capable of handling a
wide range of physical systems, where the material-specific properties are introduced as an E–J
relation, which is linear for Ohmic conductors, nonlinear for superconductors. A challenging
point in the formalism is to calculate the currents for a known distribution of the magnetic field.
We solve this problem by a hybrid real space—Fourier space iterative scheme, which is both
computationally efficient and is able to handle also samples with nonsymmetric boundary.
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When magnetic field is increased to reach full flux penetration and then decreased to
zero, superconductors with strong flux pinning experience that a large amount of remanent
flux is trapped inside the specimen. Both the distributions of current and magnetic field in this
remanent state are highly nontrivial, as we showed by a numerical simulation on a film with
square shape. In order to consider how dendritic flux avalanches evolve on the background of
the remanent state, we developed the formalism for rescaling solutions and for calculating the
flow of heat. The dendritic flux avalanche in the remanent state was found to develop as an
irregular branching structure that enters the inner parts of the sample. The avalanche consisted
partly of positive flux leaving the sample, partly of negative flux entering. It was found to be
more destructive than avalanches in ascending field since, after the avalanche, the critical state
had vanished completely from the entire film. The spatial extent of the avalanches was sensitive
to the nucleation position, but the size and overall consequences were not. A MOI experiment
on dendritic flux avalanche in descending field in a NbN film showed similar looking gigantic
flux avalanches and supported the findings of the simulations.

Very few problems related to the nonlocal electrodynamics of thin films are analytically
solvable. An exception is the response of an infinite Ohmic film to a delta function source
field, turned on instantly. We calculated this solution, both in Fourier and real space, and the
solution gave much insight into the behavior of Ohmic films or Ohmic domains in transverse
field. We found that, in Fourier space, the mode of wavelength l decays with characteristic
time µ0dl/(4πρ0). The solution in real space showed that there was no well-defined front
of propagation, since both current and magnetic self-field decreased algebraically far from
the source. Yet, the current had a maximum moving away from the source with constant
velocity

√
2ρ0/(dµ0).

Finally, we generalized the numerical simulation formalism from simply connected to
multiply connected geometry, i.e. we allow the samples to contain nonconducting holes.
Thereupon, we consider the magnetic flux penetration in a superconducting ring with antidots
(small holes) distributed in a square array. The magnetic flux distribution was locally much
perturbed by the antidots, and also the large scale flux distribution was modified, as it became
anisotropic when the magnetic flux was guided along the directions of the antidot array. Between
the antidots there were localized regions with low flux traffic and J < Jc. This is contrary to
the situation in simply connected samples, where the regions with J < Jc usually form large
connected domains. The current distribution inside the ring patterned with antidots was thus
highly nontrivial, even in the critical state.

In summary, we have shown that a wide range of apparently different phenomena related
to the electrodynamics of superconducting and Ohmic films in transverse field can be described
by one formalism based on the Maxwell equations and material-specific E–J relations.
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Appendix

Here we give some hints and tricks for the implementation of the numerical scheme.
Both the thermal diffusion equation and the electrodynamics are discretized on

an equidistant rectangle of size 2L x × 2L y with points xi = (2i − Nx + 1)L x/Nx and
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y j = (2 j − Ny + 1)L y/Ny where i = 0, . . . , Nx − 1 and j = 0, . . . , Ny − 1. The discrete wave
vectors that are used in the fast Fourier transforms are kx,p = pπ/L x and ky,q = qπ/L y , for
p = −Nx/2, . . . , Nx/2 − 1 and q = −Ny/2, . . . , Ny/2 − 1 and kpq =

√
(kx,p)2 + (ky,q)2.

Before the wave vectors can be used in the direct products of equations (6) and (7) the
Brillouin zones must be rearranged to ensure that the product satisfies the symmetry conditions
χm,n = χ∗

Nx−m,n and χ∗

m,Ny−n, which are valid for the Fourier component χ of any real function.
This means that the Fourier transform can be optimized by keeping only half the Fourier
components and acquiring the rest by symmetry considerations.

The diffusion equation (31) tends to be numerically unstable when solved forward in time.
Thus we solve it by a forward–backward average scheme. Let Ṫ (t) → (T (n+1)

− T (n))/1tn and
T (t) → (T (n+1) + T (n))/2, where T (n)

= F [T (tn)], tn is the discrete time, and 1tn = tn+1 − tn.
Inserting this into (31) and isolating T (n+1) gives

T (n+1)
=

1 − (αk2 + β)1tn/2

1 + (αk2 + β)1tn/2
T (n) +

F {γ γ̄ J E + βT0}

1 + (αk2 + β)1tn/2
1tn. (A.1)

This equation is finite in both limits k2
→ 0 and k2

→ ∞, contrary to a forward-in-time
integration scheme, T (t) → T (n), which diverges as k2

→ ∞.
Due to the nonlinearity, (18) must be solved forward in time, for example using the

Runge–Kutta method. It is essential to use a variable time step, 1t ∝ 1/Emax, where Emax is
the global maximum value of the electrical field [1]. The nonlocality of the equations implies
that there is only one global time step, selected by considering the most pronounced flux traffic.

A delicate point in the numerical simulation scheme is the execution of the spatial
derivatives in (19). This work applies a finite difference randomly alternating between
( f (xi+1) − f (xi))/(xi+1 − xi) and ( f (xi) − f (xi−1))/(xi − xi−1). This produces stable results
and gives no systematic error.

The inverse Biot–Savart law, equation (7), is divergent at k00 = 0. This reflects the fact that
k00 describes a spatially constant mode, while g is only defined up to a constant by J = ∇ × ẑg.
The constant is fixed by the requirement that the magnetic moment of the vacuum is zero. Hence,
we assign k00 = 1 to avoid the singularity, then shift the output to satisfy

∫
d2r(1 − S)g = 0.

One threat to the convergence of the iterative scheme of equation (10) is the discontinuity
of the projection 1 − S. A counter-measure is to smoothen the output of Q̂ by a multiplication
by a Gaussian in Fourier space,

Q̂ [g(r)] = F−1

[
k

2
F [g(r)] exp

(
−

1

2
σ 2k2

)]
. (A.2)

In real space, this implies a convolution with a Gaussian

8σ (r) =
1

2πσ 2
exp

(
−

1

2

( r

σ

)2
)

, (A.3)

i.e. the result is an interpolation with a neighborhood of size σ . It is reasonable to let σ be a
small number of order the grid size σ ∼ 2a/Nx . Note that limσ→08σ = δ(x)δ(y). The same
Gaussian smoothing should also be applied to Q̂−1.
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