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The coherent longitudinal acoustic (LA) phonons in La and Nb codoped polycrystalline BiFeO3

(Bi0.8La0.2Fe0.99Nb0.01O3 (BLFNO)) films are photo-induced and detected by the ultrafast

reflectance spectroscopy. The generation mechanism of LA phonons is strongly connected with the

ferroelectric polarization and is attributed to the transient photostriction effect, which is a

combination of the optical rectification effect and the electrostriction effect. The strain modulation

of sound velocity and out-of-plane elastic properties are demonstrated in BLFNO film on SrTiO3,

which gives the insight on the dynamical coupling between electrical polarization and lattice

deformation. Our findings are desired for the design of BiFeO3-based photo-driven remote control

micro/nano devices.VC 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4770309]

Multiferroics are materials that exhibit simultaneous

coexistence of electric and magnetic orders parameters. Bis-

muth ferrite BiFeO3 (BFO) is identified as a classical single-

phase magnetoelectric multiferroic at room temperature so

far, which shows high-temperature ferroelectricity (Curie

temperature Tc� 1100K) with a large electric polarization

of above 100 lC/cm2. Bulk crystalline BFO adopts incom-

mensurate magnetic order in a G-type antiferromagnetic

state below N�eel temperature TN� 640K with a cycloidal

spin arrangement with a long modulation period of

k � 620 Å.1–3 Both control of magnetization with electric

fields and modification of electric polarization with magnetic

fields would lead to a variety of potential applications in

optoelectronics and spintronic devices.4,5

In recent years, more and more attention have been

focused on the linear,6,7 nonlinear optical properties,8,9 and

the photo-induced effects in multiferroic BFO.10–15 Note-

worthy, photo-induced effects can be coupled to functional

properties, such as ferroelectricity, ferromagnetism, and fer-

roelasticity of BFO. For example, when illuminated by ultra-

violet light in an open circuit, the magnitude of the

photovoltage was found to be proportional to the crystal

length along the electric polarization direction.12,13 Rana

et al. reported that the ultrafast depolarization of ferroelectric

order causes the structural dependent terahertz radiation in

BFO.16 Talbayev et al. used the terahertz spectroscopy to

interpret the spectrum of long-wavelength magnetic reso-

nance modes of BFO crystal.17 Coupling of light with me-

chanical degrees of freedom in BFO was reported by Kundys

et al., the light-induced wavelength dependent size change

of BFO single crystal can be understood from photostriction

effect, a superposition of photovoltaic effect and electrostric-

tive effect.14,15 Although the photostriction effect has been

found in BFO single crystal at room temperature, it remains

intensive investigation aiming to understand the dynamical

photostriction effect. We would like to mention that the La

and Nb codoped BFO film shows a much higher electrical

polarization than that of intrinsic BFO film,18 and therefore

the enhanced photostriction effect in doped BFO is expected.

However, there are few experimental reports about the tran-

sient photostriction effect modified by the doping effect and

the strain effect introduced by substrate. Ultrafast spectros-

copy is employed as an efficient tool to investigate the dy-

namical properties due to its ability to simultaneously probe

the evolution of multiple degrees of freedom in the time do-

main.19 In this letter, all optical pump-probe technique was

employed to investigate the transient photostriction effect in

La and Nb codoped multiferroic Bi0.8La0.2Fe0.99Nb0.01O3

(BLFNO) thin films on different substrates. The observed

low frequency coherent longitudinal acoustic (LA) phonons

in BFO film is originated from the polarization induced by

optical rectification, which is efficiently enhanced by La and

Nb codoped. In addition, the out-of-plane elastic constant of

BLFNO film is strongly modulated by the strain effect in epi-

taxially grown BLFNO film on SrTiO3.

The thin film samples in this work were deposited using a

pulsed laser deposition system. Third harmonic generation of

a Nd doped yttrium aluminum garnet laser with a wavelength

of 355 nm and a repetition rate of 10Hz was used as the laser

source. BLFNO thin films were deposited on p-type (001)-Si,

yttrium stabilized (001)-ZrO2 (YSZ), and (001)-SrTiO3 (STO)

at 550 �C, then cooled down to room temperature following

rapid thermal processing. During the deposition, the dynamic

oxygen flow pressure was kept at 20 mTorr. The BLFNO film

on (001)-STO is epitaxially grown with tetragonal structure,

which is evidenced by X-ray diffraction. The film thickness is

about 200 nm. Details of the samples have been reported else-

where in Ref. 20.

The transient reflectivity changes reported here are per-

formed using a dual-color pump-probe technique. The light

source is provided by a commercial mode-locked Ti:sapphire

a)Email address: ghma@staff.shu.edu.cn.
b)Email address: cheng@uow.edu.au.
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laser (Spitfire Pro, Spectra-Physics) operated at a repetition

rate of 1 kHz, the pulse width of 120 fs, and the center wave-

length of 800 nm. The output pulse train is split by a beam

splitter. After the beam splitter, the major part is frequency-

doubled in a 1-mm BBO crystal as the pump beam of

�0.8 mJ/cm2 at the center wavelength of 400 nm (above the

Eg of BFO), and the other part without doubling (below the

Eg of BFO) is as the probe beam of �0.08 mJ/cm2. The

pump beam is modulated at 490Hz with a mechanical chop-

per. Both of the pump and probe beams are focused on the

surface of samples with near normal incidence. The reflected

probe beam is detected by a photodiode connected with a

lock-in amplifier to enhance the signal to noise ratio. The

sample is mounted on a cold finger in a closed cycle liquid-

He cooled optical cryostat with four transparent windows.

Figure 1(a) presents a schematic of the pump-probe

technique and photo-induced LA phonon propagation

configuration. BFO contains transition metal ions with

unpaired 3d electrons, which results in a relatively small

optical gap (Eg� 2.6–2.8 eV) in contrast to other conven-

tional ferroelectric perovskites at room temperature.6 Thus,

as the photo-energy of the pump pulse (Epump¼ 3.1 eV) is

larger than the optical gap of the BFO, the electron-hole

pairs are generated.12,13 In addition, for a material with

non-centrosymmetry, the second-order polarization P(2)(t)

can be described by21,22

Pð2ÞðtÞ ¼ e0v
ð2ÞEðtÞE�ðtÞ ¼ P

ð2Þ
0 ðtÞ þ P

ð2Þ
2xðtÞ; (1)

where vð2Þ is the nonlinear susceptibility. E(t) and E*(t) are

the optical electric field and its conjugate, respectively. The

first term on the right side of Eq. (1) is the optically induced

polarization to acquire a dc term, i.e., the optical rectification

effect, and the second term is associated with the second har-

monic generation.8 Through the electrostriction effect, the dc

term of the second-order polarization P
ð2Þ
0 ðtÞ leads to a sig-

nificant lattice deformation and then emits LA phonons.22

The LA phonons excited by pump beam will create a strain

wave in the BFO film. As this strain wave propagates

through the sample, the probe pulse undergoes a Doppler

shift following the interaction with the moving strain wave,

as in stimulated Brillouin scattering. The propagation of the

LA phonons can be recorded by scanning the time delay

between the pump and probe pulses.

Figures 1(b) and 1(d) show the typical transient reflectiv-

ity changes (DR/R) of BLFNO thin films on (001)-STO and

(001)-Si substrate, respectively. DR/R consists of a swift rise

followed by fast-, slow-relaxation, and oscillation processes.

The initial rise component is triggered by dipole-allowed

charge transfer transition (from O 2p to Fe 3d). The fast-

relaxation component corresponds to the electron-phonon

thermalization. Extracted by a bi-exponential decay function,

the electron-phonon thermalization time constant has been

found to be sensitive to the structure of the BFO film sam-

ple.23 Sheu et al. analyzed the subsequent slow relaxation

with different optical excitation energies and found that the

photo-excited electrons primarily leave the conduction band

via radiative recombination.24 Here, we concentrate on the

appearance of the periodic oscillations during the slow-

relaxation process. After deducting the background of the

electron relaxation, the oscillation component can be obtained,

which is plotted in Figures 2(a)–2(c). The fast Fourier trans-

form (FFT) of the oscillations represents peaks around

36GHz, 33GHz, and 25GHz for BLFNO films on (001)-Si,

(001)-YSZ, and (001)-STO substrates, respectively, as shown

in Figures 2(d)–2(f), which correspond to the LA phonon

modes.25 The oscillation frequency remains unchanged with

increasing pump fluence, while the amplitude of the oscilla-

tion is proportional to the pump fluence. For these thin film

samples, we do not identify the transverse acoustic (TA) pho-

nons, which has been observed on [010] direction for rhombo-

hedral symmetry of BFO single crystal.25 The transient

reflectivity changes without the relaxation background can be

fitted by a damped harmonic function

FIG. 1. (a) Schematic of the pump-probe exper-

imental setup and the propagating strain wave

model. Normalized transient reflectance

changes DR/R of (b) BLFNO film and (c) BFO

film on (001)-STO. Normalized transient reflec-

tivity changes DR/R of BLFNO film on (001)-

Si probed with (d) 800 nm and (e) 400 nm at

room temperature.

242902-2 Jin et al. Appl. Phys. Lett. 101, 242902 (2012)



DRðtÞ
R

/ cosð2pXt� /Þe�t=s; (2)

where X and s are the oscillation frequency and the dephasing

time, respectively. The black solid lines in Figures 2(a)–2(c)

are simple-damped cosine fits, X of BLFNO films on

(001)-Si, (001)-YSZ, and (001)-STO can be extracted as

35.56 0.5GHz, 33.36 0.3GHz, and 24.86 0.2GHz, respec-

tively, as shown by the open circles in Figures 2(d)–2(f).

As the wave-vector conservation in back-scattered con-

figuration, the wave-vector of the acoustic wave q¼ 2kprobe,
where kprobe is the wave-vector of the probe beam with

kprobe ¼ 2p
ffiffiffiffiffiffiffiffiffiffiffiffiffi
n2�sin2h

p
kprobe

, where n, h, kprobe are the refractive index

of BLFNO films at probe beam wavelength, the incidence

angle of the probe beam, and the wavelength of the probe

beam, respectively. According to the strain pulse propaga-

tion model,25–28 the phonon dispersion is 2pX ¼ vSoundq.
Thus, the sound velocity in the sample is given by

vSound ¼ Xkprobe=2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 � sin2ðhÞ

q
(3)

In our case, the h approaches to 0�, the sound velocity can be

reduced to vSound ¼ Xkprobe=2n. Consequently, the Brillouin

frequency X is proportional to n/kprobe.
29,30 However, in our

case, Figure 1(e) shows that no significant oscillation compo-

nent of BLFNO film on (001)-Si is observed with probe wave-

length of 400 nm beam. As Figure 1(a) sketched, the

oscillation component of DR/R is ascribed to the interference

between the probe beams reflected from the surface and the

strain layer of the propagating strain pulse. The constructive

or destructive interference depends not only on the position of

the lattice modulation but also on the penetration depth of the

probe beam (n¼ kprobe/4pj). n of BFO film at 400 nm probe

beam (�40 nm) is much shorter than that at 800 nm probe

beam (�10lm).8,24 This is the reason that the oscillations

cannot be observed with 400 nm probe beam. In this study, we

choose the wavelength of the probe beam at 800 nm, which is

allowed to investigate the elasticity deeply beneath the free

surface. It should be mentioned that n at 800 nm is much

larger than the thickness of BLFNO film. Therefore, it can be

predicted that the strain wave will propagate from the BLFNO

film into the substrate. As shown in Figure 2(d), the fast Fou-

rier transform of the oscillations of the BLFNO on (001)-STO

(Figure 2(a)) reveals two frequencies: �25 and �47GHz,

which are assigned to LA phonon modes in the BLFNO film

and the STO substrate, respectively.29 In addition, s arises

from two sources, the intrinsic lifetime of LA phonons (sLA)
and the penetration depth of the probe light into the sample. s
can be expressed as a superposition, s�1 ¼ s�1

LA þ s�1
n=VSound

.

Due to the thickness of the thin film is much shorter than n, it
is impossible to use the oscillation signal to evaluate the

intrinsic lifetime of LA phonons in our case.

Photo-induced strain wave can have different generation

mechanisms in different materials. For example, instantane-

ous thermal strain by pulsed lasers in opaque samples,26,28

impulsive stimulated Raman scattering in semiconductor

superlattices,31 displacive excitation in bulk semiconduc-

tors,32 and ultrafast dynamical screening of the built-in pie-

zoelectric field in quantum wells.33 In order to elucidate the

origin of the coherent acoustic phonon in BLFNO films, we

choose the pure BFO thin films for comparison. As shown in

Figure 1(c), the oscillation magnitude of DR/R is too weak

to be identified clearly from the relaxation background in a

pure BFO film on (001)-STO, which indicates that the LA

phonon generation efficiency of BFO film can be efficiently

enhanced through La and Nb codoped. Similar cases are also

observed in the film samples on the other two substrates. La

and Nb codoped BFO film has been proved to show better

ferroelectric properties in terms of large polarization and sig-

nificantly reduced electrical leakage.20,34 It is important to

remind that the nonlinear susceptibility (vð2Þ) is a function of

ferroelectric polarization.22 Therefore, our finding suggests

that the generation of acoustic phonons is strongly related to

the optical rectification performance. The larger P
ð2Þ
0 ðtÞ can

enhance the photo-induced strain wave via electrostriction

FIG. 2. (a)-(c) The oscillatory part of DR/R of

BLFNO on various substrates, (001)-STO,

(001)-YSZ, and (001)-Si, respectively. (d)-(f)

The fast Fourier transform spectra obtained

from DR/R without the relaxation background

at room temperature. The solid lines and open

circles in the figures are the fitting results by

Eq. (2). The arrow at 47GHz is assigned to LA

phonon mode in the STO substrate.

242902-3 Jin et al. Appl. Phys. Lett. 101, 242902 (2012)



effect. Thus, our experimental observation can be used to

verify the mechanism of the ultrafast optical-mechanical

transferring in BFO films, the transient photostriction effect,

a combination of the optical rectification effect, and electro-

striction effect. It should be mentioned that, although light

irritation will cause subtle changes of the ferroelectric polar-

ization under certain wavelength, the transient photostriction

effect driven by the optical rectification effect with femtosec-

ond laser pulse does not show any detectable changes after

several measurements.

In general, the various elastic parameters are considered

as the origin of many unexpected properties in BFO, such as

the decrease of Curie temperature with strain,35 the giant

polarization and enhanced electromechanical response,36 and

a concurrent magnetic and ferroelectric transition at near

room temperature of the tetragonal BFO.37 The transient pho-

tostriction effect offers an available way to quantify the effect

from substrate via the out-of-plane longitudinal elastic con-

stant, C?. Assuming the refractive index of doped BFO film

ranged from n¼ 2.1 to n¼ 2.5,8,9,38 according to Eq. (3), we

can estimate the sound velocities of the BLFNO films on dif-

ferent substrates, vsound¼ 4761–4000ms�1 on (001)-STO,

vsound¼ 6361–5344ms�1 on (001)-YSZ, and vsound¼ 6723–

5648ms�1 on (001)-Si, which are summarized in Figure 3(a).

C? is determined from the longitudinal sound velocity and the

mass density, q, by the relation qðvSoundÞ2 ¼ C?.25 Using the

mass density qBFO¼ 8340kg m�3, the magnitudes of C? of

BLFNO films on different substrates can be estimated.

Although arising from the refractive index evaluation, the

uncertainties of the order of 40%, C? still shows obvious sub-

strate dependent, C?¼ 189–133GPa on (001)-STO, 337–

238GPa on (001)-YSZ, and 376–266GPa on (001)-Si, as

shown in Figure 3(a). It can be found that the polycrystalline

BLFNO films grown on (001)-Si and (001)-YSZ have the

similar value of C?, while the longitudinal elastic constant is

much reduced in the epitaxially grown BLFNO film on (001)-

STO substrate. Furthermore, the temperature dependences of

X of the BLNFO films on (001)-STO and (001)-Si substrates

are shown in Figure 3(b), respectively. It is seen that X of the

BLNFO film on (001)-Si changes less than 10%, from

35.56 0.5GHz to 32.36 0.4GHz, when temperature

decreases from 300K to 70K, which indicates that LA pho-

non mode shows weak temperature dependence. In contrast,

LA phonon mode of the epitaxially grown BLFNO film on

(001)-STO is almost no temperature dependence. Our BLFNO

film epitaxially grown on (001)-STO substrate has a tetragonal

structure in comparison to the rhombohedral structure of the

polycrystalline film on YSZ and Si substrates. These experi-

mental results quantitatively indicate that the propagation of

LA phonons in BLFNO films is strongly modified by the

strain from substrate.

In conclusion, pump-probe spectroscopy with short-

pulsed laser can be used to study the transient photostriction

effect in multiferroic BLFNO thin films via the generation

and propagation of the GHz coherent acoustic phonons. The

substrate- and temperature-dependence of the propagation of

LA phonons not only provide the out-of-plane elastic modu-

lus of BLFNO films but also give the insight on the dynami-

cal coupling between polarization and lattice deformation. It

is also demonstrated that the transient photostriction can be

designed and monitored by doping and strain engineering in

BFO thin films. As far as applications are concerned, the

ultrafast coupling of light with mechanical degrees of free-

dom guides the promising practical applications in types of

photo-driven remote control BFO-based wireless device,

sensor, and other optomechanical micro/nano systems.
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