
University of Wollongong University of Wollongong 

Research Online Research Online 

Australian Institute for Innovative Materials - 
Papers Australian Institute for Innovative Materials 

1-1-2013 

Enhancing superconducting properties of MgB2 pellets by addition of Enhancing superconducting properties of MgB2 pellets by addition of 

amorphous magnetic Ni-Co-B nanoparticles amorphous magnetic Ni-Co-B nanoparticles 

Mislav Mustapic 
University of Wollongong, mislav@uow.edu.au 

Josip Horvat 
University of Wollongong, jhorvat@uow.edu.au 

Md Shahriar Hossain 
University of Wollongong, shahriar@uow.edu.au 

Zeljko Skoko 
University of Zagreb 

S X. Dou 
University of Wollongong, shi@uow.edu.au 

Follow this and additional works at: https://ro.uow.edu.au/aiimpapers 

 Part of the Engineering Commons, and the Physical Sciences and Mathematics Commons 

Recommended Citation Recommended Citation 
Mustapic, Mislav; Horvat, Josip; Hossain, Md Shahriar; Skoko, Zeljko; and Dou, S X., "Enhancing 
superconducting properties of MgB2 pellets by addition of amorphous magnetic Ni-Co-B nanoparticles" 
(2013). Australian Institute for Innovative Materials - Papers. 850. 
https://ro.uow.edu.au/aiimpapers/850 

Research Online is the open access institutional repository for the University of Wollongong. For further information 
contact the UOW Library: research-pubs@uow.edu.au 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Research Online

https://core.ac.uk/display/36986007?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://ro.uow.edu.au/
https://ro.uow.edu.au/aiimpapers
https://ro.uow.edu.au/aiimpapers
https://ro.uow.edu.au/aiim
https://ro.uow.edu.au/aiimpapers?utm_source=ro.uow.edu.au%2Faiimpapers%2F850&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/217?utm_source=ro.uow.edu.au%2Faiimpapers%2F850&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/114?utm_source=ro.uow.edu.au%2Faiimpapers%2F850&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ro.uow.edu.au/aiimpapers/850?utm_source=ro.uow.edu.au%2Faiimpapers%2F850&utm_medium=PDF&utm_campaign=PDFCoverPages


Enhancing superconducting properties of MgB2 pellets by addition of amorphous Enhancing superconducting properties of MgB2 pellets by addition of amorphous 
magnetic Ni-Co-B nanoparticles magnetic Ni-Co-B nanoparticles 

Abstract Abstract 
Amorphous magnetic Ni-Co-B nanoparticles with an average size of 5 nm were added to precursor 
powders of MgB2 superconductor. The preparation procedure for MgB2 pellets was optimized for 
obtaining the best critical current density (Jc) at elevated magnetic fields. Addition of Ni-Co-B decreases 
the Jc for heat treatment of precursor powders at 650 ° C. Heat treatments at 770 ° C and higher improve 
Jc at 20 and 5 K. This improvement occurs at both temperatures through the increase of the effective 
connectivity between MgB2 crystals. Vortex pinning was enhanced at 5 K, but not at 20 K. Ni-Co-B 
nanoparticles reacted with Mg in heat treatments above 730 ° C, forming Mg2Ni and MgCo2 
nanoparticles. Ni-Co-B addition was associated with lower oxygen content in MgB2, indicating that 
reduction of MgO content is the mechanism for improvement of grain connectivity. Decomposition of 
magnetic Ni-Co-B nanoparticles results mostly in non-magnetic nanoparticles, so magnetic pinning did 
not occur in our samples. 

Keywords Keywords 
b, superconducting, enhancing, co, nanoparticles, ni, magnetic, amorphous, addition, pellets, mgb2, 
properties 

Disciplines Disciplines 
Engineering | Physical Sciences and Mathematics 

Publication Details Publication Details 
Mustapic, M., Horvat, J., Hossain, M., Skoko, Z. and Dou, S. X. (2013). Enhancing superconducting 
properties of MgB2 pellets by addition of amorphous magnetic Ni-Co-B nanoparticles. Superconductor 
Science and Technology, 26 (7), 1-9. 

This journal article is available at Research Online: https://ro.uow.edu.au/aiimpapers/850 

https://ro.uow.edu.au/aiimpapers/850


1 
 

Enhancing superconducting properties of MgB2 pellets by 
addition of amorphous magnetic Ni-Co-B nanoparticles 

 

M Mustapić1, J Horvat1, M S Hossain1, Ž Skoko2 and S X Dou1 

1Institute for Superconducting and Electronic Materials, AIIM, University of 
Wollongong, Squires Way, North Wollongong, NSW 2500, Australia 

2Department of Physics, Faculty of Science, University of Zagreb, Bijenička c. 
32, 10000 Zagreb, Croatia 

Email: jhorvat@uow.edu.au 

 

 Abstract. Amorphous magnetic Ni-Co-B nanoparticles with average size of 5 nm 
were added to  precursor powders of MgB2 superconductor. Preparation 
procedure for MgB2 pellets was optimized for obtaining the best critical current 
density (Jc) at elevated magnetic fields. Addition of Ni-Co-B decreases Jc for heat 
treatment of precursor powders at 650 °C.  Heat treatments at 770 °C and higher 
improve Jc at 20 and 5 K. This improvement occurs at both temperatures through 
the increase of the effective connectivity between MgB2 crystals. Vortex pinning 
was enhanced at 5 K, but not at 20 K. Ni-Co-B nanoparticles reacted with Mg in 
heat treatments above 730 °C, forming Mg2Ni and MgCo2 nanoparticles. Ni-Co-B 
addition was associated with lower oxygen content in MgB2, indicating that 
reduction of MgO content is the mechanism for improvement of grain 
connectivity. Decomposition of magnetic Ni-Co-B nanoparticles results mostly in 
non-magnetic nanoparticles, therefore magnetic pining did not occur in our 
samples. 
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1. Introduction 

 
Improvement of vortex pinning in MgB2 has been one of the main activities in the development 
of this superconductor into a practical conductor. Numerous additions to MgB2 were tried. Some 
of the most successful additions incorporate nanoparticles into MgB2 precursor powder [1-8], 
which act as pinning centres either by themselves, or through products of their reaction with 
precursor powders. The mechanism of vortex pinning is typically the minimization of the vortex 
core energy as the volumes of the vortex core and pinning centre overlap [9]. However, if the 
nanoparticles incorporated into MgB2 matrix are magnetic, additional pinning is possible 
through interaction between the magnetic moments of the vortex and nanoparticle [10-12]. 
Theoretical treatment has shown that the magnetic part of the pinning force between the vortex 
and magnetic nanoparticle has a range of London penetration depth [10], which is much larger 
than the range for the usual vortex core-type pinning, coherence length.  

The possibility of long-range pinning by magnetic nanoparticles prompted research aimed at 
finding the most suitable nanoparticles for introduction of magnetic pinning into MgB2 [13-19]. 
The idea of magnetic-type pinning in MgB2 is still controversial. The reports on pinning by 
magnetic nanoparticles in MgB2 are often conflicting and inconclusive. Unfortunately, reports 
showing the increase of pinning generally do not distinguish the core-type pinning from 
magnetic pinning in the investigated samples and therefore do not prove that the magnetic 
pinning was introduced in MgB2.   

This paper reports on the use of amorphous magnetic Ni-Co-B nanoparticles to improve Jc of 
MgB2 at elevated magnetic fields [20]. Ni-Co-B nanoparticles were prepared by an improved 
method, making them smaller than what was tried so far with MgB2, about 5 nm in diameter. 
Thus, they were expected to be good core-type pinning centres if incorporated into MgB2 unit 
cell. Both Ni and Co contribute to magnetic moment of these nanoparticles, which can facilitate 
magnetic-type pinning. An independent study of Novosel et al. with Ni-Co-B nanoparticles 15-
20 nm in diameter incorporated into MgB2/Fe wires using a heat treatment at 650 °C was carried 
out in parallel to our work [21]. One major difference between our work and [21] is that we used 
quite different sample preparation techniques, much smaller Ni-Co-B nanoparticles and different 
sample characterization, leading to new insights into chemistry of heat treatment, grain 
connectivity and vortex pinning obtained by Ni-Co-B doping.  

 

2. Experimental details   

 
Nickel-cobalt-boron amorphous nanoparticles were synthesised by the chemical reduction of 
metallic salts. Ni(NO3)2 and Co(NO3)2 were dissolved in deionized water and reduced with the 
help of NaBH4, which was previously dissolved in deionized water. The amount of all three 
chemicals corresponded to the nominal composition Ni-Co-B. The synthesis was performed in a 
closed system under argon atmosphere, and all solutions were bubbled with argon for two hours 
prior to the reaction. Ethylenediamine was added to maintain the reaction under alkaline pH 
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conditions (pH ≈ 8-10) and also catalyse the reaction. Reaction with this catalyst can provide 
yields of up to 90%. Sodium-dodecyl-sulphate was added as a surfactant to prevent 
agglomeration of nanoparticles. 90% of the obtained Ni-Co-B nanoparticles were of the size 
between 5 and 6 nm, as obtained from FESEM images. No agglomeration was observed. XRD 
analysis shows that the nanoparticles were amorphous, giving a very broad XRD peak between 
35 ° < 2θ < 57 ° and a broad peak centred at 62 °. Measurements of the temperature dependence 
of magnetic moment show that the nanoparticles were in superparamagnetic state with blocking 
temperature of 90 K.  

MgB2 pellet samples were prepared using 99% pure amorphous boron powder with grain size of 
~1 µm and 99% pure Mg powder with grain size ~3 µm. Ni-Co-B nanoparticles in concentration 
of 0, 1.25, 2.5 and 5 wt% were added to the stoichiometric precursor Mg + 2B powder. The 
powders were mixed dry, first Ni-Co-B nanoparticles and boron, and then magnesium was 
added, ground, and pressed with 10 tonnes press into 10 mm diameter pellets. Samples were 
enclosed in iron tubes and sintered at 650, 770, 850 and 950 °C for 30 min under high-purity 
argon gas with a heating rate of 5 °C min−1. The resulting pellets were cut into small bar-shaped 
pieces with dimensions of 1 × 2 × 3 mm3. 

Nanostructure was studied using JEOL JSM7500FA scanning electron microscope (SEM), with 
a cold field emission gun. The microstructure was also studied by JEOL JSM-6400 scanning 
electron microscope. X-ray powder diffraction (XRD) was performed at room temperature using 
an automatic Philips diffractometer, model PW1820 (Cu-Kα radiation), in Bragg-Brentano 
geometry. XRD analysis was performed with the aid of FullProf package.    

Magnetic measurements on nanoparticles were performed by Quantum Design MPMS-5T 
SQUID magnetometer and on MgB2 samples by PPMS-9T extraction magnetometer. Magnetic 
hysteresis loops of MgB2 samples were measured with the field parallel to the long axis of the 
sample. All samples were of the same size, to avoid size effects in our measurements [22, 23]. 
The magnetization was measured at 5 K and 20 K in a time-varying magnetic field with sweep 
rate 50 Oe s−1 and amplitude 9 T. Magnetic critical current density Jc was obtained by using the 
critical state model [24]: Jc=20∆Μ/(a-a2/(3b)), where a and b are the lateral dimensions of the 
sample and ∆Μ is the thickness of the magnetic hysteresis loop. Differential thermal analysis 
(DTA) was performed on different combinations of Mg, B and Ni-Co-B powders, using Al2O3 
pan. The powders were mixed in small quantities (200 mg), pressed to ensure good contact 
between grains in powder and heat flow from the sample was measured as the temperature 
increased up to 1000°C at a rate of 5K/min in protective Ar atmosphere. 

The temperature dependence of electric resistance at a set of constant magnetic fields was 
measured for MgB2 pellets in temperature range 30−300 K, using AC current of 1 mA and 
frequency 117 Hz. Electrical contacts were attached to the sample in four-probe geometry using 
a silver paste. The experiments were carried out in a Quantum Design PPMS-9T system, with 
sweep rate of temperature of 2 K/min. 
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3. Optimization of preparation procedure 

 
The preparation procedure for precursor Ni-Co-B doped MgB2 powders was optimized for 
highest value of Jc at elevated fields.  The values of Jc obtained at 5 K and 5T, as well as at 20 K 
and 2 T were chosen for this optimization. These temperatures were chosen because they can 
provide information on the effect of π− and σ−gaps in vortex pinning [25-28] and because MgB2 
is likely to be used near these temperatures. Further, the values of the field were chosen so that 
the obtained values of Jc are not affected by artefacts of different screening lengths occurring in 
magnetic measurements of Jc [22, 23]. All samples were of the same size. We could not use Jc at 
the same field for 5 and 20 K, because the ranges of field for which reliable magnetic Jc can be 
obtained did not overlap for these two temperatures [22]. 

Figure 1a) shows that Jc at 5 T and 5 K decreased with the content of Ni-Co-B for samples heat 
treated at 650 °C. The same was obtained for Jc at 2 T and 20 K. For samples heat treated at 
higher temperatures, Jc measured at 5 and 20 K was better for samples with added Ni-Co-B 
nanoparticles than for pure MgB2. The only exception was the sample with 1.25 wt% Ni-Co-B 
heat treated at 850 °C and measured at 20 K and 2 T (figure 1b). For all these samples, except 
the ones heat treated at 650 °C, Jc was the highest when 2.5 wt% of Ni-Co-B was added. Further, 
the highest Jc for samples with 2.5 wt% of Ni-Co-B was obtained for heat treatment at 850 °C 
(figure 1c).  
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Figure 1: Dependence of Jc(5K, 5T) (figure a) and Jc(20K, 2T) (figure b) on the Ni-Co-B content in MgB2 for 
different temperatures of heat treatment. Figure 1c shows the dependence of Jc(5K, 5T) and Jc(20K, 2T) on the 
temperature of heat treatment for samples containing 2.5 wt% of Ni-Co-B. 

The field dependence of Jc for samples treated at 850 °C, with different concentration of Ni-Co-
B nanoparticles, is shown in figure 2a. The artefacts in magnetic measurements of Jc, due to 
different screening lengths of superconducting currents in sample, occur outside the field range 
1.5 T  < H < 3.5 T for 20 K and 4 T  < H < 8 T for 5 K, as described in [22]. Our discussion of 
Jc(H) is therefore limited only to these fields, in which the experimental artefacts are absent. The 
best enhancement of Jc(H) is obtained for 5K, where the Jc(H) for different concentrations of Ni-
Co-B is shifted to higher values of Jc as the concentration of Ni-Co-B increases to 2.5 wt%. In 
addition, Jc(H) gets slightly less tilted with increasing Ni-Co-B content, indicating a weaker 
decrease of Jc with field as the Ni-Co-B concentration increases. This would indicate that 
addition of Ni-Co-B nanoparticles to precursor powders improves the connectivity between the 
MgB2 crystallites and also increases the vortex pinning at 5 K.  The Jc(H) measured at 20 K 
(figure 2a) are parallel to each other, indicating only slight increase of grain connectivity with 
addition of Ni-Co-B nanoparticles, except for 1.25 wt% Ni-Co-B for which Jc decreases. Figure 
2b shows the field dependence of Jc at 5K, for samples with 2.5 wt% of Ni-Co-B and heat 
treated at different temperatures. It is apparent that the heat treatment at 650 °C results in the 
lowest Jc for all fields. Heat treatment at 850°C gives the largest Jc. 

 

 

 

Figure 2: a) Field dependence of Jc for samples heat treated at 850 °C. b) Field dependence of Jc at 5K, for samples 
with 2.5 wt% of Ni-Co-B and heat treated at different temperatures. 

To further clarify if vortex pinning increased with the Ni-Co-B addition, exponential decrease of 
Jc with H was assumed: Jc=Jc0exp(-H/H0). The characteristic field H0 was obtained from 
experimental Jc(H) as H0 = -(dln(Jc)/dH)-1. Higher value of H0 signifies a lower rate of the 
decrease of Jc with H and stronger vortex pinning. Figure 3 shows the field dependence of thus 
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defined H0 at 5K, for the samples heat treated at 850 °C. The value of H0 is not the same for all 
fields, as would be expected for the simple exponential form of Jc(H). This occurs because the 
stretched exponential function fits Jc(H) better than the simple exponential function [22]. The 
lnJc vs H plots are not straight, but downward-curved (figure 2). Linear field dependence of H0 
is in agreement with the stretched exponential form of Jc(H) and the deviation from linearity at 
highest fields in figure 3 is a consequence of artefacts in obtaining the Jc from magnetic 
hysteresis loops, as shown in [22]. However, the use of simple exponential Jc(H) provides a 
more straightforward means of obtaining the rate of change of lnJc with H, via  a single 
parameter H0. Figure 3 shows that 2.5 and 5 wt% Ni-Co-B samples have obviously larger value 
of H0 than pure MgB2 for all fields, while it seems to be just slightly larger for the 1.25 wt% Ni-
Co-B sample. This shows that vortex pinning at 5K increases with Ni-Co-B addition for MgB2 
samples heat treated at 850 °C. The value of H0 did not change with Ni-Co-B content at 20 K 
(inset to figure 3). 

 

Figure 3: Field dependence of H0 at 5K, for MgB2 samples heat treated at 850 °C. Larger H0 signifies a weaker 
decrease of Jc with field. Inset: Field dependence of H0 at 20 K, for the same samples. 

XRD patterns for MgB2 samples with 2.5 wt% of Ni-Co-B nanoparticles, heat treated at 650, 
770, 850 and 950 °C, are shown in figure 4.  The samples with 2.5 wt% Ni-Co-B were chosen 
because this concentration gave the largest Jc. The main features in Fig 4 are well-defined 
patterns of MgB2, with unreacted Mg and small amounts of MgO. Table 1 shows relative 
amounts of residual Mg, MgO and MgB4 obtained from Rietveld analysis of all samples 
measured. The amount of MgO shows a decreasing trend with the amount of Ni-Co-B for heat 
treatment at 850 and 950 °C. This trend is less obvious for lower temperatures, where pure 
MgB2 has the lowest amount of MgO. Residual Mg is present in samples heat treated at 650 °C 
due to low atomic diffusivity in solid-solid reaction [33]. This incomplete production of MgB2 is 
responsible for low Jc for 650 °C treated samples (figure 2). MgB4 phase occurs for heat 
treatment at 950 °C. Due to Mg evaporation, local boron-rich volumes can be formed in the 
sample, especially at high sintering temperatures. Thermodynamic analysis shows that MgB2 
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coexists with MgB4 in boron-rich volumes [29]. This MgB4 is responsible for the observed 
decrease of grain connectivity and Jc for samples heat treated at 950 °C (figure 1).  

 
Figure 4: XRD patterns for 2.5% Ni-Co-B doped MgB2 samples, heat treated at 650, 770, 850 and 950 °C. 
 

Heat treatment 
temperature  

°C 

Amount of 
added Ni-Co-B  

wt % 

MgO 

% 

 

Mg 

% 

MgB4 

% 

650 

0.00 0.0 4.0 0.0 
1.25 20.4 8.8 0.0 

2.50 16.1 13.4 0.0 

7.50 5.4 5.9 0.0 

 

770 

 

0.00 12.2 0.2 0.0 

2.50 26.6 0.0 0.0 

5.00 17.1 0.0 0.0 

850 

0.00 16.2 0.0 0.0 

1.25 16.0 0.0 0.0 

2.50 12.2 0.0 0.0 

5.00 14.2 0.0 0.0 

 

950 

 

 

0.00 

 

10.4 0.0 

 

16.4 

 2.50 15.2 0.0 9.4 

5.00 5.6 0.0 10.0 
 
Table 1: Relative amounts of MgO, unreacted Mg and MgB4, obtained by Rietveld analysis of the samples with 
different amounts of Ni-Co-B nanoparticles and prepared at different heat treatment temperatures. 
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SEM images of MgB2 with 2.5 wt% of amorphous Ni-Co-B are shown in figures 5 a) and b) for 
heat treatment temperatures of 650 and 850 °C, respectively. The sample heat-treated at 650 °C 
has a large amount of ~ 10 nm-sized MgB2 crystallites present. The sample treated at 850°C 
consists of somewhat larger crystallites, with ~10 nm flake-like crystallites still present. 
However, it is difficult to distinguish any significant difference between the two samples in 
terms of grain connectivity on the basis of SEM images. While larger MgB2 grains of 850 °C 
treated sample would imply smaller density of interface surfaces in the sample, it is unclear how 
clean are these surfaces and how well they are connected. Further clues will be obtained from 
the EDS analysis. 

 

 

Figure 5: SEM images for 2.5 % Ni-Co-B doped MgB2, heat treated at 650 (a) and 850 °C (b). 

 

4. Effect of Ni-Co-B on grain connectivity and vortex pinning  

 
Temperature dependence of resistivity, ρ, was measured for pure and 2.5 wt% Ni-Co-B sample 
heat treated at 850 °C, to obtain insight into the mechanisms of Jc improvement. The grain 
connectivity was analyzed using the Rowell’s method [30], where the effective cross-sectional 
area fraction that contributes to supercurrent flow is: AF = ∆ρ/(ρ300K−ρ40K). Here, ∆ρ is the 
difference of the resistivities for perfectly connected MgB2 sample at 300 and 40 K, 7.3 µΩcm, 
while ρ300K and ρ40K are the resistivities of the polycrystalline sample at 300 and 40 K, 
respectively. Our measurements gave AF for pure and 2.5% Ni-Co-B sample as 0.22 and 0.32, 
respectively. Therefore, addition of Ni-Co-B nanoparticles to precursor powder improved the 
effective connectivity between the MgB2 crystallites in our samples, resulting in higher Jc.  
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The residual resistance ratio (RRR) is the ratio of the resistance of the sample at 300 and 40 K. 
Assuming that the effective connectivity does not change with temperature above TC, the 
differences in AF between different samples are fractioned out and RRR provides information on 
the relative defect density in samples. Samples with smaller RRR have larger contribution of 
mostly temperature-independent defect mediated resistance to their resistivity. Therefore, 
samples with smaller RRR have larger defect densities in the MgB2 crystallites, which would 
imply stronger vortex pinning. Our measurements gave RRR = 2.5 and 1.67 for pure and 2.5% 
Ni-Co-B sample, respectively. This implies that addition of Ni-Co-B nanoparticles to MgB2 
precursors most likely improves vortex pinning. However, because not all crystal defects 
contribute to vortex pinning, it is essential to confirm the improvement of vortex pinning by 
other means. The rate of the decrease of ln Jc with H shown in figure 3 has already shown that 
the pinning at 5 K increased with Ni-Co-B addition. 

The vortex pinning can be further probed by measuring the temperature dependence of 
resistivity just below Tc. Vortices are thermally excited out of their pinning sites, contributing to 
a finite resistance of sample that follows the Arrhenius relationship: R = R0 exp(-U/kT), where U 
is the effective pinning energy and kT is the thermal energy. Fitting only the lowermost 
experimental values of R to the Arrhenius relationship, the values of U can be obtained. These 
values of U are not directly related to pinning energy and Jc obtained from magnetic 
measurements, because of different voltage developed in the samples in magnetic and transport 
methods. Further, U obtained from the resistive transition is implicitly assumed to have 
negligible temperature dependence in the measured temperature range. However, analysis of 
resistive transition is still useful for comparing the pinning energies between different samples.  

Our measurements of resistive transition near Tc for several different magnetic fields gave the 
effective pinning energies presented in figure 6. The sample containing 2.5 wt% of Ni-Co-B has 
clearly larger U than pure MgB2 in fields up to 8 T, showing that Ni-Co-B addition improves 
vortex pinning.  

 

Figure 6: Pinning energies for pure and 2.5% Ni-Co-B doped MgB2 samples heat treated at 850 °C, as obtained 
from the measurements of resistive transition at different magnetic fields. 

These results may seem at odds with the measurements of Jc(H) at 20 K, for which no pinning  
improvement was observed with Ni-Co-B addition (figure 2a). However the measurements of 



10 
 

magnetic hysteresis loops at 50 Oe/s and measurements of resistive transitions just below Tc 
probe different  vortex dynamics. Further, there are different types of pinning centres in the 
samples, from grain boundaries, strain fields and crystal defects, to the pining centres introduced 
by Ni-Co-B addition. All these pinning centres contribute in a complex way to the total pinning 
potential [31]. Because of this, a direct comparison between the results based on magnetic and 
transport measurements is not appropriate. However, each of them separately can be used for 
comparison of vortex pinning between different samples.  

  

5. Reaction of Ni-Co-B nanoparticles with precursor powder 

 
The obtained measurements still do not demonstrate that the desirable magnetic pinning was 
obtained. To clarify this, further experiments were performed on samples containing large 
concentration (10 wt%) of Ni-Co-B, to help understand physics and chemistry of introducing Ni-
Co-B nanoparticles into MgB2. 

Differential Thermal Analysis scans were performed to find out the chemical phase evolution 
during the heat treatment. Several different powder mixtures were used in DTA measurements: 
pure Ni-Co-B, Ni-Co-B with boron, Ni-Co-B with boron and magnesium in MgB2 
stoichiometric ratio and Mg + 2B (i.e. pure MgB2) for comparison. DTA scan for pure Ni-Co-B 
nanoparticle powder showed that the nanoparticles were stable at these temperatures in 
protective Ar gas (figure 7). The scan of B + Ni-Co-B powder showed that Ni-Co-B did not react 
with boron up to 1000 °C. However, the DTA scan of Mg + 2B + Ni-Co-B powder showed  an 
exothermic peak around 570 °C, a double exothermic peak between 730 and 850 °C and an 
endothermic peak at 650 °C (figure  7). The endothermic peak at 650 °C corresponds to melting 
of magnesium. The exothermic peak at 570 °C corresponds to creation of MgB2 in solid-solid 
reaction [32]. The two merged peaks above 730 °C correspond to formation of new phases. 
These peaks hold the key to understanding the improvement of Jc(H) with Ni-Co-B addition, 
because Jc(H) started improving with the addition only when the temperature of heat treatment 
exceeded 770 °C (Figs. 1 and 2).  
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Figure 7: DTA scans for Mg + 2B, pure Ni-Co-B, B + 10wt% Ni-Co-B and Mg + 2B + 10 wt% Ni-Co-B powders.  

DTA scan for pure MgB2 has a broad exothermic peak between 570 and 630 °C, corresponding 
to creation of MgB2 in solid-solid reaction (figure 7). There is an endothermic peak at 650 °C, 
due to melting of magnesium. A further broad exothermic peak around 700 °C and a sharp one 
at 730 °C are generally ascribed to creation of MgB2 in solid-liquid reaction [33]. Production of 
MgB2 in solid-solid reaction at low temperatures is spatially limited, due to low diffusion rate of 
atoms. Consequently, remaining Mg and B will react further after melting of Mg, producing 
additional DTA peaks. This is a complex process, involving re-arrangement of unreacted B and 
MgB2 particles in molten Mg, reaction between molten Mg and residual boron, as well as 
melting of small MgB2 grains in Mg and  their re-precipitation on larger MgB2 grains [33].  The 
exothermic peak at 730 °C is masked in Mg + 2B + Ni-Co-B powder by the larger peaks 
occurring because of reaction of Ni-Co-B with Mg. The broader MgB2 creation peak at about 
700 °C is still visible for Mg + 2B+ Ni-Co-B powder. This reaction of Ni-Co-B will be 
confirmed by magnetic measurements later in the paper. It is noticeable that the exothermic peak 
for Mg + 2B + Ni-Co-B powder at 570 °C is much larger than the corresponding peak for Mg + 
2B powder. A possible explanation for this is that Ni-Co-B nanoparticles act as catalysts for 
production of MgB2 from solid Mg and B powders. Similar mechanism was described by Zhao 
et al. [34] for Ni nanoparticles, which form a local eutectic liquid with Mg at 506 °C and thus 
promote a faster local formation of MgB2 in the eutectic liquid phase.  They also obtained an 
enhanced DTA peak below 600 °C with Ni nanoparticles, similar to our results (figure 7) and 
their Ni nanoparticles were of similar size to our Ni-Co-B nanoparticles (5 nm). 

The DTA peaks for Mg + 2B + Ni-Co-B powder occurring between 730 and 850 °C will result 
in compounds involving Mg, Ni, Co and B. MgB2 is one expected phase forming in reaction of 
Mg and B from Ni-Co-B, which will also form in the reaction of molten Mg with the remains of 
the micro-sized B powder at these temperatures. Phase diagrams of Mg-Ni system show that 
Mg2Ni occurs as a stable phase at concentrations of Ni less than 35% [35-37]. For Mg-Co 
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system, there is only one stable compound, MgCo2
 [35-38]. Mg2Co is not an equilibrium phase, 

however its low-yield production was reported in experiments where nanostructure and 
hydrogen atmosphere play an important role [35-38].  Therefore, Mg2Ni and MgCo2 are the 
phases expected to occur between 730 and 850 °C. 

X-ray diffraction patterns of the Mg + 10 wt% Ni-Co-B samples heat treated at 650 and 850 °C 
are shown in figure 8. The peaks of Mg are clearly visible. Any difference between the two XRD 
traces should reveal the phases that form above 730 °C, as detected by DTA (figure 7). The 
position and magnitude of the peaks expected for Mg2Ni and MgCo2 [35, 39, 40] are also 
indicated in figure  8. If these phases are detectable by XRD, peaks around 2θ = 21° and 45 ° 
should be seen for 850 °C treated sample but not for 650 °C treated sample. While there are 
small peaks at these angles, they appear for both samples. Therefore XRD analysis cannot 
confirm that the above phases formed, most likely because these phases were in the form of 
nanoparticles with poor crystallinity.  

 

Figure 8: XRD patterns for Mg + 10wt% Ni-Co-B powders heat treated at 650 and 850 °C. The expected XRD 
peaks for Mg2Ni and MgCo2 are indicated for comparison [35, 39, 40]. 

To assess the distribution of chemical elements in the samples, Energy dispersive x-ray 
spectroscopy (EDS) analysis was performed over small areas of the samples, ranging from 100 x 
100 nm2 to 1 x 1 µm2. For each of the areas, relative molar percentage of B, Mg, O, Ni and Co 
was obtained. While this method cannot provide an accurate percentage of the element 
distribution, it can serve as a rough guide. Figure 9a shows the molar percentage of Ni and Co in 
selected EDS windows against the magnesium content normalized to its stoichiometric 
percentage in MgB2, for 2.5 wt% Ni-Co-B doped MgB2 sample heat treated at 850 °C. For the 
values of x-axis in figure 9 smaller or larger than one, we probed the boron-rich or magnesium-
rich area of MgB2 sample, respectively. The measurements show that Ni and Co occur 
prevalently in the magnesium rich areas. The 2.5 wt% Ni-Co-B sample heat treated at 650 °C 
does not give such distribution of Ni and Co in regards to magnesium (inset to fig.9). Figure 9b 
shows the molar percentage of Ni and Co in selected EDS windows against the molar percentage 
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of oxygen. Large amounts on Ni and Co occur in the oxygen poor EDS windows. Therefore, Ni 
and Co oxides were not the prevalent phases formed in MgB2 with added Ni-Co-B nanoparticles. 
All these results suggest that the compounds of Ni and Co with Mg are formed in MgB2 with 
added 2.5 wt% Ni-Co-B, heat treated at 850 °C. This is in agreement with our DTA experiments 
with different powder mixtures (figure 7). 

 

Figure 9: a) Molar percentage of Ni (open symbols) and Co (solid symbols) plotted against the relative amounts of 
Mg and B for 2.5 wt% Ni-Co-B sample heat treated at 850 °C, measured in several selected EDS windows. Inset: 
the same for the sample heat treated at 650 °C. b) Molar percentage of Ni (open symbols) and Co (solid symbols) 
plotted against the molar percentage of oxygen for 2.5 wt% Ni-Co-B sample heat treated at 650 and 850 °C. 

Another interesting outcome of EDS analysis is the difference in the relative molar ratio of 
oxygen in samples, averaged over all measured EDS windows. For MgB2 with added 2.5 wt% 
Ni-Co-B, the molar percentage of O was (2.1 ± 1.1) % and (1.8 ± 0.8) % for samples heat treated 
at 650 and 850 °C, respectively. For pure MgB2, the molar percentage of O was (6.4 ± 0.9) % 
and (4.5 ± 1.4) % for samples heat treated at 650 and 850 °C, respectively. Despite large data 
scattering, due to difficulties in detecting these elements with EDS, this indicates that Ni-Co-B 
addition to MgB2 results in a lower oxygen content. XRD analysis (table 1) shows that the 
amount of MgO generally decreases with the amount of Ni-Co-B for 850 and 950 °C heat 
treated samples, which is in agreement with EDS data. However, for heat treatment at 650 and 
770 °C, pure MgB2 has lower MgO content, according to XRD data (table 1). The improvement 
of the observed grain connectivity with Ni-Co-B addition could have occurred through hindrance 
of MgO formation on MgB2 grain boundaries by Ni-Co-B during the heat treatment. Ni and Co 
may compete for Mg with oxygen, creating Mg2Ni and MgCo2 instead of MgO.  In the same 
time, Mg2Ni and MgCo2 nanoparticles formed at higher temperatures result in increased vortex 
pinning.  

Measurements of room-temperature magnetization curves for Mg + 10 wt% Ni-Co-B powders 
before and after the heat treatment at 850 °C (figure  10) gave insightful information regarding 
the type of vortex pinning introduced into MgB2 by Ni-Co-B addition. The magnetization curve 
before heat treatment is typical for superparamagnetic system, giving the magnetic moment at 4 
T and 300 K of 2.9 Am2/kg. After the heat treatment at 850 °C, the magnetic moment at 4 T 
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decreased to 0.045 Am2/kg, which is a 64-fold decrease. This shows that the reaction between 
Ni-Co-B nanoparticles and Mg gives mostly non-magnetic phases. Mg2Ni is paramagnetic [41] 
and does not contribute substantially to the observed magnetic moment measured after the heat 
treatment. The only stable compound in Mg-Co system is MgCo2 and it is a ferromagnet with 
Curie temperature of 321 K [36, 39, 42]. It undergoes antiferromagnetic transition at 45 K. It is 
possible that the low magnetic moment observed after the heat treatment in figure 10 is due to 
superparamagnetic nature of the resulting MgCo2 nanoparticles and interference of the surface 
effects with their magnetic ordering. The temperature dependence of magnetic moment for 
MgCo2 shows that its magnetic moment at 300 K is 55-60% of its moment below 40 K [41]. 
Assuming that the whole magnetic moment measured after the heat treatment is due to MgCo2, 
the magnetic moment of the nanoparticles below 40 K would decrease at least 35 times by the 
heat treatmnet. Therefore, Ni-Co-B addition is very unlikely to produce the magnetic pinning, 
because the resulting phases are essentially non-magnetic.  

 

Figure 10: Magnetization curves measured at 300 K for Mg + 10 wt% Ni-Co-B powders before 
and after heat treatment at 850 °C. 
 
 
6.Conclusions   
  
Addition of magnetic Ni-Co-B nanoparticles to MgB2 results in improvement of grain 
connectivity and vortex pinning when precursor powders are heat treated above 730 °C. The best 
performance of Jc in magnetic field is obtained for 2.5 wt% Ni-Co-B addition and heat treatment 
at 850 °C. Ni-Co-B nanoparticles react with Mg, creating Mg2Ni and MgCo2 nanoparticles. The 
resulting nanoparticles improve the vortex pinning. Because the magnetic moment of Ni-Co-B 
nanoparticles is reduced to almost zero in their reaction with Mg through 850 °C heat treatment, 
the resulting nanoparticles do not contribute to magnetic-type pinning. Grain connectivity 
improvement by Ni-Co-B doping is associated with a decrease of oxygen content in the samples. 
Most likely mechanism for improvement of connectivity is competition for Mg between Ni/Co 
and MgO at grain boundaries.  
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