
University of Wollongong University of Wollongong 

Research Online Research Online 

Faculty of Engineering - Papers (Archive) Faculty of Engineering and Information 
Sciences 

2009 

Deploying CPU load balancing in the Linux cluster using non-repetitive CPU Deploying CPU load balancing in the Linux cluster using non-repetitive CPU 

selection selection 

M. Shoaib Jameel 
Sikkim Manipal Institute of Technology 

Muruganant Marimuthu 
University of Wollongong, murugana@uow.edu.au 

Tejbanta Chingtham 
Sikkim Manipal Institute of Technology 

Follow this and additional works at: https://ro.uow.edu.au/engpapers 

 Part of the Engineering Commons 

https://ro.uow.edu.au/engpapers/5499 

Recommended Citation Recommended Citation 
Jameel, M. Shoaib; Marimuthu, Muruganant; and Chingtham, Tejbanta: Deploying CPU load balancing in 
the Linux cluster using non-repetitive CPU selection 2009. 
https://ro.uow.edu.au/engpapers/5499 

Research Online is the open access institutional repository for the University of Wollongong. For further information 
contact the UOW Library: research-pubs@uow.edu.au 

https://ro.uow.edu.au/
https://ro.uow.edu.au/engpapers
https://ro.uow.edu.au/eis
https://ro.uow.edu.au/eis
https://ro.uow.edu.au/engpapers?utm_source=ro.uow.edu.au%2Fengpapers%2F5499&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/217?utm_source=ro.uow.edu.au%2Fengpapers%2F5499&utm_medium=PDF&utm_campaign=PDFCoverPages


International Journal of Computer and Electrical Engineering, Vol. 1, No. 2, June 2009 
1793-8163

- 228 -

 
Abstract— Maintaining load balancing in a computing

cluster is an evident problem in distributed systems and
research in this field is not new. The challenges in designing the
load balancing algorithms are immense. This paper lists some of
those challenges in the design of CPU load balancing algorithm
and provides solutions to some of them. The algorithm
considers one node in the cluster as the Master Server and
another as the Load Balancer. The master server maintains the
CPU and IP information of each machine. The nodes in the
cluster send their CPU status and IP information to the master
server after every 30 seconds. The implementation solves
“readers-writers” problem exclusively using sockets. If a
number of requests are sent before the next central database
update, the load balancer selects other less busy nodes in the
cluster. This ensures that all nodes are allocated with the new
tasks coming from remote systems, thereby maintaining a load
balance among the CPUs. This implementation is highly fault
tolerant and reliable, guaranteeing a high probability of task
completion. Results show that this scheme handles task
allocation in much optimized way and with fewer overheads.
The implementation can handle CPUs ranging in numbers from
1 to 255. 

Index Terms—CPU Load Balancing, Non-repetitive CPU
Selection, Linux Cluster, Readers-Writers Problem, Fault
Tolerance.

I. INTRODUCTION
 Computing clusters [57] are highly preferred these days
owing to the fact that they can be cheaply setup using the
desktop PCs, open source and free software. This is the
reason why several research institutes and academic centers
prefer computing clusters rather than purchasing
supercomputers. Cluster computing provides more reliability
[6], [7] and [8], availability [40], fault tolerance [1], [3], [4]
and [5] and replication [39]. It does not hurt the task
completion if some of the CPUs in the cluster are down. CPU
load balancing [2] deals with selecting that CPU in the cluster
that is minimally loaded at a given time i.e. the time when a
task arrives for processing. CPU load balancing [9] and [10]
can be implemented as static scheme [2] or dynamic

Manuscript received September 13, 2008. 
M. Shoaib Jameel was with the Department of Computer Science and

Engineering, Sikkim Manipal Institute of Technology, Majitar, Rangpo, East
Sikkim - 737132 INDIA. He is now with the Department of Research and
Development/Scientific Services, Tata Steel Limited, Jamshedpur India
(corresponding author, phone: +919234502858).

M. Murugananth is with the Department of Research and
Development/Scientific Services, Tata Steel limited, Jamshedpur, India.
Phone: +919934302578 

balancing system [2]. Designing static load balancing is
much easier and faster to implement. Dynamic load
balancing [11] system is far more complex, CPU and network
resource consuming.

The challenges in deigning the CPU load balancing
scheme for a computing cluster are immense. One has to deal
with the problems of process migration, maintaining lesser
overhead of the CPU balancing algorithms itself, the file
synchronization condition, monitoring which CPU in the
cluster is down, addition of new CPU to the cluster,
heterogeneity of the operating systems in the cluster and
plenty more.

The scheme described in this paper maintains a prior
knowledge of the number of CPU’s in the cluster along with
their usage information. The task becomes more complicated
when it comes to designing algorithms for a heterogeneous
computing cluster, but here we deal with only homogeneous
environment consisting computers loaded with GNU/Linux
operating system. This scheme is designed from scratch in C
programming language owing to efficiency reasons.

The scheme described in this paper conforms to the
dynamic load balancing setup. The most unique aspect of this
implementation is the solution that it provides to the
readers-writers problem using sockets. It shows that apart
from file locking, sockets can be used effectively to solve the
problem of file read/write in a shared memory environment.
This implementation is highly fault tolerant and guarantees
task completion.

In this research, the following questions are addressed:
• How can the Readers-Writers problem be solved

in scenarios where file locking mechanism is not
feasible?

• Can better performance and throughput be
achieved without the use of specialized packages
for setting up clusters like MOSIX etc?

• How can the reliability and availability of the
cluster be increased?

• How can we design optimized algorithms that use
fewer overheads for CPU allocation and task
migration and more on doing priority
computations?

• How can network consumption of the balancing
algorithms be reduced?

Tejbanta Singh Chingtham is with the Department of Computer Science
and Engineering, Sikkim Manipal Institute of Technology, Majitar, Rangpo, 
East Sikkim - 737132 INDIA. (phone +919734916135). 

Deploying CPU Load Balancing in the Linux
Cluster Using Non-Repetitive CPU Selection

M. Shoaib Jameel, M. Murugananth, and Tejbanta Singh Chingtham 



International Journal of Computer and Electrical Engineering, Vol. 1, No. 2, June 2009 
1793-8163

- 229 -

II. RELATED WORK
Research related to enhancing the processing capability of

a computing setup has been discussed before [12]. The major
challenge in setting a cluster-based system is the design and
development of algorithms that maximizes performance
using an optimality criterion [13] and also minimizes the total
execution time [28], [29] and [30]. The issue of load
distribution emerged when distributed computing systems
and multiprocessing systems began to gain popularity. Over
the years, several algorithms related to the problems in load
balancing in computing clusters have been proposed [14],
[15], [31], [32] and [33]. In [31] and [32], it is assumed that
the processors are always lightly loaded, but normally the
load varies in an unpredictable manner in a workstation. In
[33], task migration has been discussed but it involves a large
amount of communication overhead. Numerous strategies for
static and dynamic load balancing have been developed,
including recursive bisection (RB) methods [16], [17] and
[18], space filling curve (SFC) partitioning [19], [20], [21]
and [22], graph partitioning [17] and [23] and diffusive
methods [24], [25] and [26].

Load balancing scheme has also been applied on the web
servers [34], [35], [36], [37] and [38] for efficient user
request handling. A distributed web server system is any
architecture consisting of multiple web-server hosts,
distributed on LAN and WANs with a mechanism to spread
incoming client requests among the servers.

The work described here discusses an implementation
built from scratch in C programming language owing to the
efficiency reasons. The most important accomplishment of
the design has been the innovative way in which the
readers-writers problem has been solved and the allotment of
CPUs (nodes) using non-repetitive selection procedure. The
design does not make use of any third party applications for
setting up distributed systems like monitoring tools e.g.
Ganglia [27]. The design itself monitors the CPUs that are up
and running and informs the administrator in case any of the
CPU(s) is/are down. This design can support CPUs ranging
from 1 to 255 but the algorithms have been tested with CPUs
five in number. Though the architecture in this balancing
scheme has been developed keeping in mind the
heterogeneity of the systems that connect to the master server
for task completion but the same design can be implemented
on any cluster computing setup. This work differs from the
other works in the way this design solves readers-writes
problem and non-repetitive CPU selection. 

III. LINUX CLUSTER SETUP
The cluster consisted of 5 nodes installed with GNU/Linux

the operating system. The Linux kernel was recompiled with
minimum device driver support. Features like multimedia
support, wireless networking and the like were not included
in the final compiled kernel. The requirement was to have a
Linux kernel, which consumed least CPU and memory in
other jobs.

This cluster did not make use of any existing tools or
software that support cluster computing. The load balancing
algorithms were designed from scratch after studying the
underlying architecture of this computing cluster and the set

of tasks for which it would be used for. Some examples of the
tools for cluster computing are MOSIX [41] and [42]. Mosix
is a set of adaptive resource sharing algorithms that are
geared for performance scalability in a computing cluster of
any size, where the only shared component is the network.
The core of the Mosix technology is the capability of multiple
nodes (workstations and servers, including SMP’s) to work
cooperatively as if part of a single system. Software packages
for process allocation include PVM [43] and LSI [44].

LSF [45] and Extreme Linux [46] provide related services.
These software packages provide an execution environment
that requires an adaptation of the application and the user’s
awareness. They include tools for initial assignment of
processes to nodes, which sometimes use load considerations,
while ignoring the availability of other resources, e.g. free
memory and I/O overheads. These packages run at the user
level, just like ordinary applications, thus are incapable to
respond to fluctuations of the load or other resources, or to
redistribute the workload adaptively. 

The computing cluster described here was used for
executing modeling computations that were highly CPU
intensive jobs. Due to heterogeneity of the remote systems
that connect to the cluster for computations, an adapter was
designed and coded. The entire process is shown in Fig. 1.

Fig 1: A detailed flow of the entire system and the role of the Linux cluster in
the operation. The entire communication was carried out using BSD socket

API.

Web services were first created for different modeling
algorithms. The web services had forms, which a user filled
with some real numbers. The adapter was written in C and
acted as a bridge between the web services hosted on the
Microsoft Windows based system and one of the nodes in the
computing cluster. The Linux adapter listened to a port for
incoming connections from the web service. The real values
from the form were concatenated and each value being
separated by a special character, for example 0.0001#0.343.
This concatenated input stream was then passed to the
adapter installed on a Linux machine via sockets. The adapter
subsequently parsed the entire value stream and segregated
the real number values. The segregated values were
subsequently fed to the modeling algorithm for processing in
the computing cluster. It has to be mentioned that the web
service along with the real numbered values also passed the
name of file to be created by the processing node in the
cluster and an identifier value of the modeling algorithm,



International Journal of Computer and Electrical Engineering, Vol. 1, No. 2, June 2009 
1793-8163

- 230 -

which was to be invoked at the computing cluster. Invocation
of the modeling algorithms was done internally by modeling
invocation system. Two adapters were designed, one which
worked externally and communicated directly with the web
service and other adapter that was internal to the computing
cluster. The internal adapter was similar to the external one
except that it had the modeling invocation module.

IV. ASSUMPTIONS

1. Load Balancer server was always up and running. If
the load balancer server went down the entire
architecture failed.

2. It did not matter if any machine in the cluster other
than the load balancer server crashed.

3. If all the machines in the cluster were down except
the load balancer, the load balancer server took over
the modeling calculations.

4. The internal Linux Adapter needed to be up and
running on all the machines (nodes) in the cluster
and all adapters must use a common port.

5. The client programs (programs that send IP and CPU
status to the master server) should be installed on
every machine in the cluster except the master
server.

6. The client programs must use one port and their
connecting IP must be the IP of the master server.

7. The master server was not some special computer
but it was one among the computers in the
computing cluster that handled an extra task of
maintaining the central database.

8. There was another program installed on another
node of the computing cluster called the tunnel
program or the Load Balancing Program. This
program received the values from the web service
and the database values from the master server.

9. The Load Balancing Algorithm decided which CPU
in the computing cluster had the least load.

10. This was not a general-purpose load-balancing
algorithm. This entire architecture was catered to the
requirements of the modeling computations and was
hooked to the Linux Adapter.

11. This architecture would run on any Linux, UNIX and
Solaris based systems.

V. THE MASTER SERVER
One node in the cluster was chosen as the master server.

The job of the master server was to maintain a database, in a
text file, called the Central Database. The central database
contained the CPU status information and IP addresses of all
the machines in the computing cluster.

The master server continuously listened to a port for any
incoming connections. Through this port, all the machines
(nodes) in the cluster connected and sent their CPU status and
IP addresses after every 30 seconds. The master server also
had another database where the administrator fed in the IP
addresses of the machines in the cluster manually. Therefore,
whenever a new machine was added to the cluster this
database needed a manual update. After every central
database update, the master server checked as to which node
in the cluster was up and sending its status information. This
check was made by comparing the IP addresses in the central

database, which was automatically updated after every 30
seconds, with that of the manual database that was
maintained by the administrator. In order to optimize the
above scheme, the master server first made a check of the
number of IP addresses that were there in the central database.
If there was a difference in the number of IP addresses
between the newly updated central database and the manual
database, the master server’s IP address searching module
searched for the IP, which had not sent the values.
Subsequently, the master server checked two times for that
node in succession i.e. two times when the new values had
been received after 30 seconds. If both the times, that node
had not sent the CPU status to the master server, the master
server immediately sent an urgent e-mail for attention to the
administrator. This design ensured that whenever a node in
the cluster was down, the administrator came to know about
it immediately and action could be taken as soon as possible. 

Table 1: The structure of the Central Database consisting of the CPU status
and IP address of the machines. This database was updated after every 30 

seconds. In order to solve the readers-writers problem the database was read 
into an array and passed onto the load balancer, which stored the contents in

memory until next update comes.

It was noticed during the implementation phase that if the
administrator did not make a note of the CPU which was
down for several hours, the master server used to send the
same mails after every two updates. In order to solve the
above problem it was decided to mail the administrator after
every 3 hours, if the same IP was noticed to be down after the
two central database updates. A high-level architectural
diagram of the master server is shown in the Fig 2. 

VI. THE LOAD BALANCER

The load balancer did CPU allocation procedure. After
request for computation had been received by the load
balancer, it sent the input stream to the least busy CPU in the
cluster first. It also applied the non-repetitive CPU selection
algorithm.

The load balancer continuously listened to a port. Two
different applications connected to the load balancer through
this port, at different times. One was the external adapter that
sent the input stream, to be processed by the modeling
algorithms and other was the master server that sent the entire
central database in a very large array. CPU and IP
information in the central database was stored in a single line
for each node. The master server read the central database
line by line and added a special character after every line.
This processed stream (by the master server) was then passed
to the load balancer. The stream was stored in the load
balancer in a very large array, which was dynamically
allocated at runtime.

The design of the load balancer is given in the Fig 4: 



International Journal of Computer and Electrical Engineering, Vol. 1, No. 2, June 2009 
1793-8163

- 231 -

Fig 2: Diagram showing the complete detailed architecture of the cluster
setup.

VII. SOLVING READERS-WRITERS PROBLEM
Mutual exclusion is a sufficient mechanism for most forms

of synchronization, but it introduces serialization that is not
always necessary. Readers-Writer synchronization [47]
relaxes the constraints of mutual exclusion to permit
simultaneously, so long as none of them modifies the file.
Operations are separated into two classes: writes, which
require exclusive access while modifying the data structure,
and reads, which can be concurrent with one another (though
not with the writes) because they make no observable
changes.

Fig 3: Figure depicting the High Level diagram of the master server. The 
CPUs in the cluster send their IP and CPU status information after every 30 

seconds. The 30 seconds time frame can either be increased or decreased 
depending upon administrator’s choice and need. 

Works undertaken previously consider using mutual
exclusion [53], [54], [55] and [56] or file locking mechanisms
[48], [49], [50] and [51] for synchronization. But the work

descried here applied sockets to solve the problem of
readers-writers.

During the developmental stages, it was noticed that as the
master server was on the course of updating the central
database, the load balancer simultaneously read the database.
This crashed the load balancer as the data in the central
database was inconsistent. 

File locking was not an option owing to the fact that if the
number of CPUs in the cluster was increased, then most of
the time the central database (the text file) would be locked as
the update process would be under way. Hence, load balancer
could not read it for a long time.

The problem of readers-writers was resolved in an
innovative way, where we built our own version of mutual
exclusion semantics. The following points are worth to be
noted in the design of this scheme:

• listen() function (used in socket programming in
C and some other computer programming
languages) allows only one client to connect at
one common port at one given time. If there were
a number of requests from different clients,
listen() function queues the new requests in the
wait queue [52].

• Two different dynamic arrays could be
implemented in the load balancer One array can
store the central database values and the other
array can store the input stream received from the
internal adapter. This would eliminate the file
read/write.

• If the input stream was received from the web
service, then the load balancer checked for the
least busy CPU in the cluster and the
corresponding IP, which was stored in another
dynamic array in the load balancer. The new task
was then migrated to the least busy CPU in the
cluster by the load balancer.

• If the load balancer received socket connection
from the master server, the array containing the
central database values in the load balancer was
updated.

It was observed that as the central database was updated, a
point was reached when it was complete and consistent. This
was the point when all the nodes in the cluster had replied to
the master server with their CPU and IP information. After
the central database became consistent, the database was read
and passed to the load balancer through socket. The format
that was passed to the load balancer was IP1 CPU1%IP2
CPU2%IP3 CPU3…n, so that the parsing algorithm can
know the start and end of the IP and CPU status information
in this input stream.



International Journal of Computer and Electrical Engineering, Vol. 1, No. 2, June 2009 
1793-8163

- 232 -

Fig 4: The figure depicting the load balancer in the Linux cluster. The 
numbers at the top of the computers represent their current CPU usage in
percentage. Two different applications connected to the load balancer at

different times. The design ensured that if both the applications try to connect
to the load balancer simultaneously, one is put on wait and the other is given
an opportunity to execute in the code section of the load balancer. The load

balancer kept the central database contents in memory.

Fig 5: An illustration showing an implementation that solved the
readers-writers problem.

The algorithm for the readers-writers solution is as follows:
Step 1: OPEN the central database file in write mode.
Step 2: Wait for 30 seconds until the computers in the cluster
respond with their CPU and IP values. 
Step 3: CLOSE the central database file.
Step 4: OPEN the central database in READ mode.
Step 5: READ the contents of the central database and
append special characters after each line. 
Step 5: STORE the central database contents in a string array.
Step 6: CONNECT to the load balancer and send the entire
array via socket. 
Step 7: CLOSE the central database file.
Step 8: REPEAT Step 1 

Two different applications connected to the load balancer
• The web service.
• The master server.

When the applications connected at different times, the
following was done: 

1. Web Service: When the web service connected, the
load balancer received the concatenated real values
separated by some special character. This input
stream was stored in an array. Subsequently, the
algorithm searched another array consisting of the
contents of the central database, which the master
server had sent it previously, for the CPU that was
least busy in the entire cluster. The corresponding IP
was parsed and the load balancer forwarded the input
stream to the internal adapter corresponding to that
IP for modeling calculations. 

2. Master Server: When the master server completed
the operation of central database update, it connected
to the load balancer on the same port as the web
service using sockets and transferred the entire
database. The balancer stored this data in
dynamically allocated memory chunk, until the
master server connected again and sent the updated
values. This array update occurred after every 30
seconds in the load balancer.

VIII. NON-REPETITIVE CPU SELECTION
ALGORITHM

Problem Definition: It was noticed that when several
users used modeling computations simultaneously at one
given time repetitively, only one CPU in the cluster used to
get the all the input stream until new updated values from the
master server was received by the load balancer. The waiting
task queue for one node used to get very long as compared to
the rest of the nodes. This is because the load balancer does
the task allocation based on the notion that only that CPU
would get the input stream from the web service, which had
the lowest CPU usage in the central database. This resulted in
overloading the processor (node) of the least busy node in the
cluster, while others were relatively less busy. 

One solution to this would be to reduce the central
database update time in the load balancer from 30 seconds to 
5 seconds. But, this would consume network and CPU
resources, which was not feasible as we had to dedicate the
computation to the modeling algorithms, which was the top
priority.

In order to resolve the problem, the load balancer had a
scheme that applied the algorithm of non-repetitive CPU
selection. This meant, choosing different processors on each
new incoming request, until the next update in the central
database occurred. This algorithm worked as follows:

There were four different modeling algorithms. Each of the
algorithm’s runtime CPU consumption was noted. At the end,
an average value was taken which depicted as to how much
CPU processing each of the modeling algorithm took. This
process was done using the Linux’s top command. The
following average values were finally used: 

Let modeling algorithm 1 is written as M1. Similar goes
for other modeling algorithms i.e. M2, M3 and M4. The
average CPU consumption of each of the modeling algorithm
was as follows:

M1 = 30%, M2 = 50%, M3 = 10%, M4 = 20% 
When the request was made by the user after central

database array update in the load balancer, the least busy
CPU in the cluster was allotted the task of computation. If
other user requested for computations and the same CPU



International Journal of Computer and Electrical Engineering, Vol. 1, No. 2, June 2009 
1793-8163

- 233 -

values in the load balancer array are still there i.e. no update
has come from the master server, then the following was
done:

Let us suppose that the computers in the cluster are
denoted by C1, C2…C8 i.e. 8 nodes and request for modeling
computation was made by a user. Suppose the current central
database CPU values in the load balancer array are as
follows:

C1 = 10%, C2 = 12.5%, C3 = 20%, C4 = 80%, C5 = 2%,
C6 = 99%, C7 =.3% and C8 = 100% 

When the request for computation was made for the first
time after the load balancer got the updated values from the
master server, the load balancer searched for the minimum
CPU usage in the database and allocated the task of
computation to that CPU. In this case, C7 was allocated the
task for computation.

Now, another user or same user sent another request for
computation, the non-repetitive algorithm did the following
calculations:

Step 1: Determine the type of modeling algorithm invoked
by the user.

Step 2: Say, M2 was the algorithm invoked by the user,
while M1 was already executing in C7. 

Step 3: M2 took 50% of the entire CPU. Next least busy
CPU in the cluster was C5 with 2% usage. Therefore, if M2
was allocated to C5, C5 usage becomes 52%
(approximately).

Step 4: If M2 was allocated to C7 which itself was
executing M1, the CPU usage at C7 end would have been 30
+ 0.3 = 30.3% (approximately). Now, allocating M2 to C7
would mean that now the CPU computation became 30.3 +
50 = 80.3% (approximately)

Step 5: Therefore, M2 went to C5 for computation.
Step 6: Again, another user invoked M3, which took 10%

of the entire CPU. C5 now was 52% (approximately) and C7 
= 80.3% (approximately). Next least busy CPU was C1 with
10% usage. 

Allocating task to C1 meant that 10 + 10 = 20%
(approximately)

Allocating to C5 = 52 + 10 = 62% (approximately)
For C7 = 80.3 + 10 = 90.3%, hence, task migrated to C1 for

computation.
Step 7: Another task came in for computation. Let us

suppose this was the 7th task in succession and updated values
had not yet come from the master server (30 second time
frame had not completed). The algorithm checked for the
next least busy CPU. The algorithm ensures that the sum of
the current CPU usage and modeling computation values
never exceeded 100. If this is the case, then the algorithm
again began from the least busy CPU in the cluster and
repeated with the next busy CPU and so on. 

Consider an example, C6 = 99% and M4 = 20%. If C6
came next in the least busy CPU ordered list, this CPU was
not selected for computation as 99+20 = 119.0 as 119 > 100 

The algorithm again chose the least busy CPU i.e. C7 with
30.3 + 20 = 50.3% and 50.3 < 119. So, task allocated to C7.
This had been done keeping in mind that by this time the first
request would be about to complete or already has already
completed in C7. 

The following condition was considered in the current

implementation.
The task completion time of the modeling algorithm:

Each modeling algorithm took about 10 seconds to execute
and produce the result. If the non-repetitive algorithm kept
track of the task completion time of the CPUs, which had
already been allocated the task of computation, then the
performance would have been even better. This would mean
that by the time, task one was over and another task came in
for computations then task 2 could be allocated to the CPU,
which had completed the computation just moments ago.
Hence, the least busy CPU would be used again after first
task completion.

IX. EXPERIMENTS AND RESULTS
The algorithms were written in C programming language,

owing to efficiency. None of the applications discussed
above are GUI based. Due to the copyright policies, the
actual modeling algorithms are not shown in this paper.
However, similar applications were developed, which
simulated the real modeling applications. The results
discussed here are screenshots of the console applications. 

The experiments were performed under laboratory
conditions. Some of the CPUs were overloaded with jobs
deliberately to test the algorithms. The algorithms’ execution
time was traced and noted using the top command in Linux.
When the load balancing algorithms were executing, we
noticed their CPU consumption to be about 0.1% of the entire
primary memory.

The console applications just printed the IP on the screen
when the task was allocated to the CPU. The internal adapters
were installed on every machine in the cluster. The values
from the web services form were concatenated and passed
onto the load balancer.

Below are some of the screenshots:

Fig 6: A screenshot showing the web service, which was a form that the user
filled in with some real number values. All the values entered were

concatenated in the form
number#number#...#filename#algorithm_identifier.



International Journal of Computer and Electrical Engineering, Vol. 1, No. 2, June 2009 
1793-8163

- 234 -

Fig 7: Screenshot of the load balancer algorithm in port listening state. As
this algorithm receives request for connection it does the required execution.

Algorithm Execution Trace

0

0.1

0.2

0.3

1 3 5 7 9 11 13 15 17 19

Time (seconds)

C
PU

C
on
su
m
pt
io
n

(%
)

Fig 8: CPU Consumption v/s Time:

The plot shows CPU utilization of one node in the cluster,
which executes the modeling algorithms. Due to
non-repetitive CPU selection scheme for a very short
duration the CPU utilization becomes zero, meanwhile in this
state of zero processing, the CPU handles other
non-modeling related jobs. This plot shows only the CPU
consumption by the modeling algorithms.

Algorithm Execution Trace

0

0.05

0.1

0.15

1 3 5 7 9 11 13 15 17 19

Time (seconds)

M
em

or
y

C
on
su
m
pt
io
n
(%
)

Fig 9: Memory Consumption v/s Time: Memory consumption by a node 
during modeling computations.

Fig 10: Screenshot of the load balancer algorithm in port listening state. As
this algorithm receives request for connection it does the required execution.

Fig 11: As connection is received from the web service, the algorithm printed
the IP address of the machine, which has the least busy CPU in the entire

cluster.

X. CONCLUSION
This design is highly reliable and fault tolerant. Problem

occurred only when the load balancer was down, the entire
system came to a halt. This problem could be resolved only
when the web service is able to connect to different machines
after sensing that the load balancer is down. This task has to
be done at the Windows end. The best bet is to run the tunnel
and the master server cluster programs on different
computers in the computing cluster. Reason being, even if
one of them is down the system would keep functioning
without fault. The load balancer would take over the
modeling calculations in such a case. 

ACKNOWLEDGMENT

We would like to thank Mr. K. Krishna Raju, Information
Technology Services, Tata Steel Limited, Jamshedpur, India
for developing the Microsoft Windows based web services.
We would also extend our sincere gratitude to Mr. Fredi B.
Zarolia, Senior Manager (IT), New Initiatives, Tata Steel,
Jamshedpur, India for assisting us during the course of this
project. His active involvement in this research is
commendable. He gave us some important insights during the
implementation phase which helped us overcome some of the
major hurdles. Computing and network services were
provided by Tata Steel Limited, Jamshedpur, India.

REFERENCES

[1] P.K. Sinha, “Distributed Operating Systems: Concepts and Design”,
Wiley-IEEE Press 1996. 

[2] C. Steketee, “Process Migration and Load Balancing in Amoeba”, In
the Proceedings of the Twenty Second Australian Computer Science
Conference, Auckland, New Zealand, January 18--21 1999.
Springer-Verlag, Singapore.

[3] B. Randell, P.A. Lee, P. C. Treleaven (June 1978). "Reliability Issues
in Computing System Design", ACM Computing Surveys (CSUR) 10
(2): 123–165. doi:10.1145/356725.356729. ISSN 0360-0300. 

[4] P. J. Denning (December 1976). "Fault tolerant operating systems",
ACM Computing Surveys (CSUR) 8 (4): 359–389.
doi:10.1145/356678.356680. ISSN 0360-0300. 

[5] Theodore A. Linden (December 1976). "Operating System Structures
to Support Security and Reliable Software", ACM Computing Surveys
(CSUR) 8 (4): 409–445. doi:10.1145/356678.356682. ISSN
0360-0300.

[6] E. Redwine, and J.L. Holliday, Santa Clara University. [Online]
Available: http://www.cse.scu.edu/~jholliday/REL-EAR.htm
(reliability write up) 

[7] R. Chow, and T. Johnson, “Distributed Operating Systems &
Algorithms”, Addison Wesley Longman, 1997. 

[8] A. Tanenbaum, “Distributed Operating Systems”, Prentice-Hall Inc,
1995.

[9] P. Werstein, H. Situ, and Z. Huang, “Load Balancing in a Cluster
Computer”, Parallel and Distributed Computing, Applications and
Technologies, 2006. PDCAT apos;06. Seventh International
Conference on Volume, Issue, Dec. 2006 Page(s):569 – 577 Digital
Object Identifier 10.1109/PDCAT.2006.77.

[10] C. Youn, and I. Chung, “An Efficient Load Balancing Algorithm for
Cluster System”, Publisher Springer Berlin / Heidelberg, ISSN
0302-9743 (Print) 1611-3349 (Online), Volume 3779/2005, pp
176-179.

[11] K.D. Devine, E.G. Boman, R.T. Heaphy, B.A. Hendrickson, J.D.
Teresco, J. Faik, J.E. Flaherty, and L.G. Gervasio, “New Challenges in
Dynamic Load Balancing”, Reprinted by Elsevier Science.

[12] T.G. Lewis, and H. El-Rewini, 1992, “Introduction To Parallel
Computer”, Prentice-Hall, Inc.

[13] C.Z. Xu and F.C.M. Lau 1997, “Load Balancing In Parallel Computers:
Theory And Practise”, Kluwer Academic Press. 

[14] K.M. Baumgartner, and B.W. Wah, 1991, “Computer Scheduling
Algorithms: Past, Present, and Future, ” Information Science, 57-58,
Pp319-345.

[15] T.L. Casavant, and J.G. Kuhl, 1994, “A Taxonomy of Scheduling in
General Purpose Distributed Computing Systems.” In T.L. Casavant
and M. Singhal, ed., Readings In Distributed Computing Systems,
IEEE Computer Society Press. 

[16] M. J. Berger, and S. H. Bokhari, "A partitioning strategy for
nonuniform problems on multiprocessors", IEEE Trans. Computers
C-36 (5) (1987) 570-580. 

[17] H. D. Simon, "Partitioning of unstructured problems for parallel
processing", In: Proc. Conference on Parallel Methods on Large Scale
Structural Analysis and Physics Applications, Pergammon Press, 1991.

[18] V. E. Taylor, and B. Nour-Omid, "A study of the factorization fill-in
for a parallel implementation of the finite element method, Int. J.
Numer. Meth. Engng. 37 (1994) 3809-3823. 

[19] M. S. Warren, and J. K. Salmon, "A parallel hashed oct-tree n-body
algorithm", In: Proc. Supercomputing '93, Portland, OR, 1993. 

[20] J. R. Pilkington, and S. B. Baden, "Partitioning with space filling
curves", CSE Technical Report CS94-349, Dept. Computer Science
and Engineering, University of California, San Diego, CA (1994). 



International Journal of Computer and Electrical Engineering, Vol. 1, No. 2, June 2009 
1793-8163

- 235 -

[21] A. Patra, and J. T. Oden, "Problem decomposition for adaptive hp finite
element methods", J. Computing Systems in Engg. 6 (2). 

[22] W. F. Mitchell, "Refinement tree based partitioning for adaptive grids",
In: Proc. Seventh SIAM Conf. on Parallel Processing for Scientific
Computing, SIAM, 1995, pp. 587-592. 

[23] A. Pothen, H. Simon, and K. Liou, "Partitioning sparse matrices with
eigenvectors of graphs", SIAM J. Matrix Anal. 11 (3) (1990) 430-452. 

[24] G. Cybenko, "Dynamic load balancing for distributed memory
multiprocessors", J. Parallel Distrib. Comput. 7 (1989) 279-301. 

[25] Y. Hu, and R. Blake, "An optimal dynamic load balancing algorithm",
Tech. Report DL-P-95-011, Daresbury Laboratory, Warrington, WA4
4AD, UK (Dec. 1995). 

[26] E. Leiss, and H. Reddy, "Distributed load balancing: design and
performance analysis", W.M. Keck Research Computation Laboratory
5 (1989) 205-270. 

[27] Ganglia Monitoring System [Online]: Available: http://ganglia.info/
[28] R. Diekmann, and B. Monien, "Load Balancing Strategies for

Distributed Memory Machines", Computer Science Technical Report
Series "SFB", No. tr-rsfb-97-050, Univ. Of Paderborn, Germany, p.
1-37.

[29] V. Kumar, A. Grama, A. Gupta and G. Karypis, (1994) "Introduction to
Parallel Computing: Design and Analysis of Algorithms", Benjamin
Cummings, New York, p. 1-597. 

[30] R. Lling, B. Monien, and F. Ramme, (1991) "A study of dynamic load
balancing algorithms", Proceedings of the 3rd IEEE SPDP, p. 686-689.

[31] C. K. Lee, and M. Hamdi, (1995) "Parallel image processing
application on a network of workstations", Parallel Computing, 21, p.
137-160.

[32] C. K. Lee, and M. Hamdi, (1994) "Efficient parallel image processing
application on a network of distributed workstations", Proc. 8th
International Parallel Processing Symposium, p. 52-59. 

[33] N. Nedeljkovic, and M. J. Quinn, (1993) "Data-Parallel Programming
on a Network of Heterogeneous Workstations", Concurrency: Practice
and Experience, 5, 4, p.257-268. 

[34] L. Aversa, and A. Bestavros, "Load balancing a cluster of web servers:
using distributed packetrewriting", In the Proceedings of Performance,
Computing, and Communications Conference, 2000. IPCCC '00.
Conference Proceeding of the IEEE International, Feb 200, p. 24-29,
ISBN: 0-7803-5979-8. 

[35] J. L. Wolf, and P. S. Yu, On balancing the load in a clustered web farm,
ACM Transactions on Internet Technology (TOIT), v.1 n.2, p.231-261,
November 2001. 

[36] V. Cardellini, M. Colajanni, and P. S. Yu, "Dynamic Load Balancing
on Web-Server Systems", IEEE Internet Computing, v.3 n.3, p.28-39,
May 1999. 

[37] A. Karve, T. Kimbrel, G. Pacifici, M. Spreitzer, M. Steinder, M.
Sviridenko, and A. Tantawi, "Dynamic placement for clustered web
applications", Proceedings of the 15th international conference on
World Wide Web, May 23-26, 2006, Edinburgh, Scotland.

[38] V. Cardellini, E. Casalicchio, M. Colajanni, and P. S. Yu, "The state of
the art in locally distributed Web-server systems", ACM Computing
Surveys (CSUR), v.34 n.2, p.263-311, June 2002. 

[39] K. Shen, T. Yang, L. Chu, J. L. Holliday, D. A. Kuschner, and H. Zhu,
"Neptune: Scalable Replication Management and Programming
Support for Cluster-based Network Services", In Proc. of the 3rd
USENIX Symposium on Internet Technologies and Systems, pages
197–208, San Francisco, CA, Mar. 2001. 

[40] Y. Saito, B. N. Bershad, and H. M. Levy, "Manageability, Availability,
and Performance in Porcupine: a Highly Scalable, Cluster-based Mail
Service", In Proc. of the 17th ACM Symposium on Operating Systems
Principles, pages 1–15, Dec. 1999. 

[41] A. Barak, S. Guday, and R.G. Wheeler, "The MOSIX Distributed
Operating System, Load Balancing for UNIX", In Lecture Notes in
Computer Science, Vol. 672. Springer-Verlag, 1993. 

[42] A. Barak and O. La’adan, "The MOSIX Multicomputer Operating
System for High Performance Cluster Computing", Journal of Future
Generation Computer Systems, 13(4-5):361–372, March 1998. 

[43] A. Geist, A. Beguelin, J. Dongarra, W. Jiang, R. Manchek, and V.
Sunderam, "PVM - Parallel Virtual Machine", MIT Press, Cambridge,
MA, 1994. 

[44] W. Gropp, E. Lust, and A.Skjellum, "Using MPI", MIT Press,
Cambridge, MA, 1994. 

[45] Platform Computing Corp. LSF Suite 3.2. 1998. 
[46] Red Hat. Extreme Linux. 1998. 
[47] P. J. Courtois, F. Heymans, and D. L. Parnas, "Concurrent control with

“readers” and “writers”", Communications of the ACM, v.14 n.10,
p.667-668, Oct. 1971. 

[48] Readers-Writer Lock [Online]: Available:
http://en.wikipedia.org/wiki/Readers-writer_lock

[49] J. A. Trono, "A new exercise in concurrency", ACM SIGCSE Bulletin,
v.26 n.3, p.8-10, Sept. 1994. 

[50] C.A. Thekkath, T. Mann, and E. K. Lee, "Frangipani: a scalable
distributed file system", Proceedings of the sixteenth ACM symposium
on Operating systems principles, p.224-237, October 05-08, 1997,
Saint Malo, France. 

[51] H. Franke, R. Russell, and M. Kirkwood, "Fuss, futexes and furwocks:
Fast userlevel locking in linux", In Proceedings of the Ottawa Linux
Symposium, 2002. 

[52] listen() function in C man page [Online]: Available:
http://linux.die.net/man/2/listen

[53] O. S. F. Carvalho, and G. Roucairol, "On mutual exclusion in computer
networks", Commun. ACM 26, 2 (Feb. 1983), 146-147. 

[54] K. Raymond, "A tree-based algorithm for distributed mutual
exclusion", ACM Transactions on Computer Systems (TOCS), v.7 n.1,
p.61-77, Feb. 1989. 

[55] V. Kumar, J. Place, and G. C. Yang, "An Efficient Algorithm for
Mutual Exclusion Using Queue Migration in Computer Networks",
IEEE Transactions on Knowledge and Data Engineering, v.3 n.3,
p.380-384, September 1991. 

[56] S. Lodha, and A. Kshemkalyani, "A Fair Distributed Mutual Exclusion
Algorithm", IEEE Transactions on Parallel and Distributed Systems,
v.11 n.6, p.537-549, June 2000. 

[57] Cluster (Computing) [Online]: Available:
http://en.wikipedia.org/wiki/Computer_cluster


	Deploying CPU load balancing in the Linux cluster using non-repetitive CPU selection
	Recommended Citation

	IJCEE vol 1 no 2.doc

