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Abstract

Early works on Private Information Retrieval (PIR)
focused on minimizing the necessary communication
overhead. They seemed to achieve this goal but at
the expense of query response time. To mitigate this
weakness, protocols with secure coprocessors were in-
troduced. They achieve optimal communication com-
plexity and better online processing complexity. Un-
fortunately, all secure coprocessor-based PIR proto-
cols require heavy periodical preprocessing. In this
paper, we propose a new protocol, which is free from
the periodical preprocessing while offering the opti-
mal communication complexity and almost optimal
online processing complexity. The proposed protocol
is proven to be secure.

Keywords: Private information retrieval, secure co-
processor.

1 Introduction

A private information retrieval (PIR) protocol allows
a user to retrieve a data item of her choice from
a database such that the database server does not
learn any information on the identity of the item
fetched. The problem was formulated by Chor et
al. (Chor et al. 1998), and has attracted a consid-
erable amount of attention. The efficiency of PIR
protocols is typically measured by their communi-
cation complexity and computation overhead neces-
sary to answer a query. Early works on PIR pro-
tocols (for both information theoretic and compu-
tational models) have been mainly focused on min-
imizing the communication complexity between the
user and the database server. Many proposed PIR
protocols (see, for example, (Ambainis 1997, Beimel
et al. 2002, Chang 2004, Chor & Gilboa 1997, Gentry
& Ramzan 2005, Woodruff & Yekhanin 2005)) suc-
ceeded in achieving this goal. However, these proto-
cols have very high computation overheads, requiring
the computation on the entire database in order to
retrieve a single bit. This results in excessive query
response time, and makes them impractical. Sion and
Carbunar (Sion & Carbunar 2007) showed that the
naive solution (i.e., downloading the whole database)

Copyright c©2010, Australian Computer Society, Inc. This pa-
per appeared at Australasian Information Security Conference
(AISC 2010), Brisbane, Australia. Conferences in Research and
Practice in Information Technology, Vol. 105. Colin Boyd and
Willy Susilo, Ed. Reproduction for academic, not-for profit
purposes permitted provided this text is included.

is more efficient than a carefully designed PIR pro-
tocol with sophisticated mathematical computation.
To address this problem, several attempts have been
made, and one of the most efficient solutions is based
on a tamper-proof secure coprocessor (SC), which
prevents anybody from accessing its memory from
outside even if the adversary has direct physical ac-
cess to the device (Smith et al. 1998). Being more
specific, the database server installs a secure copro-
cessor, which works as a user extension at the server
side. If the internal memory space of secure copro-
cessor was large enough to hold the entire database,
the PIR problem would be solved easily. A user sim-
ply applies existing network protocols like HTTP and
SSL to negotiate a secure session with the coproces-
sor, and makes a query. Since SC is physically pro-
tected, no one including the server should be able to
observe what the query is. Unfortunately, its inter-
nal memory can only hold a fixed and small number
of records at a time. Thus, secure coprocessor-based
PIR protocols aim to provide private access to a large
database while using only a small amount of copro-
cessor memory space.

Some secure coprocessor-based PIR protocols were
proposed in (Asonov & Freytag 4/2002, 5/2002,
Iliev & Smith 2003, 2004, 2005, Smith & Safford
2000, 2001, Wang et al. 2006, Yang et al. 2008).
They achieved optimal communication complexity
and good online processing complexity. However, all
these protocols need a heavy preprocessing that pe-
riodically shuffles the database. In this paper, we
propose a protocol without periodical preprocessing.

Our Contributions. We propose a new secure
coprocessor-based PIR protocol that works in the
two stages: offline shuffling and online retrieving.
During the offline shuffle, the secure coprocessor
double-encrypts all records and permutes the origi-
nal database. During the online retrieval, the secure
coprocessor usually reads two records from the shuf-
fled database and writes two records back. We prove
the security of the protocol. Unlike the previously
published coprocessor-based PIR protocols, the pro-
posed protocol uses two new ideas, namely, double-
encryption and twin-writing, and consequently re-
moves the need for periodical preprocessing. The
analysis of efficiency indicates that the performance of
the proposed protocol is better than the performance
of previous coprocessor-based PIR protocols.

Organization. Section 2 reviews the related work.
In Section 3 we provide the model. In Section 4 we
construct a new protocol and show its security. In
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Section 5 we analyze the performance. Finally Section
6 concludes the work.

2 Related Work

Smith and Safford (Smith & Safford 2000, 2001)
came up with the idea of using a secure coproces-
sor (SC) for PIR. In their works, SC preprocesses
the database, i.e., it shuffles the records offline before
the PIR protocol starts. More precisely, SC reads en-
tire database n times record by record, and each time
SC leaves a record in its secure memory and encrypts
the record using a secret key known to SC but not
to the server, then SC writes the encrypted record
in the shuffled database. During the phase of online
retrieval, when SC receives a query from a user, it
reads through the entire shuffled database, and keeps
the desired record in its internal memory. Then SC
decrypts the record and sends it via a secure channel
to the user. Obviously, the communication complex-
ity is optimal, but the online computation complex-
ity is O(n) and the offline preprocessing complexity
is O(n2).

To minimize the online computation, Asonov and
Freytag (Asonov & Freytag 4/2002) modified Smith
and Safford’s protocol as follows. To answer the first
query, SC accesses the desired encrypted record di-
rectly instead of reading the entire database. The
encrypted record is decrypted inside the SC and sent
to the user via a secure channel. To answer the kth

(k ≥ 2) query, SC has to read the k − 1 previously
accessed records first, then the desired one. In case
the kth query requests the same record as one of the
k−1 previous queries, SC reads a random (previously
unread) record. Evidently, SC has to keep track of
the accessed records. The database server can decide
at which point m = max(k) (1 ≤ m ≤ n) to stop and
to switch to shuffle the database again. Since m is
a constant independent of n, if the maximal allowed
query response time is fixed, m can be chosen without
considering preprocessing. Thus, the server processes
O(1) records online in order to answer each query.
Their protocol improves the online computation com-
plexity from O(n) to O(n1/2) (even O(1)), and retains
the optimal communication complexity. But the of-
fline preprocessing complexity is still O(n2), and the
reshuffling takes place when a fixed number of queries
have been answered.

The above two protocols would be optimal from
the user point of view, but they are still quite expen-
sive for the server. For example, assuming that ac-
cessing one database record takes 0.01 second for SC
and n = 10000, then we need n2 ∗ 0.01 ≈ 2 weeks to
prepare one shuffled database and an optimal trade-
off parameter m = 141. This means that we need
to reshuffle the database once per 141 retrievals. To
reduce the offline preprocessing, Asonov and Freytag
(Asonov & Freytag 5/2002) modified their protocol.
The server first splits each record in the database
into p equal parts. As the result, the database is
transformed into p share databases. Then SC shuffles
all the share databases based on the same algorithm.
The authors showed that for an optimal p, it is possi-
ble to reduce the preprocessing complexity to O(n1.5).
This means that n1.5 ∗ 0.01 ≈ 3 hours are needed
to prepare a shuffled database. Iliev and Smith used
the Beneš permutation networks as the shuffling algo-
rithm to reduce the complexity of database shuffling.
They presented protocols (Iliev & Smith 2003, 2005)
with the preprocessing complexity of O(n lg n). Un-
der the same condition, the preparation of one shuf-
fled database needs n lg n ∗ 0.01 ≈ 23 minutes. They
modified their protocols and proposed a new variant

(Iliev & Smith 2004), which requires a smaller internal
storage space of size O(lg n) for shuffling. Further-
more, Wang et al. (Wang et al. 2006) and Yang et
al (Yang et al. 2008) constructed protocols with new
shuffling methods and reduced the computational cost
for a query. Unfortunately, the problem of periodical
switching to a new shuffled database still exists in
these protocols.

3 Model

Throughout this paper, we use the following notation.
Let a

R←− A denote choosing an element a uni-
formly at random from the set A. For an integer n, [n]
denotes the set of integers {1, 2, . . . , n}. We write x||y
to denote the concatenation of the bit-strings x, y. By
default, lg k

def
= �log2 k�. For a database DB with n

records, DBi (i ∈ [n]) denotes the ith record in DB.
As in (Asonov & Freytag 5/2002), we assume that
it takes several orders of magnitude longer to oper-
ate on data in the external storage than to access
main memory. Thus, the preprocessing complexity
and online processing complexity of a PIR protocol
are measured by the number of records accessed on
the external storage, i.e., by the number of I/Os.

3.1 The Model

Let’s briefly recall the model of secure coprocessor-
based PIR. It consists of a single server – the host H,
which is connected with a secure coprocessor SC. A
database DB is stored on a suitable high-performance
storage medium that is a part of H and is separated
from SC. DB has n records. If records are not all
of the same length, each record is padded up to the
same size (the padding contents are determined by
the application). Before online queries start, DB is
permuted to a new database D. To retrieve a record
DBi (i ∈ [n]), a user sends SC a query specifying the
index i via a secure channel. SC then interacts with
H, which accesses D instead of DB, to reply.

The adversary in the model attempts to derive in-
formation from the PIR protocol execution. Possible
adversaries include outside attackers and the host,
where the latter is able to not only observe all I/O
operations performed for queries, but also can make
queries as a legitimate user. The aim of SC is to
retrieve a requested record, while hiding the identity
of the record from any adversary. This means that
the adversary should not be able to determine, which
record in the original database has been or has not
been requested by a user.

We follow three terms introduced in (Wang et al.
2006), access pattern, stained query and clean query.
An access pattern for a time period is an array of the
records of D read and written in the period, where
the records are arranged chronologically. A stained
query means that the plaintext and the index of the
desired record are known to the adversary A without
observing any access pattern. A clean query is the
one the adversary A does not know before observing
access patterns.

Let Pr(Q 
 DBj) denote the probability of the
event that the record DBj is the one desired by the
query Q. Note that, in information theoretic or com-
putational PIR protocols, an adversary does not know
anything about the queried record by observing ac-
cess patterns, no matter whether the query is stained
or clean. However, in all existing secure coprocessor-
based PIR protocols, for a stained query, an adver-
sary might know that the record read from D is the
queried one, but for a clean query, she does not. Intu-
itively, the queried record is selected in the black box
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(i.e., internal memory of SC). Now if every record
of the database DB is in the SC’s internal memory
with nonzero probability, then any adversary cannot
learn which record is the queried one. Based on this
observation, we give a definition as follows.

Definition 3.1 A SC-based PIR protocol is secure,
if for a clean query Q and any possible access pattern
Access, the following relation holds

0 < Pr(Q 
 DBj |Access) ≤ 1/M, ∀j ∈ [n],

where M is the maximum number of records kept in
the SC’s internal memory.

Notice that the above definition of security is dif-
ferent from the security definition in the informa-
tion theoretic or computational PIR protocols, which
guarantees that Pr(Q 
 DBj |Access) = 1/n for
any j ∈ [n]. However, in some coprocessor-based
PIR protocols, the probability Pr(Q 
 DBj |Access)
is not uniformly distributed for all j ∈ [n]. For
example, in the protocols from (Asonov & Freytag
5/2002, Iliev & Smith 2005, Wang et al. 2006), if the
lth query (1 ≤ l ≤ M) is clean, from the view of
an adversary, Pr(Q 
 DBj |Access) = 1

l(n−l+1) for
a record DBj �∈ {DBi1 , DBi2 , · · · , DBi(l−1)}, where
{DBi1 , DBi2 , · · · , DBi(l−1)} are the records read into
SC’s internal memory in the previous l − 1 queries.
A protocol satisfying the above definition is called
a non-perfect PIR protocol. In the above defini-
tion, Pr(Q 
 DBj |Access) = 1/M means that DBj

is certainly in SC’s internal memory, and Pr(Q 

DBj |Access) > 0 for all j ∈ [n] implies that an ad-
versary does not know, which record of DB is not in
SC’s internal memory.

4 The Proposed Protocol

As the previous works in (Asonov & Freytag 4/2002,
5/2002, Iliev & Smith 2003, 2004, 2005, Wang et al.
2006, Yang et al. 2008), our protocol consists of
two phases: offline preprocessing and online retrieval.
The database is permuted offline before any query
starts. The offline preprocessing (permutation) is ex-
ecuted once only.

During the offline preprocessing phase, the copro-
cessor SC permutes the database DB into a new
database D. Note that z (1 < z  n) records are
kept in SC’s internal memory C, and n − z double-
encrypted records are stored in D. SC maintains a
table T in its internal memory C. The table T con-
tains n rows and each row Ti (i ∈ [n]) keeps track of
the record DBi. More precisely, each row Ti consists
of two fields: a single bit flag Ti−flag and an index
Ti−index that consists of lg(n − z) bits. There are
three possible cases:

1. Ti−flag = 0 and Ti−index = 0 – this means that
the ith record DBi is in the internal memory C
(It does not exist in the database D);

2. Ti−flag = 0 and Ti−index = k (k ∈ [n− z]) – this
means that DBi is stored in D as the record Dk
and this record has never been accessed;

3. Ti−flag = 1 and Ti−index = k (k ∈ [n− z]) – this
means that DBi is stored in D as the record Dk
and this record has already been accessed.

During the online retrieval phase, on receiving a
query on DBi from a user, SC locates DBi by check-
ing Ti. There are three possible cases:

1. If DBi is in C, then SC reads two records ran-
domly chosen from D into C, where the first read
record is accessed, and the second is not.

2. If DBi is in D and unaccessed, then SC reads
one random accessed record and DTi−index

into
C.

3. If DBi is in D and accessed, then SC reads
DTi−index

and one random unaccessed record
from D into C.

After sending the desired record DBi to the user, SC
chooses two records at random from C and writes the
two records into D at the positions from which the
previous two records were taken. Finally, SC changes
the values of the corrsponding rows in T . For the first
query, SC reads/writes one record from/into D, and
for any other query, SC reads two records from D,
which was called twin−reading in (Yang et al. 2008),
and writes two records into D, which we call twin −
writing. After n − z queries, all records are treated
as the unaccessed again. Note that there are always z
records stored in C after SC finishes an online query.

4.1 Offline Preprocessing

SC applies the approach from (Iliev & Smith 2005) to
permute the database DB, but the writing operation
(i.e., the record DBi(i ∈ [n]) of the database DB
is permuted to the record Dj (j ∈ [n − z]) of the
database D) is modified as follows.

Step 1 SC generates two secret keys, k0 and k1,
and creates a table T of n × (1 + lg(n − z))
bits, which has n rows Ti = Ti−flag||Ti−index

(i = 1, · · · , n), where Ti−flag is a 1-bit flag and
Ti−index is lg(n − z) bits for storing an index.
Each row Ti is initialized to the value 0, and the
table is stored in C.

Step 2 SC uses k1 to encrypt every record DBi, ap-
pends k1 to the encrypted record, and then en-
crypts it again under k0.

Step 3 The encrypted-appended-encrypted (called
double-encrypted) version of the record DBi is
written into the jth entry in D as the record Dj ;

Step 4 SC keeps Ti−flag = 0 and sets Ti−index = j,
and then rewrites Ti in the table T .

Step 5 During the process of permutation, SC se-
lects z records {DBij

}z
j=1 (ij ∈ [n]) uniformly at

random and stores them and k0, k1 in C.

4.2 Online Retrieval

To present the protocol in a convenient way, let
G denote a secret key generator that takes an old
key ks as input to generate a new secret key ks+1.
Now we describe two algorithms: Reading(j, k0) and
Writing(j, k0, ks, DBr).

Reading(j, k0) is a deterministic algorithm, which
takes as input an index j (j ∈ [n − z]) and
the secret key k0, and outputs the correspond-
ing record DBl (l ∈ [1, n]) (i.e., Tl−index = j). It
works according to the following steps.

1. Reads the record Dj from D into C;
2. Decrypts Dj with k0, gets a data and the

appended secret key ks (s ≥ 1), and then
decrypts the data with ks to get the corre-
sponding record DBl.
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Writing(j, k0, ks, DBr) is a deterministic algorithm,
which takes as input an index j (j ∈ [n−z]), two
secret keys k0 and ks and a record DBr (r ∈ [n]),
and outputs a record Dj . It goes through the
following steps.

1. Encrypts DBr with ks, appends ks to the
encrypted record, and then encrypts the
appended-encrypted record with k0;

2. Writes the double-encrypted version of the
record DBr at the jth entry in D as the
record Dj ;

During the phase of online retrieval, on receiving
the tth query Qt on the record DBi from a user, if
t = x(n− z)+1 for some x ∈ {0, 1, 2, · · ·}, SC carries
out the Algorithm 1 (below); otherwise, executes
the Algorithm 2 (below).

Algorithm 1: Single-Reading & Single-Writing
1: check Ti in T ;
2: if Ti = Ti−flag||Ti−index = 0 then

3: choose Tj
R←− T such that Tj �= 0;

4: l = j
5: else
6: l = i
7: endif
8: execute the algorithm Reading(Tl−index, k0) to

put a record DBl into C;
9: send DBi to the user as the answer to the query;

10: take a record DBr
R←− C;

11: kt+1 = G(kt);
12: delete kt;
13: execute Writing(Tl−index, k0, kt+1, DBr);
14: if r �= l then
15: Tr−index = Tl−index;
16: reset Tl = 0;
17: endif
18: set Tr−flag = 1;
19: set Tr according to the new values of Tr−flag

and Tr−index.

Algorithm 2: Twin-Reading & Twin-Writing
1: check Ti in T ;
2: if Ti = Ti−flag||Ti−index = 0 then

3: choose Tj1 , Tj2
R←− T such that Tj1−flag = 1,

Tj2−flag = 0 and Tj2−index �= 0;
4: else if Ti−flag = 0 then

5: choose Tj1
R←− T such that Tj1−flag = 1;

6: j2 = i;
7: else

8: choose Tj2
R←− T such that Tj2−flag = 0

and Tj2−index �= 0;
9: j1 = i;

10: endif
11: endif
12: execute the algorithm Reading(Tj1−index, k0) to

put a record DBj1 into C;
13: execute the algorithm Reading(Tj2−index, k0) to

put a record DBj2 into C;
14: send DBi to the user as the answer to the query;

15: take two records DBr, DBs
R←− C;

16: kt+1 = G(kt);
17: delete kt;
18: execute Writing(Tj1−index, k0, kt+1, DBr);
19: execute Writing(Tj2−index, k0, kt+1, DBs);
20: take Tr−flag = 1 and Tr−index = Tj1−index, and

reset Tr;
21: take Ts−flag = 1 and Ts−index = Tj2−index, and

reset Ts;
22: if r �= j1 then reset Tj1 = 0;
23: endif
24: if s �= j2 then reset Tj2 = 0;
25: endif
26: if t = x(n − z) for some integer x then

reset Tl−flag = 0 for all l ∈ [n];
27: endif

Now we consider the security of proposed protocol.

Theorem 1 The proposed SC-based PIR protocol is
secure according to Definition 3.1.

Proof:
We use induction on the number N of queries to

prove the security. Let Pr(DBi 
 {Dj1 , . . . , Djm})
(m ∈ [n − z]) denote the probability of the
event that DBi is permuted to one of the records
{Dj1 , . . . , Djm}, Pr(DBi 
 C) denote the probability
of the event that DBi is in C, and Access(Q) denote
the access pattern (including reading and writing pat-
terns) for the query Q. Note that, in the proposed
protocol, the maximum number of records in C is
M = z + 2.

CASE N = 1: the 1st online query Q1 on DBi1 .

Access(Q1) :

1. Reading Pattern: SC reads a record Dx1
from D into C.

2. Writing Pattern: SC chooses a random
record DBr from C and executes the algo-
rithm Writing(x1, k0, k1, DBr) to write a
record Dx1 into D. Note that the currently
written record Dx1 is different from the just
read record Dx1 even though they are per-
muted from an identical record in DB be-
cause of using different encryption keys.

Analysis :

1. Consider that the query is clean. D is per-
muted from DB in an oblivious way used in
(Iliev & Smith 2005) during the offline pre-
processing. According to the proof in (Iliev
& Smith 2005), although the adversary A
knows that Dx1 is read into C, she does not
know which record in DB is or is not per-
muted to Dx1 . The original records in C
are randomly and secretly selected by SC.
So, from the view of A, every record in DB
can be located in C with the probability of
z+1
n . Therefore,

Pr(Q1 
 DBj) =
1

z + 1
·z + 1

n
=

1
n

, ∀j ∈ [n].

2. By observing the access pattern
Access(Q1), A knows the following in-
formation about the queried record DBi1 ,

Pr(DBi1 
 {Dx1}) = 1/(z + 1) and
Pr(DBi1 
 C) = z/(z + 1).

However, if the query is clean, the infor-
mation gives A nothing to identify which
record in DB is or not the queried record
DBi1 .

Conclusion : For a clean query Q1, we have

0 < Pr(Q1 
 DBj |Access) ≤ 1/M, ∀j ∈ [n],

where Access = {Access(Q1)} is the access pat-
tern.

CASE N = 2: the 2nd online query Q2 on DBi2 .

Access(Q2) :

1. Reading Pattern: SC reads the record Dx1
and another record Dx2 (x2 �= x1) from D
into C.
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2. Writing Pattern: SC chooses two ran-
dom records {DBr, DBs} from C and
executes Writing(x1, k0, k2, DBr) and
Writing(x2, k0, k2, DBs) to write the
records {Dx1 , Dx2} into D.

Analysis :

1. Consider that the query is clean. What-
ever the first query is, Dx1 is read back
into C. That means, DBi1 is certainly in C
(i.e. with the probability of 1). In addition,
the records in D \ {Dx1} are permuted in
an oblivious way during the offline prepro-
cessing, A does not know which record in
DB \ {DBi1} is or is not permuted to Dx2 .
So, from the view of A, any other record
(except DBi1) in DB is located in C with
the probability of z+1

n−1 . Therefore,

Pr(Q2 � DBi1 ) = 1
z+2

, and

Pr(Q2 � DBj) = z+1
(z+2)(n−1)

, ∀j ∈ [n] \ {i1}.

2. By observing the Access(Q1) and
Access(Q2), A knows the following in-
formation,

Pr(DBi1 
 {Dx1 , Dx2}) = 2/(z + 2) and
Pr(DBi1 
 C) = z/(z + 2),

Pr(DBi2 
 {Dx1 , Dx2}) = 2/(z + 2) and
Pr(DBi2 
 C) = z/(z + 2).

However, if the query q = j (j ∈ {1, 2}) is
clean, the information gives A nothing to
identify which record in DB is or not the
queried record DBij

.

Conclusion : For a clean query Q2, we have

0 < Pr(Q2 
 DBj |Access) ≤ 1/M, ∀j ∈ [n],

where Access = {Access(Q1),Access(Q2)}.
CASE N = 3: the 3rd online query Q3 on DBi3 .

Access(Q3) :

1. Reading Pattern: SC reads a record Dy3

R←
{Dx1 , Dx2} and another record Dx3 (x3 /∈
{x1, x2}) from D into C.

2. Writing Pattern: SC chooses two ran-
dom records {DBr, DBs} from C and
executes Writing(y3, k0, k3, DBr) and
Writing(x3, k0, k3, DBs) to write the
records {Dy3 , Dx3} into D.

Analysis :

1. Consider that the query is clean.
(a) The record Dy3 ∈ {Dx1 , Dx2} is read

back into C, this means, DBi1 is in
C with the probability of z+1

z+2 , and so
DBi2is.

(b) The records in D \ {Dx1 , Dx2} are per-
muted in an oblivious way during of-
fline preprocessing, so A does not know
which record in DB \ {DBi1 , DBi2} is
or is not permuted to Dx3 . Hence,
from the view of A, every record in
DB \ {DBi1 , DBi2} is in C with the
probability of z+1

n−2 .

Therefore,
Pr(Q3 � DBj) = z+1

(z+2)2
, ∀j ∈ {i1, i2}, and

Pr(Q3 � DBj) = z+1
(z+2)(n−2)

, ∀j ∈ [n] \ {i1, i2}.

2. By observing all access patterns
Access(Q1), Access(Q2) and Access(Q3),A knows the following information,

Pr(DBi3 
 {Dy3 , Dx3}) = 2/(z + 2) and
Pr(DBi3 
 C) = z/(z + 2).

For a previous query q = j (j ∈ {1, 2}), A
knows

Pr(DBij

 {Dy3 , Dx3}) = 2(z+1)

(z+2)2 , and

Pr(DBij

 C) = z(z+1)

(z+2)2 .

However, if the query q = j (j ∈ {1, 2, 3})
is clean, the information gives A nothing
to identify which one in DB is or not the
queried record DBij

.

Conclusion : For a clean query Q3, we have

0 < Pr(Q3 
 DBj |Access) ≤ 1/M, ∀j ∈ [n],

where Access = {Access(Q1),Access(Q2),Access(Q3)}.
Induction Step: Suppose that the same conclu-

sion holds for CASE N = t (2 < t). This is, for the
tth query Qt on DBit

, we have

Result 1 : For the current query Qt, A knows the
following information,

Pr(DBit 
 {Dyt , Dxt}) = 2/(z + 2) and
Pr(DBit 
 C) = z/(z + 2),

where yt ∈ {x1, . . . , xt−1}.
For a previous query Qj on DBij (j ∈ [t− 1]), A
knows

Pr(DBij 
 {Dyt , Dxt}) > 2zt−j

(z+2)t−j+1 and

Pr(DBij

 C) >

(
z

z+2

)t−j+1

.

Result 2 : If the query Qt is clean, it holds that

0 < Pr(Qt 
 DBj |Access) ≤ 1/M, ∀j ∈ [n],

where Access = {Access(Q1),Access(Q2), . . . ,Access(Qt)}.
Now, we proceed to prove that for N = t + 1, i.e.,

the (t + 1)th online retrieval, if the query is clean,
by observing all access patterns, A cannot determine
which one in the original database DB is or not the
queried record.

CASE N = t+1: the (t+1)th online query Qt+1
on DBit+1 .

Access(Qt+1) :

1. Reading Pattern: SC reads a record
Dyt+1

R← {Dx1 , . . . , Dxt
} and another

record Dxt+1 (xt+1 /∈ {x1, . . . , xt}) from D
into C.

2. Writing Pattern: SC chooses two ran-
dom records {DBr, DBs} from C and
executes Writing(yt+1, k0, kt+1, DBr) and
Writing(xt+1, k0, kt+1, DBs) to write the
records {Dyt+1 , Dxt+1} into D.

Analysis :

1. Consider that the query is clean.
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Case A : Dyt+1 is read from
{Dx1 , . . . , Dxt−1} \ {Dyt

, Dxt
} into

C.
(a) Let’s treat the dataset D \ {Dxt

}
as D, then, this case is the same as
the case of N = t. According to the
Result 2, we have
0 < Pr(Qt+1 � DBj |Access) ≤ 1/M ,
∀j ∈ [n] \ {it},
where Access = {Access(Q1),
Access(Q2), . . . ,Access(Qt)}.

(b) According to the Result 1, DBit

is located in C with the probability
of z/(z + 2), so we have

Pr(Qt+1 
 DBit
) =

z

(z + 2)2
.

Case B : Dyt+1 is read from {Dyt
, Dxt

}
into C.
(a) The records in D \ {Dx1 , . . . , Dxt

}
are permuted in an oblivious way
during offline preprocessing, so A
does not know which record in DB\
{DBi1 , . . . , DBit} is or is not per-
muted to Dxt+1 . Hence, from the
view of A, every record in DB \
{DBi1 , . . . , DBit

} is in C with the
probability of z+1

n−(t mod n) .

(b) The record Dyt+1 is read from
{Dyt

, Dxt
} into C, according to the

Result 1, we know that, DBit is in
C with the probability of z+1

z+2 , and
the record DBij

(j = 1, . . . , t − 1),
which is queried by the previous
query Qj , is in C with the prob-
ability of at least zt−j(1+z)

(z+2)t−j+1 .
Therefore,

Pr(Qt+1 � DBit ) = z+1
(z+2)2

,

Pr(Qt+1 � DBij ) ≥ zt−j(1+z)

(z+2)t−j+2 and

Pr(Qt+1 � DBij ) ≤ 1
z+2

, ∀j ∈ [t − 1],

Pr(Qt+1 � DBj) = z+1
(z+2)(n−(t mod n))

,

∀j ∈ [n] \ {i1, . . . , it}.
2. By observing all access patterns

Access(Q1), . . . ,Access(Qt+1), A knows
the probabilities of the events that the
current and previous queried records are in
different locations, which, however, give A
nothing to identify which one in DB is or
not the queried record DBit+1 .

Conclusion : For a clean query Qt+1, we have

0 < Pr(Qt+1 
 DBj |Access) ≤ 1/M, ∀j ∈ [n],

where Access = {Access(Q1),Access(Q2), . . . ,Access(Qt+1)}.
The proof is concluded.

5 Performance

Let YDDB, WDDB, IS, AF and SS denote the
schemes of Yang et al (Yang et al. 2008), Wang et al
(Wang et al. 2006), Iliev & Smith (Iliev & Smith 2003,
2004, 2005), Asonov & Freytag (Asonov & Freytag
4/2002, 5/2002) and Smith & Safford (Smith & Saf-
ford 2000, 2001), respectively. Now we give a compar-
ison of our protocol against these secure coprocessor-
based PIR protocols as follows.

Table 1. Comparison of Performance
Scheme OCC AOPC OPPC OSIM

Ours yes 4 O(n lg n) 4R+n(1 + lg n)
YDDB yes O(n/M) O(n lg n)

√
nR+2P

WDDB yes O(n/M) O(n lg n)
√

2nR+1P

IS yes O(n lg n/M) O(n lg n)
√

2nR+1P

AF yes O(n/M) O(n1.5)
√

2nR+1P
SS yes O(n) O(n2) 1R+1P

* OCC: optimal communication complexity
* AOPC: average online processing complexity for a query
* OPPC: offline preprocessing complexity
* OSIM: optimal size of SC’s internal memory for

minimizing query response time
* n: the database size
* M : the maximum of records kept in SC’s internal

memory, 1 < M � n
* R: a record
* P: a permutation function

According to the above table, except the parame-
ter OSIM, the performance of our protocol is better
than the performance of other existing coprocessor-
based PIR protocols. Note that, in our protocol be-
fore DB replies to a query, just two records are read.
Although online processing complexity is four I/O op-
erations, but for a single query, the user observes
a delay equivalent to two I/O operations. Only in
the environment of burst queries, the user observes a
slightly longer delay.

Now consider the parameter OSIM. It is easy to
construct a bijective permutation from a range to
another range, so the permutation functions in the
schemes of Wang et al (Wang et al. 2006), Iliev
& Smith (Iliev & Smith 2003, 2004, 2005), Asonov
& Freytag (Asonov & Freytag 4/2002, 5/2002) and
Smith & Safford (Smith & Safford 2000, 2001) need
a small storage space. However, one of two permu-
tations in Yang et al’s scheme (Yang et al. 2008) is
a bijective function from a set of random numbers
to another set of random numbers. It is hard to
construct and needs a big storage space. In prac-
tice, it is usually replaced with a matching table.
So, Yang et al’s scheme is less efficient than ours in
the parameter OSIM. Comparing with Wang et al’s
scheme (Wang et al. 2006), if R ≥ n(1+lg n)−1P√

2n−4
, then

(
√

2nR+1P)≥(4R+n(1 + lg n)), this means, when
the size of a record in the database DB is over
n(1+lg n)−1P√

2n−4
bits, our scheme is more efficient than

Wang et al’s scheme considering the parameter OSIM.
For example, assume that a database has one million
records, i.e., n = 106, and a permutation function
has a size of 106 bits, then, when the record size is
over 14175 bits, the internal storage capacity required
in our scheme is smaller than that in Wang et al’s
scheme.

To the best of our knowledge, except the ineffi-
cient schemes of Smith & Safford (Smith & Safford
2000, 2001), our protocol is the first one that does
not need to reshuffle the database. Moreover, other
SC-based PIR protocols have to make preprocessing
periodically. Usually one cannot afford implementing
inefficient PIR protocols, so something less secure but
practical should be used. Comparing to the PIR pro-
tocols with uniform distribution, the proposed scheme
is more efficient from implementation point of view.

6 Conclusions and Open Problem

In this paper we proposed a new secure coprocessor-
based PIR protocol without reshuffling the database
and showed its security. The protocol holds the op-
timal communication complexity, and its online pro-
cessing complexity is almost optimal.
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The SC-based PIR protocols assume that the
SC’s secure memory can store a small number of data
records. This assumption does not hold for multime-
dia databases, where records can be very long and
storing even a single (and very long) record in SC
can be a problem. Thus, task of designing a PIR
protocol for databases with very long records is an
interesting open problem.
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