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Analyzing Harmonic Monitoring Data Using
Supervised and Unsupervised Learning

Ali Asheibi, David Stirling, Member, IEEE, and Danny Sutanto, Senior Member, IEEE

Abstract—Harmonic monitoring has become an important tool
for harmonic management in distribution system. A comprehen-
sive harmonic monitoring program has been designed and imple-
mented on a typical electrical medium-voltage distribution system
in Australia. The monitoring program involved measurements of
the three-phase harmonic currents and voltages from the residen-
tial, commercial, and industrial load sectors. Data over a three
year period have been downloaded and available for analysis. The
large amount of acquired data makes it difficult to identify opera-
tional events that significantly impact the harmonics generated on
the system. More sophisticated analysis methods are required to
automatically determine which part of the measurement data are
of importance. Based on this information, a closer inspection of
smaller data sets can then be carried out to determine the reasons
for its detection. In this paper, we classify the measurement data
using unsupervised learning based on clustering techniques using
the minimum message length technique, which can provide the en-
gineers with a rapid, visually oriented method of evaluating the
underlying operational information contained within the clusters.
Supervised learning is then used to describe the generated clusters
and to predict the occurrences of unusual clusters in future mea-
surement data.

Index Terms—Classification, clustering, data mining, har-
monics, monitoring system, power quality (PQ), segmentation.

1. INTRODUCTION

ITH the increased use of power electronics in residen-

W tial, commercial, and industrial distribution systems,
combined with the proliferations of highly sensitive micropro-
cessor-controlled equipment, more distribution customers are
sensitive to excessive harmonics in the supply system [1], some
even leading to the failure of equipment. An increasing number
of electric distribution network service providers are installing
harmonic monitoring equipment to measure the three-phase
harmonic voltage and current waveforms in their power system
to detect and mitigate the harmonic distortion problems [2]-[7].
Recently, a harmonic monitoring program was designed and
implemented in a medium-voltage (MV) distribution system
in Australia [8], [9]. The monitoring involved simultaneous
measurements of the three-phase harmonic current and voltage
from the residential, commercial, and industrial load sectors.
The simultaneous measurements of three-phase harmonic
currents and voltages from the different load sectors allow
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for the effect on the net distribution system harmonic voltage
and current to be determined. The coordinated approach in
obtaining the results has overcome some of the problems with
synchronizing and reporting data [10], [11].

An enormous amount of data over a three-year period has
been downloaded and available for analysis. However, it is dif-
ficult to analyze the data using visual inspection of the acquired
voltage and current waveforms. It is also difficult to identify op-
erational issues that generate the harmonics produced at varying
operation times. A more sophisticated analysis method is re-
quired to automatically segment the data into a manageable data
set for analysis to understand the causes and effects of the har-
monics obtained and to predict future events.

In this paper, a data-mining tool (ACPRO) is used for the au-
tomatic clustering of the harmonic database. Clustering is the
discovery of similar groups of multidimensional records in a
database. ACPRO is based on the successful AutoClass [12]
and Snob programs [13] and uses mixture models [14] to repre-
sent clusters. ACPRO allows for the automated selection of the
number of clusters and for the calculation of means, variances,
and relative abundance of the clusters in the data set.

This paper first describes the design and implementation of
the harmonic monitoring program and the data obtained. These
data are then clustered using the data-mining tool ACPRO. This
paper discusses the significance of the clusters obtained and
how the associated operational conditions can be deduced from
these clusters. The use of the supervised learning C5.0 algo-
rithm to explain and predict unusual operational conditions is
then presented.

II. HARMONIC MONITORING PROGRAM

A harmonic monitoring program [8], [9] was installed in a
typical 33/11-kV MV zone substation in Australia that supplies
ten 11-kV radial feeders. The zone substation is supplied at
33 kV from the bulk supply point of a transmission network.
Fig. 1 gives the layout of the zone substation and feeder system
for the harmonic monitoring program.

Seven monitors were installed: a monitor at each of the resi-
dential, commercial, and industrial sites (site ID 5-7); a monitor
at the sending end of the three individual feeders (site ID 2—-4);
and a monitor at the zone substation incoming supply (site ID 1).
Sites 1-4 in Fig. 1 are all within the substation at the sending end
of the feeders identified as being a predominant load type. Site
5 was along the feeder route approximately 2 km from the zone
substation, which feeds a residential area. Site 6 supplies a shop-
ping center with a number of large supermarkets and many small
shops. Site 7 supplies a factory manufacturing paper product,
such as paper towels, toilet paper, and tissues.

0885-8977/$25.00 © 2008 IEEE
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Fig. 1. Single-line diagram illustrating the zone distribution system.

Based on the distribution customer details, it was found that
site 2 comprises 85% residential and 15% commercial, site 3
comprises 90% commercial and 10% residential, and site 4 com-
prises 75% industrial, 20% commercial, and 5% residential.

The monitoring equipment used is the EDMI Mk3 Energy
Meter from Electronic Design and Manufacturing Pty. Ltd. [15].
Three-phase voltages and currents at sites 1-4 were recorded
at the 11-kV zone substation and sites 5—7 were recorded at
the 430-V side of the 11-kV/430-V distribution transformer, as
shown in Fig. 1, The memory capabilities of the aforementioned
meters at the time of purchase limited recordings to the funda-
mental current and voltage in each phase, the current and voltage
THD in each phase, and three other individual harmonics in each
phase.

For the harmonic monitoring program, the harmonics chosen
to be recorded were the third, fifth, and seventh harmonic
currents and voltages at each monitoring site, since these are
the most significant harmonics. The memory restrictions of the
monitoring equipment dictated that the sampling interval is 10
min. This follows the suggested measurement time interval by
the International Electrotechnical Commission (IEC) standard
as given in IEC61000-4-30 for measurements of harmonic, in-
terharmonic, and unbalance waveforms. The standard regarded
as best practice for power-quality (PQ) measurement recom-
mends 10-min aggregation intervals for routine PQ survey.
Each 10-min data represents the aggregate of the ten-cycle
root mean square (rms) magnitudes over the 10-min period
[16]. Further, a recent study [17] suggested that statistically,
sampling at a faster rate will not provide additional significant
extra insight.

The data retrieved from the harmonic monitoring program
spans from August 1999 to December 2002. Figs. 2 and 3 show
a typical output data from the monitoring equipment of the fun-
damental, third, fifth, and seventh harmonic currents in Phase
“a” at sites 1 and 2, taken on January 12-19, 2002, showing a
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Fig. 2. Zone substation (site 1) weekly harmonic current data from the moni-
toring equipment.
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Fig. 3. Residential feeder (site 2) weekly harmonic current data from the mon-
itoring equipment.

10-min maximum fundamental current at 1293 A and minimum
fundamental current at 435 A. It is obvious that for the engi-
neers to realistically interpret such large amounts of data, it will
be necessary to cluster the data into meaningful segments.

III. DATA MINING

There are two important learning strategies in machine
learning and data-mining techniques: supervised learning (SL)
and unsupervised learning (USL). SL, or data classification,
provides a mapping from attributes to specified classes or con-
cept groupings (i.e., classes are identified and prelabelled in the
data prior to learning). USL generally amounts to discovering
a number of patterns, subsets, or segments (clusters) within
the data, without any prior knowledge of the target classes or
concepts, that is, learning without any supervision.

In this paper, USL is first used to identify any naturally oc-
curring cluster of a particular set of measured data from the har-
monic monitoring system. SL is then used to obtain the rela-
tionship between the measured data in the clustering process
(training set) and the cluster label. Once trained, the model can
then be evaluated on an alternative data (a test set) which con-
tains no prior cluster labels in order to predict which cluster each
data point in the test data set should belong to.
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A. Unsupervised Clustering Using MML

Unsupervised clustering is based on the premise that there are
several underlying classes that are hidden or embedded within
a data set which are not known a priori. The objective of such
processes is to identify an optimal model representation of these
intrinsic classes, by partitioning the data into multiple clusters
or subgroups.

The partitioning of data into candidate subgroups is usually
subject to some objective function such as a probabilistic model
distribution (e.g., Gaussian). From any arbitrary set of data, sev-
eral possible models or segmentations might exist with a plau-
sible range of clusters.

In this paper, a technique based on minimum message length
(MML) or minimum description length (MDL) encoding cri-
terion is used to evaluate each successive set of segmentations
and monitor their progression toward a globally best model. In
this technique, the measured data are considered as an encoded
message. The MML inductive inference, as the name implies,
is based on evaluating models according to their ability to com-
press a message containing the data. Compression methods gen-
erally attain high densities by formulating efficient models of
the data to be encoded.

The encoded message consists of two parts. The first of these
describes the model and the second describes the data values of
the model. The model parameters and the data values are first
encoded by using a probability density function (pdf) over the
data range and assuming a constant accuracy of measurements
(Aom) within this range. The total encoded message length (two
parts) for different models is then calculated and the best model
(shortest total message length) is selected. The MML expression
is given as

L(D,K) = L(K) + L(D/K) (1)
where

K mixture of clusters in the model;

L (K) message length of model K;

L(D/K) message length of the data given the model K;
L(D,K) total message length.

Given a data set D, initially, the range of measurement and
the accuracy of measurement for the data set are assumed to be
available. The message length of a mixture of clusters having
Gaussian distributions each with its own mean () and variance
(o) can be calculated from (2) [18]

range
=logy ——t +1
%82 30pv, T

range,

L(K —
( ) 082 AOPVO-

2
where range,, is the range of possible x values; range, is the
range of possible o values; and AOPV , is the accuracy of the
parameter value of x4

12
AOPV,, = 5/ = 3)

where s is the unbiased sample standard deviation

ﬁ Z (x; — )2 4

N number of data samples;
T sample mean;
X; data points;
AOPVo accuracy of the parameter value of o.
AOPV, =35 L 5)
N-1

The message length of the data using Gaussian distribution
model can be calculated from the following equation [18]:
N
252

L(D/K) = Nlog, = loga(c)  (6)

om

where Aom is the accuracy of measurement and s is the sample
standard deviation

1 n
5= NZ(xi — )2 (7)
=1

Given a data set D and a given accuracy of measurement
Aom, the assumed statistical distribution is initially chosen as a
Gaussian distribution. Starting from having all of the data in one
cluster (K = 1) with a sample mean T and standard deviation
s, the parameters y, 0 and 7 (mean, variance, and abundance)
of this model can be estimated using the expectation maximiza-
tion algorithm (EM) to fit the Gaussian distribution model [19].
The abundance valuer for each cluster represents the propor-
tion of data that are contained in the cluster in relation to the
total data set. For a single cluster, the abundance value will be
100%. The abundance value can provide an indication of impor-
tance of each cluster. A small abundance may mean the cluster
represents a rare occurrence and this may point out instances
when the system needs to be observed more carefully.

Once i and o are obtained, range,, and range, can be es-
timated, and AOPV,, and AOPV,, can be calculated from (3)
and (5). The total message length L (D, K) can then be calcu-
lated using (1), (2), and (6). The single cluster may be subse-
quently divided into a mixture of two clusters having the chosen
distribution (K = 2) each with its own sample mean Z and
standard deviation s. EM is then used to optimize the param-
eters p, 0 and 7 (mean, variance, and abundance) of each new
cluster. The total message length of the two clusters is recalcu-
lated and compared with the message length of the one cluster.
If the total message length of the two clusters is smaller than
the message length of one cluster, the splitting is assumed to be
successful. However, if the message length of the two clusters
is higher than or equal to the message length of the one cluster,
the single cluster is retained and the splitting process is repeated
until a smaller message length is obtained. In the program, an
optimization algorithm has been developed to find the best two
clusters that yield the largest reduction of message length. The
next step is to divide one of these clusters into two (K = 3), and
the aforementioned process is then repeated.

By itself, the splitting method is deficient to find the min-
imum message length in that the MML is often not found. To
overcome this problem, other tactics are used in our program,
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such as merging, reclassifying, and swapping [20]. A conceptual
flowchart of the MML clustering algorithm is given in Fig. 4. An
illustrative example of how the MML algorithm can be applied
to a small data set is given in the Appendix.

The use of the MML clustering algorithm for PQ classifica-
tion has several advantages over traditional methods. One ad-
vantage of applying the MML technique in power-quality (PQ)
monitoring data is that it does not require the full harmonic
waveforms to do the classification, unlike the signal-processing
techniques, such as Fourier transform (FT) or wavelet transform
(WT), which first requires the waveform to perform the trans-
formation to the relevant domain, and only then can the classi-
fication process be initiated.

The MML method used here is often also known as mixture
modelling or intrinsic classification [21], [22]. Mixture models
typically perform better than those based on a priori distance
measures, such as a nearest neighbor algorithm, for example,
K-means [23]. The mixture model clustering is a general form of
K-means or fuzzy C-means because it can use other types of dis-
tributions beside Gaussian distributions, with various shapes of
clusters [19]. K-means and fuzzy C-means are known to fail to
obtain acceptable clusters when the clusters have different sizes,
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Fig. 5. (a) Three randomly generated clusters. (b) Clustering using K-means.
(c) Clustering using mixture models.

shapes, or covariances. For benchmarking purposes, three ran-
domly generated clusters are shown in Fig. 5. Mixture models
based on MML can classify these three natural clusters correctly
as shown in Fig. 5(c), whereas K-means fails to detect the right
cluster as shown in Fig. 5(b), because the center cluster is larger
and denser than the other two.

For this reason, we have chosen the mixture modelling pro-
gram based on MML for automatic clustering of the harmonic
database [12]. The software allows the selection of the number
of clusters with given data precision, and produces models struc-
tured as a collection of the means, variances, and relative abun-
dance of each constituent cluster.

B. Supervised Learning Using the C5.0 Algorithm

In the last section, unsupervised clustering using MML was
suggested to identify the natural classes from the measured data.
Once classified using MML, these clusters can then be described
and predicted from the measured data by using SL, providing a
map from attributes to specified classes or concept groupings.

Decision trees are one example of these classification tech-
niques, such as neural network or Bayes classifiers. In decision
trees, a model is built proposing plausible relationships between
the input data (training set) and the class, or here the cluster
label obtained from MML. Once the model is trained with suffi-
ciently good accuracy, it can then be applied to another data set
(test data) having unknown classes in order to predict which data
point in the test data set belongs to which recognized cluster.
The optimum model is the one that has low errors in each of the
aforementioned two steps.

In order to obtain high accuracy in the first step (training step),
a large tree might be generated; however, this level of accuracy
might not be sustained in the second step (test step). In addition,
a large (bushy) tree might be difficult to interpret. Pruning is
considered to be one solution to reduce the size of a tree.
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In this project, the C5.0 algorithm is used to carry out the
supervised learning process, which can represent the results ei-
ther as a decision tree or as a rule set structure, both of which are
symbolic and can be easily interpreted. The C5.0 algorithm is an
advanced SL tool with many features that can efficiently build
the decision tree and also facilitate the pruning process [19].
Once trained, the decision tree or rule set obtained can then be
used to subsequently infer or classify which class cluster any
new data belong to. In this work, various data-processing and
management tasks, including the supervised learning with the
C5.0 algorithm, are supported within Clementine [24], an inte-
grated data-mining work bench.

IV. RESULTS AND OUTCOMES

ACPRO was applied to the measured harmonic data from
the monitoring program for the test system in Fig. 1. Three
attributes (fundamental, fifth, and seventh harmonic currents)
were selected from different sites (sites 1, 2, 3, and 4). The
third harmonic current was excluded as its level was low due
to the presence of A/Y transformers downstream, which block
most of the third harmonic current from flowing up as shown
in Figs. 2 and 3. The data were normalised to the range (0-1)
and then used as input to the software with a given accuracy of
measurement (Aom). Six different clusters, each with specific
abundance, mean, and standard deviation were obtained. The
reason behind selecting this number of clusters is that the de-
cline in the message length significantly decreases at cluster 6,
and the message length is fairly constant afterward as shown in
Fig. 6.

Using a basic spreadsheet tool, the clusters are subsequently
sorted in ascending order (s0, s1, s2, s3, s4, and s5) based on the
mean value of the fundamental current, such that cluster sO is
associated with the offpeak load period and cluster s5 is related
to the onpeak load period as shown in Fig. 7.

Each generated cluster can therefore be considered as a pro-
file of the three variables (fundamental, fifth, and seventh har-
monic currents) within an acceptable variance. If new data lie
beyond the variance, another cluster is created (see Fig. 8).

From this sorting process, one can see that cluster s5 not only
has the highest fundamental current, but also the highest fifth
harmonic current. This infers that the high fifth harmonic cur-
rents are due to an overloading condition. Fig. 8 also shows that

Cluster Fundamental current
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Fig. 7. Clusters obtained superimposed on the phase “a” fundamental wave-
form at substation site (site 1).
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abundance (]]).

TABLE I
ABUNDANCE VALUES FOR EACH GENERATED CLUSTER

Cluster S0 | S1 S2 | S3 S4 | S5
Abundance (%) | 9 16 5 8 33 [29
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Fig. 9. Six clusters obtained at the substation site (site 1).

cluster s2 has very low abundance. This may be viewed as an
anomalous, and potentially a problematic cluster as described
later. Table I shows the abundance value of each cluster.

The visualization of the six clusters at site 1 is shown in Fig. 9,
showing the relationship among fundamental, fifth, and seventh
harmonic currents and the obtained clusters.
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A. Interpretations of the Results From Unsupervised Learning
Using MML

By observing how the measured data are classified into var-
ious clusters, the power utility engineer can more readily deduce
the PQ event that may have triggered a change from one cluster
to another cluster. To confirm the observation, other available
data can be used, such as temperature and reactive power mea-
surements or by discussion with the system engineers or system
operators.

For example, the MML clustering algorithm has identified
sudden changes to cluster s2 at particular time instances during
the day. Fig. 10(a) shows the clusters obtained from substation
site (site 1) superimposed on the fundamental current measure-
ment data for two days. Fig. 10(b) shows the seventh harmonic
current and seventh harmonic voltage at the substation. By ob-
servation, it appears that this is due to sudden changes in the sev-
enth harmonic current. After further investigation of the MVAr
measurement at the 33-kV side of the power system shown in
Fig. 10(c), it can be deduced that the second cluster (s2) is re-
lated to the capacitor switching event. Early in the morning,
when the system MVAr demand is high as shown in Fig. 10(c),
the capacitor is switched on in the 33-kV side to reduce bus
voltage and late at night when the system MVAr demand is low,
the capacitor is switched off to avoid excessive voltage rise. By
just observing the fundamental current, it is difficult to under-
stand why the second cluster has been generated. The seventh
harmonic current and voltage plots as shown in Fig. 10(b) pro-
vide a clue that something is happening during cluster s2, in
that the seventh harmonic current increases rapidly and the sev-
enth harmonic voltage decreases, although the reason is still un-
known. In this case, the clustering process correctly identified
this period as a separate cluster compared to other events, and
this can be used to alert the power system operator of the need
to understand the reasoning for the generation of such a cluster,
particularly when considering the fact that the abundance value
for s2 is quite low (5%). When contacted, the operator identified
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this period as a capacitor switching event which can be verified
from the MVAr plot of the system (which was not used in the
clustering algorithm). The capacitor switching operation in the
33-kV side can also be detected at the other sites (sites 2, 3, and
4) at the 11-kV side.

Although in this case the cause can be easily uncovered, there
may be other cases where the clustering process can identify
a cluster which can produce detrimental effects to the power
system, which can provide an early warning to the power system
operator to its impending occurrence.

This is one of the main advantages of the MML clustering
algorithm in that new clusters identify different operating con-
ditions based on the different data attributes that are provided
to the program (fundamental, fifth, and seventh harmonic cur-
rents). Once identified, more information can be gathered to de-
duce the reasoning why the cluster is generated. The deduction
can then be confirmed by discussion with system engineers or
system operators. In this way, anomalous cases can be quickly
identified and analyzed.

The same method of observation can be applied to the other
clusters; for example, cluster s4 at the residential site is asso-
ciated with a peak period where high fundamental currents and
high fifth harmonic voltage are the characteristics of this cluster.
This is shown in Fig. 11 for a period of three days when the tem-
perature is normal for the time of the year. Fig. 12 shows the
results for a period of three days when the weather is very hot,
resulting in a significant use of air conditioners. There is usu-
ally a lag (human response) between the peak temperature and
the onset of the peak use of an air conditioner, thereby causing
a noticeable lag between the peak temperature and the sudden
increase in the fifth harmonic as shown in Fig. 12(b) and (c).

Fig. 13 shows the difference in harmonic clusters at the resi-
dential site between the normal weather days and the hot days.
It is evident that the MML has identified s5 cluster occurring
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TABLE II
RULES DESCRIBING S2 CLUSTERS GENERATED BY C5.0
Rule Set for s2 - contains 3 rule(s)
Rule 1 for s2 (286, 0.934)

if Cla[-50 min] > 0.138 and Cla[-50 min] <=
0.374 and C5a[-50 min] > 0.095 and Cba[-50

min] <= 0.474 and C7a[-50 min] > 0.069 and

C7a[-50 min] <= 0.153 then s2

Rule 2 for s2 (254, 0.898)

if Cla[-50 min] > 0.195 and Cla[-50 min] <=
0.374 and C7a[-50 min] > 0.047 and C7a[-50

min] <= 0.174 then s2

Rule 3 for s2 (399, 0.726)

if C5a[-50 min] <= 0.382 and C7a[-50 min] >
0.095 and C7a[-50 min] <= 0.174 then s2

20

Tempemtue C©)

15 \ﬁ‘/ -

2:00 AM  12:00 PM  12:00 AM

12:00 PM
Time (Hours)

12:00 AM  12:00 PM 12:00 AM

Fig. 12. Three hot days at the residential site (site 2). (a) Fundamental current
and generated clusters. (b) Fifth harmonic voltage and generated clusters. (c)
The temperature near site 2.
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Fig. 13. Normal and hot days at residential site (site 2).

more often at daytime during the hot period compared to the
days when the temperature is relatively mild.

From Figs. 11 and 12, it can also be observed that there is a
period of peak load (cluster s5) around midnight, and following
a discussion with the utility engineer, we were told that this is
related to the turning-on of the offpeak water heaters.

B. Results From SL Using C5.0

To gain close insight into the obtained clusters as to what
makes specific clusters differ from each other, the C5.0 algo-
rithm classification tool was applied to the measured data set
and the generated clusters from MML. The usefulness of this
algorithm is that it can be used to describe and predict generated
clusters with the results represented either as a decision tree or
sets of “if .. .then” rules without requiring much computation.
A lagging time window of different ranges of time (30, 60, 90,
and 120 min) is used in order to predict the occurrence of the
clusters. This results in rules describing each cluster in terms of

the values of the input attributes (fundamental, fifth, and seventh
harmonic currents), time, and site locations.

Data-mining software, Clementine, was used in this section to
produce the rule set related to each cluster. The most important
rules are the ones associated with the least abundant clusters,
as these clusters are considered to be anomalies among other
clusters. Clusters s2 and s3, with proportions of 5% and 8%,
respectively, are the least abundant (see Table I).

The discovered rules for cluster s2 with a window size of 60
min are shown in Table II. The range of attributes values is (0-1),
as explained in the previous section. The accuracy of the model
used to generate these rules was high at 98.8%. It should be
realized that the C5.0 algorithm is used to generate rules ex-
plaining what the combining influences behind each cluster are.
If different clusters are obtained from other sites, then new rules
would obviously be required to formalize the different contexts
associated with each new cluster.

The quality measure of each rule is described by two numbers
(n, m) shown in Table II, in brackets, preceding the description
of each rules, where n is the number of instances assigned to the
rule and m is the proportion of correctly classified instances.

The number of instances, from trained data, of Rule 1 is 286
with 267(286* 0.934) being correctly classified. Rule 1 means
that if the fundamental current in phase a (Cla) was in the range
(13.8%—.37.4%) 50 min ago [see Fig. 14(a)], and if the fifth
harmonic current in the same phase (C5a) was in the range
(9.5%-47.4%) 50 min before [Fig. 14(b)], and if the seventh
harmonic current (C7a) was between (6.9%—15.3%) 50 min ago
[Fig. 14(c)], then s2 will occur.

For example, if we consider a 3-h period between 3 A.M. and
6 AM. on January 14, 2002 at the substation site, it can be ob-
served that s2 occurs between 4:10 A.M. and 5:40 A.M. (Fig. 14).
At 4:50 A.M., we can see that the value of I; 50 min ago is be-
tween 0.138 and 0.374, and I5 is between 0.095 and 0.474 and
17 is between 0.069 and 0.153 and, hence, we can observe that
at 4:50 AM., C5.0 will predict that S2 will be generated as can
be observed in Fig. 14. On the other hand, at 5:50 A.M., although
I; and I5 meet the rules associated with these two currents, but
I;does not meet the rule because it is not between 0.069 and
0.153 and, therefore, at time 5:50 A.M., S2 is not predicted by
C5.0, instead s3 is predicted.

There are some instances where more than one rule is applied
at the same time. The C 5.0 algorithm then applies the rules in
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the rule set, and makes a majority decision based on whether
the cluster is generated. This means that one rule is not enough
to predict the cluster (class) and so all of these rules should be
considered.

V. CONCLUSION

PQ data from a harmonic monitoring program in an Aus-
tralian MV distribution system containing residential, commer-
cial, and industrial customers has been analyzed using data-
mining techniques. The technique presented in this paper al-
lows utility engineers to detect unusual PQ events from mon-
itored sites, using clustering, then characterizing the obtained
clusters using the classification techniques to infer information
about future PQ performance at the monitored sites. Unsuper-
vised learning and, in particular, cluster analysis using MML
that selects the best model describing the data using a metric
of an encoded message, has been shown to be able to identify
useful patterns within the PQ monitored data set. The advantage
of mixture models, in general, is that they can cope with dif-
ferent types of distributions. The main difficulty with the MML
technique is to determine the optimum number of clusters as-
sociated with the global MML. Further work is currently being
carried out to achieve this. The usefulness of the decision tree,
unlike neural networks, is that it performs classification without
requiring significant training and its ability to generate express-
ible and understandable rules. The main disadvantage of this
method is that there are instances where more than one rule
needs to be applied at the same time. How to decide the most
suitable rules is still an issue with this type of technique.

APPENDIX

This is an illustrative example to explain how MML is used
to encode the data. Fig. 15 shows a set of 30 points generated
randomly from three normal distributions of ten points each.
The data for the 30 points are given in Table III. Assuming the
Gaussian distribution model and the Aom is 0.1, and from the
data values, the range of p is chosen as 0-25 and for o, the
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Fig. 15.
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Three cluster (30 data points) generated randomly from X1, X2, and

TABLE III
DATA POINTS SHOWN IN FIG. 15
N x1 X2 x3
1 1.8 4.66 9.17
2 1.19 5.74 9.06
3 1.61 4.45 10.26
4 1.65 5.83 10.87
5 0.89 4.49 10.54
6 0.76 4.95 9.13
7 15 5.72 9.48
8 1.31 5.16 10.18
9 1.05 4.87 11.56
10 1.04 4.5 11.09

range is 0-5, the segmentation process can be described in the
following steps:

A. Step 1

Considering the whole data set as one cluster and calculating
the message length of this cluster from (1-7) yields 123.6 b.

B. Step 2

By splitting the data into two clusters (N; = 16, Ny = 14) by
using optimal partition [25], the total message length is 104.7 b.

C. Step 3

The segmentation process continues to three clusters (N1 =
N2 = N3 = 10) by splitting either one of two clusters and trans-
ferring between the existing cluster, the total message length is
found to be 108.85 b, which is greater than the message length
of two clusters (104.7 b).

D. Step 4

The previous generated clusters are remerged and step 3 is
repeated until a smaller message length is found. The best mes-
sage length for three clusters is found, which is 57.31 b.

The result of the aforementioned clustering steps is shown in
Table I'V.

From Steps 1 and 4 in Table IV, it can be seen that as the
number of clusters increases from one to three clusters, the
model length is increased accordingly from 5 b to 23.96 b
(10.1 4+ 6.41 + 7.45) to allow for a description of the new
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TABLE IV
SEGMENTATION PROCESS OF DATA POINTS IN TABLE III
Step N Model Data Total Length L(D,K)
L (K) L(D/K) | L(D,K) tgf:"
(bit) (bit) /cluster (bif) (bit)
1 30 5 118.6 123.6 123.6
16 6.3 44.2 50.5
2 14 5.3 48.9 54.2 104.7
10 3.85 36.32 40.17
3 10 7.72 25.21 32.93 108.8
10 5.22 29.99 35.21
10 10.1 5.42 15.52
4 10 6.41 10.1 16.51 57.31
10 7.45 17.83 25.28

clusters. On the other hand, the data length significantly drops
from 118.6 b to 44.52 b (29.99 + 5.42 + 10.1) as the new
model was able to compress the message containing the data,
resulting in less total message length (i.e., 57.31 b compared to
123.6 b for the original single cluster).
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