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Abstract: 

LiFePO4 particles doped with zinc oxide was synthesized via a hydrothermal route and used as 

cathode material for lithium ion battery. Sample of preferable shape and structure was obtained by 

a concise and efficient process. ZnO doping into the LiFePO4 matrix was positively confirmed by 

the results of X-ray diffraction (XRD); high-resolution transmission electron microscopy 

(HRTEM); energy dispersive spectrometer (EDS), and X-ray photoelectron spectroscopy (XPS). 

LiFePO4 doped with ZnO tends to form nanometer-size and homogeneous particles, which can 

improve markedly the performance and stability of charge-discharge cycle. A specific discharge 
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capacity of ZnO-doped LiFePO4 at 132.3mAh/g was achieved, with 1.8% decrease after 100 

cycles. Based on the cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) 

results, it has further shown that ZnO doping effectively reduces the impacts of polarization and 

transfer resistance during electrochemical processes. 

Key words:  

inorganic compounds; oxides; chemical synthesis; X-ray photo-emission spectroscopy (XPS); 

electrochemical properties 

 

1. Introduction 

The lithium ion battery assembled with phosphor-olivine LiFePO4 (LFP) based cathode 

material possess long cycle life and high service voltage, and have been recognized as one of 

the most attractive power supplies for electric vehicle and hybrid electric vehicle [1, 2]. It is well 

known that the ionic diffusion and electron conductivities can be remarkably improved by doping 

appropriate functional material to LFP, and the ameliorated microstructure is achieved which 

shortens the transmission distance of lithium ions and prevents the collapse of the crystal lattice 

[3-7]. And to prepare LiFePO4 at a low cost and efficiently, the hydrothermal synthesis is well 

studied by many researchers [8-16]. Their results demonstrate that the particle size and 

conductivity of LFP can be controlled by appropriate additive, such as CTAB, ascorbic acid and 

carbon nanotube under hydrothermal conditions and the appropriate temperature is necessary. H.K. 

Liu et al. mixed LFP with commercial ZnO powders through solid route and considered that the 

doped zinc ions protect the LFP crystal from shrinking [17]. This kind of “pillar” effect provides 

more space for the movement of lithium ions. Consequently, its conductivity is enhanced and the 
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lithium-ion diffusion coefficient is boosted after doping. These favorable changes are beneficial 

for the electrochemical performance of LFP, including the discharge capacity and rate capability.  

This paper presents our recent study about ZnO doped LFP fabricated through a convenient 

hydrothermal route which is used as cathode material of lithium ion battery. The doping effect of 

ZnO on the microstructure and the electrochemical properties of LFP were also involved. 

2. Experimental 

2.1 Sample preparation 

In this study, starting materials are LiOH, Zn(Ac)2·2H2O, FeSO4·7H2O and H3PO4. All the 

chemicals (AR grade) were purchased from Sinopharm Chemical Reagent.  

The ZnO precursor was prepared by adding LiOH solution to Zn(Ac)2 solution under magnetic 

stirring for 1h in ice-water bath to form Zn(OH)2 precipitations, which would generate ZnO in the 

following hydrothermal reaction. The molar ratio of Zn2+: OH- in the above solution was 1:2.  

To prepare the LFP precursor, LiOH solution and H3PO4 were mixed in a beaker by magnetic 

stirring for 2h in ice-water bath to obtain Li3PO4 white colloids. Then the colloidal Li3PO4 were 

mixed with the ZnO precursor and magnetic stirred for 30min, followed by adding FeSO4 solution 

to form a dark green mixture under nitrogen bubbling. The molar ratio of Li+: PO4
3+: Fe2+ was 

3.05:1:1，and the nominal concentration of ZnO in LFP was 2.5wt% from which we can learn that 

the total amount of the Zn (Ⅱ) ions is 2.01 wt% in the doped sample. Next, the mixture was 

quickly transferred into an autoclave, which was sealed and heated at 180� for 16h. Subsequently, 

the autoclave was cooled to room temperature and the reaction mixture was filtered. The greyish 

precipitated residue was washed several times with de-ionized water under suction pressure. 

Finally, the filter cake was dried in a vacuum oven at 120� for 12h. Samples prepared from the 
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above process (described by chemical equation 1 and 2) were classified as ZnO-doped LFP. For 

comparison, pure LFP samples were prepared in the same manner without adding ZnO precursor 

(equation 1). Though the reaction mechanism for the hydrothermal synthesis of LiFePO4 is 

complicated [14, 15], some of the possible chemical reaction equations were shown as below. 

3LiOH+ H3PO4+ FeSO4→LiFePO4+ Li2SO4+3H2O (1) 

2 LiOH + Zn(Ac)2→ZnO+ 2 LiAc + H2O  (2) 

2.2 Characterization and electrochemical measurements 

The samples were characterized by X-ray diffraction (XRD) with Cu Kα1 radiation; scanning 

electron microscopy (SEM, JEOL JSM6700F); high-resolution transmission electron microscope 

(HRTEM, JOEL JEM-2010F); energy dispersive spectrometer (EDS, Mn Kα＜136eV) and X-ray 

photoelectron spectroscopy (XPS, Thermo ESCALAB 250) with focused monochromatic Al Kα 

radiation (1486.6 eV). 

Electrochemical performances of the samples were carried out using CR2016-type coin cells. The 

cathode for lithium ion battery was prepared by mixing the as-synthesized ZnO-doped LFP 

powder, acetylene black, and Teflon powder in a weight ratio of 80:15:5 in an agate mortar to 

form a paste. And the paste was dried in a vacuum oven at 120� for 12 h and rolled into a thin 

film. Then the film was cut into small discs (about 0.25 cm2) and used as the cathodes. The coin 

cells and the lithium metal anode were assembled in an argon-filled glove box with 1 M LiPF6 in 

ethylene carbonate (EC): dimethyl carbonate (DMC) =1:1 as the electrolyte; Celgard C2500 

membrane as the separator; and foam nickel as filler material. Cells were charged and discharged 

in cycles with voltage in 2.5~4.3 V range, measured by LAND battery tester (Wuhan LAND 

Electronics Co. Ltd., China) at room temperature (~25℃). The curves of cyclic voltammetry (CV, 
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1030B, Shanghai Chenhua Instrument Ltd, China) were carried out at 0.1 mV·s-1 within the range 

of 2.3~4.5 V at room temperature (~25℃). The electrochemical impedance spectroscopy (EIS) is 

conducted on the Solartron1287-1255B electrochemical workstation. The amplitude of the input 

AC signal is 5 mV, and the frequency range is set between 0.01Hz and 100 kHz.   

 

3. Results and discussion 

3.1 Structural Characteristics of ZnO-doped LiFePO4 

Fig.1 displays X- ray diffractions of ZnO-doped and un-doped LFP samples. The narrow and 

sharp peaks indicate that both two samples crystallized well and agreed with an ordered 

olivine-type structure indexed to the orthorhombic Pnmb space group (JCPDS Card No. 83-2092). 

Also, the patterns in Fig.1 show the presence of ZnO phase (JCPDS Card No. 89-1397) in 

ZnO-doped LFP sample as confirmed by the peaks at 34.4°, 56.6°, 67.9° and others, respectively.  

Furthermore, the unit cell parameters of the samples are calculated by using MDI Jade software 

and listed in table.1. For the sample of ZnO-doped LiFePO4, there are some extensions along a, b 

and c-axes. The increment of total lattice volume is about 1.14%. It infers that some Zn (Ⅱ) ions 

might be doped into LiFePO4 crystal lattice successfully. And with the pillar effect [17], this 

structural enlargement would be beneficial to lithium-ion diffusion. 

As researched by J.J. Chen’s group [12], it is indicated that around 0.14 zinc was substituted for 

iron, giving LiFe0.86Zn0.14PO4 when 20% zinc was in the reaction medium. A Rietveld analysis 

also indicated zinc on the iron site and not on the lithium site. Their study showed that the lattice 

volume became smaller with the formation of LiZnPO4 phase, which is opposite to our study 

result. It inferred that in our study, the zinc ions possibly do not exist in the form of LiZnPO4 due 
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to the different doping process and different zinc source. 

The SEM images of ZnO-doped and un-doped LFP are presented in Fig.2. In Fig.2 (a) it shows 

that ZnO-doped sample formed fine and homogeneous particles with the size of 300-400 

nanometers. In Fig.2 (b) the size of pure LFP with slice shape were shown to be much larger than 

that of doped one, with sub micrometer grade. It infers that ZnO doping in the LFP lattice may 

promote the nucleation process and decrease the particle size markedly during the reactions. 

Similar phenomenon was observed by X.Y. Kang et al. [18]. They thought that the reason for 

ZnO-doped LFP/C samples with smaller particles was that Zn ions in the solid solution inhibit 

particles to conglomerate and form secondary particles even after calcinations. R.S. Guo and his 

colleagues [19] used sol-gel and freeze-drying methods to obtain LFP precursor xerogel. Then the 

precursor was calcined in a reductive atmosphere and ground with a mortar and pestle. They also 

indicate that ZnO/C-LFP has a relative lower particle size. The size decrease of LFP particles 

owing to ZnO doping leads to the efficient depth of charge and enhances the overall battery 

performance. 

TEM images of samples were illustrated in Fig. 3(a) and (b). It can be seen that the size of doped 

sample is about 300nm in width and 400nm in length, while the size of un-doped sample is about 

700 nm in width and 1.1 µm in length. The composition of ZnO-doped LFP was identified by EDS 

as shown in Fig.3(c). Zn is clearly observed in the doped sample and no impurity was detected 

except Cu, which was introduced from the copper grid for TEM study. 

Fig. 4 exhibits clear lattice fringes of both un-doped and doped LFP, indicating their single 

crystallinity nature. It also exhibits typical fast Fourier transformation (FFT) patterns of 

orthorhombic LFP viewed along [100] direction. The FFT patterns confirm that the LFP particle is 
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a single crystal. Because of the orthorhombic structure of LFP crystal, the value of lattice 

parameter b equals to the width of neighboring lattice fringes corresponding to the (010) planes. 

The numerical values of b* and c* measured in Fig. 4 (a) and (b) with the help of Digital 

Micrograph software and the values of b of doped and un-doped LFP indicated by the reciprocity 

relation with b* are shown in Table 1. The b/c ratio of un-doped LFP crystal, which equals to the 

c*/b* ratio by the reciprocity relation, is also indicated in Table 1. It is learned from the table that 

the FFT results of doped LFP are almost the same with the un-doped one except that the values of 

b and b/c of doped one are a little higher than un-doped one. This fact indicates that the interplanar 

crystal spacing along (010) becomes widening after doping, which is identical to the phenomenon 

of crystal volume increment that is obtained from the XRD analysis (Table 1) and proves the pillar 

effect of ZnO further. 

To further investigate the state of zinc element in the ZnO-doped LFP sample, XPS analyses were 

carried out and the results are shown in Fig. 5. The XPS survey spectra are generally the same, 

except the scope from 1019 eV to 1027 eV in the curve of ZnO-doped sample, which exhibits the 

peak of Zn 2p3/2. The detailed and fitting curves of Zn (2p3/2) for the ZnO-doped LFP are 

magnified in the Fig. 5(b). From the figure, there are three main fitting peaks of binding energy, 

which are located at 1021.3 eV, 1022.5 eV and 1023.7 eV, respectively. The first peak is close to 

that of ZnFe2O4 (1021.4 eV, Ref. [20]). It infers that some Zn ions doped into the crystal lattice of 

LFP are close to FeO6 atomic group, and impacted by the FeO6 atomic group. The second peak 

agrees well with the reported value of ZnO (1022.5 eV, Ref. [21]), which indicates the existence of 

ZnO. The binding energy of Zinc compounds were generally impacted by strong electronegative 

halides, such as Br, Cl. It is known that the binding energy of Zn ion in ZnBr2 is 1023.4eV [22], 
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and in ZnCl2 is 1023.7eV [20]. It can be inferred that PO4
3- anion in the lattice of LFP would have 

similar effect on binding energy of nearby Zn ions, and thus the third peak shifts to 1023.7eV. The 

atomic percentage of zinc element is 0.53% as obtained from the XPS test. As the nominal mass 

percentage of zinc element in our doped LFP sample is 2.01 wt%, which was mentioned in the 

experimental section, it’s easy to calculate that the nominal atomic percentage of zinc element is 

0.71%. The calculated result is a little higher than the XPS result possibly due to the loss of 

sample during the suction filtration process. Table 2 shows the specific results of XPS quantitative 

analysis obtained by peak fitting. It is learned from the table that the amount of Zn ions indicated 

by peak 1 and peak 3 is about 22.3% and 20.1% of the total zinc amount, respectively. And the 

amount of Zn ions indicated by peak 2 which exist in the form of ZnO is about 57.5% of the total. 

So it can be confirmed that Zn ions are doped into the crystal lattice of LFP successfully. 

 

3.2 Performances of ZnO-doped LiFePO4 cathodes 

Fig.6 shows the charge-discharge profiles of ZnO-doped and undoped LFP between 4.3 and 2.5 V 

at a current rate of 0.1 C (1C=170 mAh/g) for the cycle of 1st (Fig. 6a), 50th (Fig. 6b) and 100th (Fig. 

6c), respectively. It is clearly confirmed that the capacity of the cell without ZnO faded more 

quickly than that of the cell containing ZnO. The voltage profiles of ZnO-doped sample exhibit 

flatter charge-discharge plateaus than those of the un-doped LFP. And the differences between the 

charge-discharge voltages do not change with the increase of the cycle number. While that of 

un-doped LFP performance changes markedly, which means the polarization for un-doped sample 

become increasingly obvious. In addition, it can be seen that the irreversible capacity of 

ZnO-doped sample has only a little loss and the charge-discharge curves are almost the same from 
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50th to 100th cycles, which indicates that the kinetics of the LFP is indeed improved due to the 

enhanced electronic conductivity, which is resulted from ZnO-doping. And the sample performs 

much more stable during the charge-discharge processes. 

The cycle performances for ZnO-doped and undoped LFP at 0.1C-rate are shown in Fig.7. From 

the figure, the initial discharge capacity of ZnO free LFP is 127.2mAh·g-1, and it is only 

66.9mAh·g-1 after 100 cycles. The decay is more than 47.4% comparing to the initial cycle. While 

ZnO-doped LFP has the capacity of 132.3mAh·g-1 for the first discharge, and maintains at 129.9 

mAh·g-1 after 100 cycles, which is 98.2% of the initial capacity. The capacity-keeping 

performance of the doped sample is more stable than that of un-doped one. And similar results 

were reported in Liu et al.’s paper [17]. 

Fig.8 shows the cyclic curves of ZnO-doped and undoped LFP which were charged at 0.1C, while 

discharged under various current rates (0.1C, 0.5C, 1C and 10C) at room temperature. It can be 

seen that the capacities decreased along with the increased current rate. It is because higher current 

rate means more lithium ions extract and reinsertion during relatively short time. When lithium 

ion migration can’t meet the requirement, the discharge capacity will decay significantly. For 

example, in the final cycle of each stage, the specific discharge capacities of ZnO-doped sample 

are 129.9 mAh·g-1, 94.2 mAh·g-1, 80 mAh·g-1 and 25.8 mAh·g-1 (98.2 %, 71.2 %, 60.5 % and 19.5 

% of the initial capacity, respectively) at the different discharged C-rate of 0.1 C, 0.5 C, 1 C and 

10 C, respectively. The much higher capacity of the doped sample comparing to the un-doped 

sample indicates that the ZnO-doped sample performed much better in high rate discharge. This 

improvement of performance is beneficial to the lithium ion battery applications as power cell. 

The performance improvement of ZnO-doped sample may be explained by the special 
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morphology change, such as finer and more homogenous particles, which keep lattices from being 

collapsed during the process of lithium ions migration that may ruin the crystal lattice structure 

through long cycle and high C-rate charging and discharging [17]. Also, a small quantity of ZnO 

will improve conductivity distributing in LFP particles to give higher electronic transmission [23].  

Table 3 gives a list of research results about high performance LFP published in recent years. 

Comparing to our research we can find that most of the initial capacities and cyclic performance at 

high rates of the C-coated LFP are much better than the ZnO-coated LFP. However, the cyclic 

performance of ZnO-coated LFP at low rate is comparable to the C-coated LFP. And it’s 

confirmed that the ZnO-coated LFP has a higher initial capacity and cyclic performance compared 

with the un-doped LFP whose performance was investigated by other researchers. 

Fig.9 illustrates the results of cyclic voltammetry tests, which were tested at a scan rate of 0.1 

mV·s-1 between 2.3V and 4.5V. Each sample exhibits a group of typical curves composed by a pair 

of major redox peaks (Li/Li+) centered from 3.25 to 3.75V. The potential difference between the 

anodic and cathodic peaks is always representative of the kinetics, especially considering that the 

electrochemical processes involve diffusion of lithium ions and electron transfer between different 

solid phases, LFP and FePO4 [33]. The ZnO-doped LFP shows much sharper oxidation-reduction 

peaks and much smaller potential gap (∆V) than ZnO free LFP material, which means higher 

diffusion rate of Li+ and electronic conductivity. The well defined peaks and symmetrical shape of 

CVs confirm that the crystal lattices of ZnO-doped LFP do not change while lithium ions 

extracting from LFP and inserting into FePO4 [17]. It means that ZnO-doping improves markedly 

the reversibility for charge-discharge during electrochemical reactions. 

In order to deeply compare and understand the influence of ZnO on LFP matrix, the 
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electrochemical impedance spectra (EIS) measurements, which can accurately reflect the cathode 

material’s electrochemical characters [34, 35], were carried out in the frequency range from 

0.01Hz to 100 kHz in both cells after one charge-discharge cycle. The EIS data fitted by the 

software of ZSimpWin are shown in the insert of Fig.10. The Nyquist plot of the doped sample 

showed two semicircles at medium-high and low frequencies, while the un-doped sample did not 

show as obvious. These EIS patterns can be well fitted by an equivalent circuit in the insert of 

Fig.10. Where, Re is bulk resistance reflecting the electric conductivity of the electrolyte, separator, 

and electrode; RSEI and CSEI are resistance and capacitance of the solid-state interface layer formed 

on surface of electrode, which corresponds to the semicircle at high frequency; Rct and Cdl are 

charge-transfer resistance and it is related to double-layer capacitance between electrode and 

electrolyte, which corresponds to the semicircle at medium frequency; ZW is Warburg impedance, 

related to the lithium ions diffusion in the active material, which is indicated at the low frequency 

[34]. The corresponding values were listed as shown in Table 4. The Re values of different cells 

are almost the same. The RSEI values are smaller than the Rct values suggesting that the 

electrochemical performance is mainly influenced by the charge transfer resistance. For example, 

the values of RSEI are 59.300 and 43.825Ω, and the Rct values are 87.325 and 53.925Ω, 

respectively. And also, it indicates that the charge-transfer resistance of LFP with ZnO is lower 

than that of LFP without ZnO. Therefore, based on the results in Fig. 10, we can conclude that the 

LFP material doped with ZnO becomes more conductive, which is also confirmed by the cell 

performance from Fig. 6, Fig. 7, Fig. 8 and Fig. 9. 

 

4. Conclusion 
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It has demonstrated that an effective, simple and concise hydrothermal synthesis allowed to 

prepare well-crystallized ZnO-doped LFP powder with good properties as the cathode for lithium 

ion battery. ZnO doping helps LFP to form homogeneous and smaller particles to shorten the path 

of lithium ion migration, and expands the crystal lattice which makes lithium ions 

intercalate/de-intercalate easily. The CV and EIS analyses show that ZnO effectively weakens 

electrochemical polarization and resistance, making lithium ions smoothly passed through 

electrode material. Comparing with ZnO free LFP sample, these favorable changes are beneficial 

for the electrochemical performance of LFP, such as charge and discharge capacities, and 

improves cycling behavior and reversibility significantly. 
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Figure Captions 

1. Fig.1 XRD patterns of ZnO-doped and un-doped LiFePO4. 

2. Fig.2 SEM images (a) ZnO-doped LFP image (b) un-dpoed LFP image. 

3. Fig.3 TEM micrograph of (a) ZnO-doped LiFePO4, (b) un-doped LiFePO4, (c) EDS spectrum 

of ZnO-doped LiFePO4. 

4. Fig.4 HRTEM images and FFT patterns of (a) ZnO-doped LiFePO4 and (b) un-doped LiFePO4. 

5. Fig.5 XPS analysis graph (a) XPS spectra of ZnO-doped LiFePO4 and (b) XPS fitting curves of 

Zn2p3/2 scope for ZnO-doped LiFePO4. 

6. Fig.6 Curves of charge-discharge capacities at 0.1C-rate, (a) 1st, (b) 50th and (c) 100th cycles. 

7. Fig.7 Cycle performance at 0.1C-rate. 

8. Fig.8 Cycle performance at various C-rates (0.1C, 0.5C, 1C, 10C). 

9. Fig.9 C-V curves tested at 0.1 mV·s-1 between 2.3 V and 4.5 V. 

10. Fig.10 Electrochemical impedance spectra of the samples and the equivalent circuit model. 
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Table 1 

 

X- ray diffractions fast Fourier transformation 

Samples a(Å) b(Å) c(Å) b/c 
volume 

(Å3) 
b*(1/nm) b(Å) c*(1/nm) b/c 

ZnO-doped 5.995 10.361 4.704 2.203 292.19 0.9607 10.39 2.1070 2.19 

un-doped 5.991 10.299 4.682 2.200 288.89 

 

0.9716 10.29 2.1093 2.17 
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Table 2 

 

 Position (eV) FWHM (eV) Amount Percentage (at.%) 

Peak1 

Peak2 

Peak3 

1021.3 

1022.5 

1023.7 

1.000 

1.313 

1.363 

22.343 

57.545 

20.112 
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Table 3 

 

Author 
Synthesis 

Method 

Initial 

Capacity 

(mAh/g) 

Cyclic Performance 
Modification 

Treatment 

Publicati

on Year 

Our group 
[this paper] 

Hydrothermal 132.3(0.1C) 
100 cycles, 129.9 

mAh/g, 98.2%(0.1C); 
80 mAh/g, 60.5%(1C) 

Doped with 
ZnO 

 

M. Higuchi 
[24] 

Microwave 125(0.1C) 
20 cycles,  85 mAh/g, 

68%(0.1C) 
None 2003 

J.H. Ahn 
[25] 

Sol-gel + heat 
treatment 

152(0.1C) 
100 cycles,  146 

mAh/g,  96% (1C) 
Carbon 
coating 

2008 

H.K. Liu 
[17] 

Ball milling 
125(20mA/cm

2) 
150 cycles, 100 mAh/g, 

80%(20mA/cm2) 
Mixed with 

ZnO 
2009 

Z. P. Liu 
[26] 

Solvothermal 155(0.1C) 
1000 cycles, 126 mAh/g, 

89%(20C, ) 
Carbon 
coating 

2010 

P. Balaya 
[27] 

Solvothermal 167(0.1C) 
50 cycles, 167 mAh/g,  

100%(0.1C) 
Carbon 
coating 

2010 

R. 
Stoyanova 

[28] 

Freeze drying + 
solid state 

130(0.1C) 
85 cycles,  108 mAh/g, 

83% (0.1C) 
Carbon 
coating 

2010 

Y. Yu [29] Electrospinning 169(0.1C) 
100 cycles, 146 mAh/g, 

86%(1C) 
Carbon 
coating 

2011 

S. E. 
Pratsinis 

[30] 

Flame aerosol + 
solid state 

163(0.5C) 
200 cycles,  158 

mAh/g,  97% (2C) 
Carbon 
coating 

2011 

J. Kim [31] 
Solid state 
synthesis 

150(0.1mA/c
m2) 

50 cycles,  135 mAh/g,  
90% (0.1mA/cm2) 

Carbon 
coating 

2011 

O. 
Lyckfeldt 

[32] 

Freeze 
granulation 
+solid state 

141(0.1C) 
200 cycles, 107 mAh/g,  

94%(1C) 
Carbon 
coating 

2012 
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Table 4 

 

Re CSEI RSEI Cdl Rct Zw 
Cells 

[Ω] [×10-4F] [Ω] [×10-4F] [Ω] [Ω] 

un-doped 0.565 6.398   59.300 0.272 87.325 0.017 

ZnO-doped 0.586 14.538   43.825 0.345 53.925 0.040 
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Table Captions 

1. Table 1 Lattice parameters of ZnO-doped and un-doped LiFePO4 obtained by different analysis 

methods（Pnmb space group） 

2. Table 2 XPS quantitative analysis results of Zn (Ⅱ) ions 

3. Table 3 Comparison with the high performance LiFePO4 published in recent years 

4. Table 4 Impedance parameters evaluated from the EIS data by using equivalent circuit 
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