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Abstract: The designer surface plasmons (DSPs) are studied by the use of a 
kind of metamaterial with a structure of double sets of circular holes: 
subwavelength apertures, and indentations. The diameter and spacing of the 
indentations are smaller at least one order of magnitude than those of the 
apertures. A theoretical model is built to analyze the DSPs sustained by the 
indentations by using effective dipoles method. The influence of the DSPs 
on the transmission property is revealed for electromagnetic waves passing 
through the apertures. In order to verify the theoretical predication, a set of 
the metamaterial samples is made and the transmission spectra are measured 
in microwave regime. Our results provide a new proof for the existence of 
DSPs and are promising for proposing some techniques for optoelectronic 
devices in terahertz and microwave regime. 

©2011 Optical Society of America 

OCIS codes: (240.6680) Surface plasmons; (240.6690) Surface waves; (040.2235) Far infrared 
or terahertz; (260.2110) Electromagnetic theory; (310.2790) Guided waves; (120.7000) 
Transmission. 

References and links 

1. J. B. Pendry, L. Martín-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” 
Science 305(5685), 847–848 (2004). 

2. F. J. Garcia-Vidal, L. Martin-Moreno, and J. B. Pendry, “Surfaces with holes in them: new plasmonic 
metamaterials,” J. Opt. A, Pure Appl. Opt. 7(2), S97–S101 (2005). 

3.  F. J. García de Abajo and J. J. Sáenz, “Electromagnetic surface modes in structured perfect-conductor surfaces,” 
Phys. Rev. Lett. 95(23), 233901 (2005). 

4. A. P. Hibbins, B. R. Evans, and J. R. Sambles, “Experimental verification of designer surface plasmons,” Science 
308(5722), 670–672 (2005). 

5. M. Tanaka, F. Miyamaru, M. Hangyo, T. Tanaka, M. Akazawa, and E. Sano, “Effect of a thin dielectric layer on 
terahertz transmission characteristics for metal hole arrays,” Opt. Lett. 30(10), 1210–1212 (2005). 

6. C. R. Williams, S. R. Andrews, S. A. Maier, A. I. Fernández-Domínguez, L. Martín-Moreno, and F. J. García-
Vidal, “Highly confined guiding of terahertz surface plasmon polaritons on structured metal surfaces,” Nat. 
Photonics 2(3), 175–179 (2008). 

7. J. T. Shen, P. B. Catrysse, and S. Fan, “Mechanism for designing metallic metamaterials with a high index of 
refraction,” Phys. Rev. Lett. 94(19), 197401 (2005). 

8. L. F. Shen, X. D. Chen, and T. J. Yang, “Terahertz surface plasmon polaritons on periodically corrugated metal 
surfaces,” Opt. Express 16(5), 3326–3333 (2008). 

9. Y. C. Lan and R. L. Chern, “Surface plasmon-like modes on structured perfectly conducting surfaces,” Opt. 
Express 14(23), 11339–11347 (2006). 

10. S. A. Maier and S. R. Andrews, “Terahertz pulse propagation using plasmon-polariton-like surface modes on 
structured conductive surfaces,” Appl. Phys. Lett. 88(25), 251120 (2006). 

11. F. J. García de Abajo, “Colloquium: light scattering by particle and hole arrays,” Rev. Mod. Phys. 79(4), 1267–
1290 (2007). 

12. E. Hendry, A. P. Hibbins, and J. R. Sambles, “Importance of diffraction in determining the dispersion of designer 
surface plasmons,” Phys. Rev. B 78(23), 235426 (2008). 

13. B. K. Juluri, S.-C. S. Lin, T. R. Walker, L. Jensen, and T. J. Huang, “Propagation of designer surface plasmons in 
structured conductor surfaces with parabolic gradient index,” Opt. Express 17(4), 2997–3006 (2009). 

#144908 - $15.00 USDReceived 28 Mar 2011; revised 16 May 2011; accepted 16 May 2011; published 26 May 2011
(C) 2011 OSA 6 June 2011 / Vol. 19,  No. 12 / OPTICS EXPRESS  11375



14. N. F. Yu, Q. J. Wang, M. A. Kats, J. A. Fan, S. P. Khanna, L. H. Li, A. G. Davies, E. H. Linfield, and F. 
Capasso, “Designer spoof surface plasmon structures collimate terahertz laser beams,” Nat. Mater. 9(9), 730–735 
(2010). 

15. N. Talebi and M. Shahabadi, “Spoof surface plasmons propagating along a periodically corrugated coaxial 
waveguide,” J. Phys. D Appl. Phys. 43(13), 135302 (2010). 

16. J. S. Liu, L. Ding, K. J. Wang, and J. Q. Yao, “A method to design transmission resonances through 
subwavelength apertures based on designed surface plasmons,” Opt. Express 17(15), 12714–12722 (2009). 

17. S. A. Maier, Plasmonics-Fundamentals and Applications (Springer, New York, 2007) 
18. C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature 445(7123), 39–46 (2007). 
19. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through 

sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998). 
20. H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, “Surface plasmons enhance optical 

transmission through subwavelength holes,” Phys. Rev. B 58(11), 6779–6782 (1998). 
21. H. A. Bethe, “Theory of diffraction by small holes,” Phys. Rev. 66(7-8), 163–182 (1944). 
22. J. D. Jackson, Classical Electrodynamics (Wiley, New York, 1975). 

1. Introduction 

Since the concept of the plasmon polariton-like bound surface states, namely mimicking or 
spoof or designer surface plasmons (DSPs), on structured surfaces of a perfect conductor was 
presented by Pendry and his coauthors [1,2], many theoretical and experimental researches 
have been done in this topic [3–16]. A rigorous and systematic theoretical analysis for DSPs 
was made in Refs. 3 and 11. The existence of DSPs was directly verified in a microwave 
reflectivity measurement [4] and indirectly verified in a terahertz enhanced transmission test 
[5]. DSP propagation on structured metal surfaces was directly observed [6]. 

As we know, the real surface plasmons (SPs) at a metal–dielectric interface [17] can affect 
the transmission property of electromagnetic waves through subwavelength apertures in metal 
films or foils in high frequency regime [18–20]. While in low frequency regime, e.g. terahertz 
and microwave regime, metal can be regarded as perfect conductors according the traditional 
electromagnetic theory. Thus excitation of the SPs cannot be expected, and consequently there 
should be no any SP states to affect the transmission property. Can the DSP sates affect the 
transmission property at low frequency regime if the metal–dielectric interface is structured? 
To answer this question, we recently proposed a kind of metamaterial [16], which is a metallic 
foil with a structure of double sets of holes: subwavelength square apertures and small 
rectangle indentations. The sizes and spacing of the indentations are smaller at least one order 
of magnitude than those of the apertures. Following the approach in [1,2], we built a 
theoretical model, the results of which showed that the DSPs sustained by the rectangle 
indentations could affect the transmission property of the incident wave passing through the 

subwavelength apertures. If let 0

peck  denote the peak transmission wavelength relative to the 

foil with the apertures alone and peck  denote that relative to the foil with the double sets of 

holes, one get 0

peck peck   from our model. Such a conclusion, tentatively called red-shift 

effect, could be experimentally checked easily. Unfortunately, this theoretical model has not 
been checked experimentally so far. 

In this paper, we theoretically and experimentally investigate a metamaterial with a 
structure of double sets of circular holes: subwavelength apertures, and indentations. The 
diameter and spacing of the indentations are smaller at least one order of magnitude than those 
of the apertures. By using the effective dipoles theory [3,11] instead of former effective-
medium method [1,2], we build a theoretical model to analyze the DSPs sustained by the 
circular indentations, and obtain an analytical form of the dispersion relationship for the 
anisotropic DSP states. Note that the reason why we chose the effective dipoles theory is that 
this method can be used under the condition that the depth of perfect conductor surface is 
finite, which is correspond to the real experiments. Basing on these results, we further 
theoretically analyze the transmission property of radiation through the subwavelength 
apertures. An analytical formula for the peak transmission wavelengths, which predicts a red-
shift effect similar with that of rectangle indentations [16], is obtained. In order to verify our 
validity of our model, a set of the proposed metamaterials are fabricated and the transmission 
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spectra of the samples are measured at microwave regime. The predicted red-shift effect does 
exist from the experimental results. However it should be noted that the shift amount of the 
measured one is much larger than the calculated one from the analytical formula. A rigorous 
numerical modeling, in order to fully investigate the transmission properties of proposed 
metamaterials, is also performed by using the Finite-difference time domain (FDTD) method 
to directly solve Maxwell equations. The simulation results are in good agreement with the 
measured ones. Our results provide a new evidence for the existence of DSPs and have some 
potential applications in techniques for optoelectronic devices, e.g. adjustable frequency 
selector, in microwave and terahertz regime. 

2. Theoretical model 

Our model system is shown in Fig. 1. We suppose that there is a perfect conductor surface 
(PCS) pierced by a square array of circular through holes. The hole radius and their spacing 
are a and d, respectively. The Cartesian coordinate system is constructed as shown in Fig. 1(a) 
and the z axis is taken to be the surface normal. Meanwhile, the depth of the PCS is assumed 

to be infinite ( h ). For such a structure, if a d  (  is the wavelength of radiation), 

the basic physics involved DSP states on the structured surface can be described exactly by 
the view of effective dipoles [3,11]. Therefore, the scattered field of each small hole shown in 
Fig. 1(a) is equivalent to that generated by an electric dipole perpendicular to the surface and a 
parallel magnetic dipole. These dipoles are proportional to the external perpendicular electric 
field and parallel magnetic field via the polarizabilities

E and
M , respectively [21]. 

 

Fig. 1. (a) A set of circular through holes with diameter 2a arranged on a d × d lattice is pierced 

into a PCS with infinite depth ( h ). (b) Schematic structure of the designed plasmonic 

metamaterial with double sets of circular holes. A set of additional subwavelength circular 
apertures with larger diameter ρ arranged on D × D lattices are structured on the hole-array 
surface shown in Fig. 1(a). Note that a and d are smaller than ρ and D, respectively, at least one 
order of magnitude. 

We assume that a unit p-polarized plane wave with wave vector k in the x-z plane is 
incident upon the surface. The electric and magnetic dipoles can be presented as 

ext

E
ˆp  p z E  and ext

M
ˆm  m y H , where ext

E  and ext
H  are the total field (incident plus 

reflected) in the absence of any surface structure. Through the effective dipole model [3,11], 
DSP states can be sustained by the structured surface shown in Fig. 1(a) under the 

condition 1 1

E M1 Re{ } 1 Re{ } 0    . The DSP momentum component parallel to the surface 

can be obtained as 

 
3 4

2 2

|| 4
,

A k
k k P

d
    (1) 

where k = 2π/λ is the light momentum in vacuum, A = πa
2
 is the hole cross section, and P is 

expressed as 

 
2

2

3 1 1

E M

4 1 1
( ) .
Re{ } Re{ }

P
A



  
    (2) 

Moreover, the DSP states described by Eq. (1) can provide interaction between additional 
surface features like holes of larger dimensions, which is similar to the behavior associated 
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with real surface plasmons (SPs). To investigate the effect of additional hole arrays with 
larger dimensions on DSP states, we consider a designed plasmonic metamaterial with double 
sets of circular holes, as shown in Fig. 1(b). A set of additional subwavelength circular 
apertures with larger diameter ρ arranged on D × D lattices are structured on the hole-array 
surface shown in Fig. 1(a). Note that a and d are smaller than ρ and D at least one order of 
magnitude, respectively. Since the additional array of larger apertures acts as a grating, the 
momentum of the grating allows for coupling between external radiation and DSP states. 
Then, by using an approximation in [20], the conservation of momentum is given by 

 (rad)

|| ,t x yj l  k k G G   (3) 

in which k|| is the parallel component of DSP momentum, (rad)

tk  is that of external radiation 

momentum. The reciprocal lattice vectors of the additional array are Gx and Gy, and j and l are 
integers. One can obtain from Fig. 1(b) that |Gx| = |Gy| = 2π/D. Thus the parallel component of 
DSP momentum k||, from Eq. (1), 2 and 3, is dependent on geometric parameters of bigger and 
smaller circular holes simultaneously. For simplicity, we consider radiation normally 

impinging at the interface, which is (rad) 0t k . Combining the equations above, we find that 

the locations of transmission (or resonance) peak wavelengths are given by 

 
2 2 3

0 in

4 2

4
1 ,jl jl

jl

n A
P

d


 


    (4) 

where nin is the refractive index of the incident medium, and 0 2 2

injl n D j l    denotes the 

peak wavelengths for the case only with additional aperture array of larger dimensions. Note 
that the peak wavelengths depend on the geometrical and optical parameters of the small 
holes, thus allowing us to design the peak wavelengths by adjusting these parameters. The 
corresponding detailed analysis is just like that for rectangle holes [16], and no necessary to 

repeat here. One can see from Eq. (4) that 0

jl jl   for a given set of j and l because 0P . 

This is that so-called red-shift effect. 
In the long-wavelength limit, it should be noted that αE or αM can be obtained from the 

electrostatic or magnetostatic far field induced by an external field. Specially, when the small 

holes with d × d lattice are perforated in a thin PSC ( 2h a ), the equations discussed above 

are still valid, but the parameter P must be replaced by Pthin = 4P in this case due to 
cooperative interaction between both sides of the film [3,22]. 

3. Experimental and simulated results 

An experiment is performed at microwave regime to verify the red-shift effect. A set of 
sample pair is made via using well-developed printed circuit board (PCB) technology. The 
two samples in a pair have the same structural parameters, but one sample in a pair is only 
pierced with arrays of subwavelength apertures with larger geometrical size, denoted by S0, 
while another sample in the pair is simultaneously made a square array of smaller circular 
holes, denoted by S1, as shown in Fig. 2. The metal film is made of copper with thickness h = 
0.035mm, printed on a plastic board (Flame Resistant) with thickness 0.3mm and refractive 
index np = 2.049 at 10 GHz. The refractive index of the medium in both small holes and larger 
apertures are nh = 1. Note that the copper film can be treated as perfect conductor film in 
microwave domain. 

There are two interfaces for the sample: One is metal-air and the other is metal-plastic. 
They should have the DSP states and will give rise to different red-shift amounts, which can 

be calculated via Eq. (4). Since the thickness of the copper film is very thin ( 2h a ), the 

parameter P must be replaced by Pthin = 4P as mentioned in section 2, and it leads to Pthin = 
16/9π

3
. For a pair of sample with the following structural parameters, S0: ρ = 11 mm, D = 18 

mm, and S1: a = 1 mm, d = 3 mm, ρ = 11 mm, D = 18 mm, the calculated red-shift amounts 
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between S0 and S1 are Δλ = 0.021 mm (Δf = 0.014 GHz) for the metal-air interface with nin = 
1, j = 1 and l = 0, while Δλ = 0.0832 mm (Δf = 0.054 GHz) for the metal-plastic interface with 
nin = np = 2.049, j = 2 and l = 0. 

 

Fig. 2. One of the fabricated samples used in the experiment. The left one is the photograph and 
the right one used to mark symbols. 

The transmission properties of the samples are measured by using two low sidelobe lens 
antennas with gain 25dB. The incident microwave generated by one antenna, whose 
frequency covers from 7 to 16GHz, is nearly vertically impinged at the surface of samples, 
where the polarization direction of the electric field of the incident microwave is normal to the 
y axis. The transmission microwave is detected by another antenna. Using Network Analyzer 
(N5230C, 10MHz-20GHz, Agilent Tech.), we visually observe the distribution of the 
transmittance of electromagnetic wave in frequency domain. Note that the distance between 
each antenna and the samples falls into the Fresnel zone of the lens antennas. The measured 
results for the samples S0 and S1 with the structural parameters above are shown in Fig. 3 (a). 
As can be seen the peak frequency for S1 is smaller than that for S0, indicating that the red 
shift of S1 relating to S0 is existent. The measured peak wavelengths are λS0 = 21.15 mm and 
λS1 = 21.46 mm, corresponding to a shift Δλ = 0.31 mm (Δf = 0.205GHz), to be nearly 4 to 10 
times greater than the calculated ones via Eq. (4) for the both interfaces. This is because the 
model above is very general and abstract when the condition a<<d<<λ does not get well 
satisfied. 

In order to give to a more accurate theoretical red-shift amount, we take a rigorous 
numerical modeling by using the FDTD method to directly solve Maxwell equations for the 
samples S0 and S1. The polarization direction of the electric field of the incident 
electromagnetic is taken normal to the y axis. The simulated transmission spectra for the 
metal-plastic interface are shown in Fig. 3 (b), for which the zero-order diffraction and the 
positive and negative first orders are considered. The simulated peak wavelengths are 

0s  21.80 mm and 
1s  22.33 mm, corresponding to a shift 0.43  mm ( f  0.26GHz), 

very closer to the measured ones. The metal-air interface is also simulated, having f  0.005 

GHz, indicating that the DSP states in the metal-plastic interface are dominant for affecting 
the transmission property. It should be noticed that only the position of transmission peak is  
 

 

Fig. 3. The measured (a) and simulated (b) transmission spectra for one pair of samples. S0: ρ = 
11 mm, and D = 18 mm; S1: a = 1 mm, d = 3 mm, ρ = 11 mm, and D = 18 mm. The simulated 
ones are related to the metal-plastic interface. 
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changed due to the introduction of smaller circular holes, while the transmission profiles, 
especially the peak amplitude and full width at half maximum(FWHM), are not influenced 
significantly from the measured and simulated results. The former researches showed that the 
peak position of EOT can be changed by adding some dielectric or magnetic materials into the 
subwavlength structures. Such method, however, could influence the profiles of the EOT 
simultaneously, such as the peak amplitude and FWHM. So our proposed subwavelength 
structure could be used for adjustable frequency selector without damaging the profiles of 
EOT. 

4. Discussion and conclusion 

We have made a set of sample pairs with different structural parameters a , d, A, and D , 

including those of circular holes. The transmission properties for all the pairs are measured 
and simulated. All the results demonstrate that the red-shift effect is existent for each sample 
pair, indicating that the DSP states sustained by a structured surface with small holes can 
affect the transmission properties of microwave passing through the subwavelength apertures. 
Our results give a new powerful proof for the existence of DSPs. 

At present, DSPs have many applications. For example, it was recently demonstrate that 
by directly sculpting DSP structures that tailor the dispersion of terahertz surface plasmon 
polaritons on the highly doped semiconductor facets of terahertz quantum cascade lasers, the 
performance of the lasers could be markedly enhanced [14]. The theoretical model and the 
results presented in this paper are promising for exciting some new ideas for the design and 
improvement of optoelectronic devices in terahertz and microwave regime, such as a 
frequency modulator. 
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