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Abstract-- In many of clustering algorithms, such as K-
means and Fuzzy C-mean, the value of the expected numbers 
of clusters is often needed in advance as an input parameter to 
the algorithm. Other clustering algorithms estimate this 
number as the clustering process progresses using various 
heuristic techniques; however such techniques can also lead to 
a local minima within the solution space without finding the 
optimum number of clusters.  In this paper, a method has 
been developed to determine the optimum number of clusters 
in power quality monitoring data using a data mining 
algorithm based on the Minimum Message Length technique. 
The proposed method was tested using data from known 
number of clusters with randomly generated data points, with 
data from a simulation of a power system, and with power 
quality data from an actual harmonic monitoring system in a 
distribution system in Australia. The results from the tests 
confirm the effectiveness of the proposed method in finding 
the optimum number of clusters. 

 
Index Terms-- classification, clustering, data mining, 

harmonics, monitoring system, power quality, segmentation. 

I.  INTRODUCTION 
LUSTERING is a process that divides or segments 
an initial collection of data into a certain number of 
groups or clusters. Clustering can, in part, be 

considered as a learning process, and as an analytical 
method for analysing large volumes of data, by segmenting 
the large amount of data into clusters and once obtained 
each cluster can be analysed separately. The premise is that 
there are several underlying classes that are hidden or 
embedded within the original data set. The objective of 
clustering is therefore to identify an optimal model 
representation of these intrinsic classes, by separating the 
data into multiple clusters or subgroups. 

The usefulness of clustering analysis is that it is easier 
to deal with groups or clusters rather than the complete 
data. An expert in the field is usually needed to interpret 
the discovered clusters. Further analysis is also needed, 
such as experimental work or simulation to verify the 
obtained knowledge. There are many different types of 
clustering in the literature, such as hierarchical (nested), 
partitional (un-nested), exclusive (each object assigned to a 
cluster), non-exclusive (an object can be assigned to more 
than one cluster), complete (every object should belong to a 
cluster), partial (one or more objects belong to none), and 
fuzzy (an object has a membership weight to all clusters) 
[1]. Clustering has been found to be a useful tool used in 
many disciplines, such as business, engineering, biology, 
psychology and medicine [1]. 

In using the clustering technique for harmonic 
monitoring data, each cluster can represent a specific 
operating condition, such as peak load, off-peak load, 
capacitor switching operation etc. The operating conditions 
of each of these clusters can be analysed and confirmed by 
the operation engineers [2]. In this way, clusters due to 
power quality issues can be identified and be used to 
identify future occurrence of the power quality problems. 
Repeated occurrence of these clusters may require 
countermeasures to be designed to reduce or eliminate the 
identified power quality issues.  If in the analysis of future 
data, new clusters are formed, this suggests that new and 
unknown operating conditions have occurred and this can 
trigger an alarm for the engineers to investigate further. 

Determining the optimum number of clusters becomes 
important since overestimating the number of clusters will 
produce a large number of clusters each of which may not 
necessarily represent a unique operating condition, whereas 
underestimation leads to only small number of clusters each 
of which may represent a combination of unique events.  

The aim of this paper is to develop a method to 
determine the optimum number of clusters, each of which 
represents a unique operating condition. 

The paper first describes the design and implementation 
of the harmonic monitoring program and the data obtained. 
These data are then clustered using the data mining tool 
ACPro, which is based on the Minimum Message Length 
(MML) principle. The paper discusses how the number of 
clusters is decided in ACPro, which shows the tendency of 
ACPro to overestimate the number of clusters. A method is 
then proposed to estimate the optimum number of clusters 
using the exponential method, and the Fitness Function. 
The proposed method is tested using three different types 
of data sets, and the results show that the proposed method 
is effective in finding optimum number of clusters, each of 
which represent a unique operating condition. 

II.  HARMONIC MONITORING PROGRAM 
A harmonic monitoring program [3], [4] was installed in 

a typical 33/11kV MV zone substation in Australia that 
supplies ten 11kV radial feeders. The zone substation is 
supplied at 33kV from the bulk supply point of a 
transmission network. Fig.1 gives the layout of the zone 
substation and feeder system for the harmonic monitoring 
program. Seven monitors were installed, a monitor at each 
of the residential, commercial and industrial sites (site ID 
5-7), a monitor at the sending end of the three individual 
feeders (site ID 2-4) and a monitor at the zone substation 
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incoming supply (site ID 1). Sites 1-4 in Fig. 1 are all 
within the substation at the sending end of the feeders 
identified as being of a predominant load type. Site 5 was 
along the feeder route approximately 2km from the zone 
substation, feeds residential area. Site 6 supplies a shopping 
centre with a number of large supermarkets and many small 
shops. Site 7 supplies a factory manufacturing paper 
product such as paper towels, toilet paper and tissues.  

 
Fig. 1:  Single line diagram illustrating the zone distribution system 

 
Based on the distribution customer details, it was found 

that site 2 comprises 85% residential and 15% commercial, 
site 3 comprises 90% commercial and 10% residential and 
site 4 comprises 75% industrial, 20% commercial and 5% 
residential.  

Three phase voltages and currents at sites 1-4 were 
recorded at the 11kV zone substation and at sites 5-7 were 
recorded at the 430V side of the 11kV/430V distribution 
transformer, as shown in Fig. 1. The monitoring equipment 
used is the EDMI Mk3 [5].  The memory capabilities of the 
above meters at the time of purchase limited recordings to 
the fundamental current and voltage in each phase, the 
current and voltage THD in each phase and the 3rd, 5th and 
7th harmonic currents and voltages at each monitoring site, 
since these are the most significant harmonics. The 
memory restrictions of the monitoring equipment dictated 
that the sampling interval is 10 min. This follows the IEC 
standard IEC61000-4-30 for measurements of harmonic, 
inter-harmonic and unbalance waveforms. The standard 
regarded as best practice for power quality measurement 
recommends 10 min aggregation intervals for routine 
power quality survey. Each 10 min data represents the 
aggregate of the 10-cycle rms magnitudes over the 10 min 
period [6].   

The data retrieved from the harmonic monitoring 
program spans from August 1999 to December 2002. Fig. 2 
shows a typical output data from the monitoring equipment 
of the fundamental, 3rd, 5th and 7th harmonic currents in 
Phase ‘a’ at site 2, taken on 12 -19 January 2002. It is 
obvious that for the engineers to realistically interpret such 
large amounts of data, it will be necessary to cluster the 
data into meaningful segments.  

III.  DATA MINING 
Clustering using Data Mining is based on the premise 

that there are several underlying classes that are hidden or 
embedded within a data set which are not known a priori. 
The objective of such processes is to identify an optimal 
model representation of these intrinsic classes, by 
partitioning the data into multiple clusters or subgroups.  
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Fig. 2: Residential feeder (site 2) weekly harmonic Current data from the 

monitoring equipment 
 
The partitioning of data into candidate subgroups is 

usually subject to some objective function like a 
probabilistic model distribution, e.g. Gaussian. From any 
arbitrary set of data several possible models or 
segmentations might exist with a plausible range of 
clusters.  

In this paper, a technique based on the Minimum 
Message Length (MML), is used to evaluate each 
successive set of segmentations and monitor their 
progression towards a globally best model. The minimum 
message length of inductive inference is an invariant 
Bayesian point estimation and model selection technique 
based on information theory. In this technique, the 
measured data is considered as an encoded message. The 
Minimum Message Length inductive inference, as the name 
implies, is based on evaluating models according to their 
ability to compress a message containing the data. 
Compression methods generally attain high densities by 
formulating efficient models of the data to be encoded.  

The encoded message consists of two parts. The first of 
these describes the model and the second describes the data 
values of the model. The model parameters and the data 
values are first encoded using a mixture of probability 
density function (pdf) over the data range and assuming a 
constant accuracy of measurements (AOM) within this 
range. The total encoded message length (two parts) for 
different models is then calculated [7], and the best model 
(shortest total message length) is selected.  

The message length in MML method is given as:  
(D/K) L  (K) L    K)(D, L +=  (1) 

where: 
K           :  mixture of model clusters 
L (K)     : the message length of K  
L(D/K)  : the message length of the data given K  

     L (D, K): the total message length 



 3

 
Given a data set D and a given accuracy of 

measurement, AOM, the chosen statistical distribution is 
initially assumed, such as a Gaussian distribution. Starting 
from having all the data in one cluster having the chosen 
distribution (K=1) with a sample mean x and standard 
deviation s , the parameters μ , σ  and α (mean, variance 
and abundance) of this model can be estimated using the 
Expectation Maximisation algorithm (EM) to fit the 
Gaussian distribution model [1]. The abundance value, α, 
for each cluster represents the proportion of data that is 
contained in the cluster in relation to the total data set. For 
a single cluster, the abundance value will be 100%. The 
abundance value can provide an indication of the 
importance of each of the clusters. A small abundance may 
mean the cluster represents rare occurrences and this may 
point out instances when the system needs to be observed 
more carefully [8]. The single cluster may be subsequently 
be divided into a mixture of two clusters (K = 2) having the 
chosen distribution each with its own sample mean x and 
standard deviation s . EM is then used to optimise the 
parameters μ , σ  and α (mean, variance and abundance) of 
each of the new clusters. The total message length of the 
two clusters is recalculated and compared with the message 
length of the one cluster. If the total message length of the 
two clusters is smaller than the message length of one 
cluster, the splitting is assumed to be successful. However 
if the message length of the two clusters is higher than or 
equal to the message length of the one cluster, the single 
cluster is retained and the splitting process is repeated until  
a smaller message length is obtained. In the program, an 
optimisation algorithm has been developed to find the best 
two clusters that yield the largest reduction of message 
length. The next step is to divide one of these clusters into 
two (K=3), and the above process is then repeated until 
increasing extra cluster does not result in additional 
reduction. 

IV.  EFFECT OF THE NUMBER OF CLUSTERS 
To test the effect of the number of clusters, five clusters 

of data points (D’s) were randomly generated (D1, D2,…, 
D5), each with its own mean and standard deviation. 
Initially two, four and five clusters were specified as  input 
parameters to the MML data mining program. 
Subsequently, ACPro was allowed to determine the number 
of clusters itself resulting in seven clusters. The generated 
clusters in each case are shown in Figs. 3(a-d). 

Figs. 3(a) and 3(b) show that underestimation of the 
number of clusters will result in having clusters with a 
combination of D’s. Fig. 3(a) shows that one of the clusters 
represents D1 and D2 and the other D3, D4 and D5. Fig. 
3(b) shows that D1, D2 and D3 are identified correctly, but 
D4 and D5 are identified as one cluster. Fig. 3(d) illustrates 
that the overestimation generated by ACPro, was due to its 
inadequate stopping criterion, producing spurious clusters 
representing the data of higher variances. Fig. 3(c) shows 
that ACPro correctly segments the data into the right five 

clusters given the correct input for the number of clusters. 
This identifies the needs to have an optimal way of 
deciding the correct number of clusters from a given data 
set. 
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Fig. 3: The clusters obtained superimposed on the randomly generated 
data: (a) 2 clusters, (b) 4 clusters, (c) 5 clusters, and (d) 7 clusters 

V.  USING FITNESS FUNCTION TO DETERMINE THE OPTIMAL 
NUMBER OF CLUSTERS 

From information theory, fitness function [9] can be 
used as a criterion to determine the optimum number of 
clusters when mixture modelling method is used for data 
fitting. The higher the fitness function value the better the 
data fit. Here, the fitness function gains maximum 
information from data by maximizing the entropy of its 
groupings. This maximum entropy is fulfilled if the data set 
can be modelled as a mixture of Gaussian distributions  

 
The theoretical maximum entropy Hmax of any distribution 
can be calculated as follows [10].: 

|)cov(|)2log((
2
1)(max i

n
i CeCH π=  (2) 

where  
Ci  a column vector containing the highest 

probabilities of each data point (Pi) belonging to 
cluster i 

cov  is the covariance matrix of Ci 
n number of independent attributes 
 
The individual fitness function efi can be calculated from 
the maximum entropy equation in (2) as follows: 

)(
)(

max i

i
i CH

CH
ef =   (3) 

where 
H(Ci) is the entropy of  Ci  
H(Ci) = i

i
i PP 2log∑−   (4) 

The total fitness function EFT from efi can be calculated 
from the individual fitness function efi given in (3) as: 

||
1

i

k

i
iT efEF ∑α=

=
 (5) 

where 
k is the total number of clusters 
α  is the abundance of the clusters in the whole data. 
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The higher the value of the total fitness function the 
better the data set can be modelled by a mixture of 
Gaussian distributions. Thus, the largest value of the fitness 
function EFT should correspond to the optimum number of 
clusters required for the data. 

A recent study [11] shows that the entropy fitness 
function can determine the right number of clusters to 
correctly identify the anomalies in intrusion detection data. 

When applied to the five clusters randomly generated 
discussed in Section IV, Fig. 4 shows how the fitness 
function increases and reaches maximum when the total 
number of cluster is 5, suggesting that such a method is 
suitable to determine the optimum number of clusters. 
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Fig. 4: Fitness function showing five clusters in random data 
   
However the fitness function may fail to find the 

optimum number of clusters if the input attributes are 
correlated, because the maximum entropy equation in (1) 
assumes that the input attributes are independent variables.   

Because the harmonic data in the four substations 
described in Section II, is correlated through the network 
equation, it is likely that the fitness function will have 
difficulty in determining the optimum number of clusters 
for the harmonic monitoring data. This will be discussed in 
Section VII. 

VI.  PROPOSED METHOD OF DETERMINING OPTIMAL 
NUMBER OF CLUSTERS USING MML 

Section V shows that while fitness function can be used 
to determine the optimum number of clusters; it has 
difficulties when faced with real harmonic data measured at 
several points in the network where the attributes at one 
point are correlated to the same attributes at the other part 
of network [12].  

In our study, we have found that when the difference 
between the message lengths of two consecutive mixture 
models is close to zero and stays close to zero, then it can 
be inferred that the two models are similar.  A series of 
very small values of the difference of the message length of 
two consecutive mixture models can then be used as an 
indicator that an optimum number of clusters has been 
found.  

It has been shown that minimizing the message length 
in an MML technique is equivalent to maximizing the 
posterior probability in Bayesian theory [13]. 

However, we propose to further emphasize this 
difference by calculating the exponential of the change in 
message length for consecutive mixture models which 

represents the probability of the model correctness. If this 
value remains constant at around 1 for a series of 
consecutive mixture models then the first time it reaches 
this value should be determined to be the optimum number 
of clusters. 

When the proposed method is applied to the five 
randomly generated clusters given in Section IV as shown 
in Fig. 5, it is clear that 5 is the optimum number of cluster, 
since going to 6 and 7 clusters resulted in very small 
changes of the exponential of the message difference.  
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Fig.5: Exponential message difference curve with five clusters as optimum 
number 

VII.  SIMULATION RESULTS 
To test the proposed method, a simulation of a 

simplified power system (shown in Fig. 6) is carried out 
using PSCADTM/EMTDC®. Three switches are used to 
represent 8 operating conditions depending of which switch 
is turned ON or OFF. The switching operation and the 
times of switching are shown in Table I. 
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Fig. 6: A single line diagram of a simplified power system model used in 
the  PSCAD Simulation. 
 

Table I: The load switching operation and timing 
Time Cluster 

No on (s) off(s) 
Load_1 
on/off 

Load_2 
on/off 

Load_3 
on/off 

6 0 0 0 0 0 
5 1.25 2.50 0 0 1 
7 2.5 3.75 0 1 0 
1 3.75 5.00 0 1 1 
0 5.00 6.25 1 0 0 
2 6.25 7.5 1 0 1 
3 7.5 8.75 1 1 0 
4 8.75 10.00 1 1 1 

 
Fig. 7(a) shows the rms voltage and current at phase ‘a’ 

at bus 1. Using these two variables as the two input 
attributes to ACPro, Fig. 7(b) shows the exponential of the 
difference of the message length of consecutive mixture 
models. Ten clusters were found to be the optimum 
number. Figure 7(c) shows the 10 clusters (s0,s1,s2, …s9) 
superimposed on the two input attributes. 
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Fig. 7: a) The rms values of voltage and current in phase ‘a’, b) 
Exponential  of the message length difference of consecutive clusters, c) 
clusters superimposed on simulation data   

This is a very interesting result, because we were 
expecting to have only 8 clusters, however because of the 
inductance in the source, transient events can be observed 
in Fig. 7(a) and 7(c) at each switching point, and the MML 
method has identified these transients as two separate 
clusters – at the instant of switching at 1.25, 2.5 and 3.75 
seconds – and another one at the other switching times. 
Looking at Table I, it can be observed that the first cluster 
is associated with load 1 being OFF and the second cluster 
is due to load 1 being ON. Fig. 7(a) shows that there is a 
distinct difference in the voltage and transients at these two 
different groups of switching times, while at the same time 
the similarity in each group of the transient events. 

Applying the fitness function to the same two attributes, 
produces the same optimum number as shown in Fig. 8. 
The highest fitness function is found at 10 clusters. 
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Fig. 8: Fitness function showing the optimum number of cluster 

VIII.  STUDY SYSTEM 
To illustrate the use of the exponential of message 

length difference curve on determining the optimal number 
of clusters for the harmonic monitoring system described in 
section II, the measured fundamental, 5th  and 7th harmonic 
currents from buses 1, 2, 3 and 4 taken on 12 -19 January 
2002 were used as the input attributes to ACPro. The trend 
in the exponential message length difference for 
consecutive pairs of mixture models is shown in Fig. 9.  

Here, the exponential of the message length difference 
does not remain at 1 after it initially approaches it, but 
rather oscillates close to 1. This is because the algorithm 
applies various heuristics in order to avoid any local 
minima that may prevent it from further improving the 
message length. Once the algorithm appears to be trapped 
at the local minima, ACPro tries to split, merge, reclassify 
and swap the data in the clusters found so far to determine 

if doing so it may result in a better (lower) message length. 
This leads to sudden changes to the message length and 
more often than not, the software can generate large 
number of clusters which are generally not optimum.  

This results in the exponential, message length 
difference deviating away from 1 to a lower value, after 
which it gradually returns back to 1. To cater for this, the 
optimum number of clusters is taken as when the 
exponential difference in message length first reaches its 
highest value.  

Using this method, it can be concluded that the 
optimum number of cluster is 16, because this is the first 
time it reaches its highest value close to 1 at 0.9779. 

The clusters are subsequently sorted in ascending order 
based on the mean value of the fundamental current, such 
that cluster s0 is associated with the off peak load period 
and cluster s 15 related to the on-peak load period. 

With the help of the operation engineers, the sixteen 
clusters detected by this exponential method were 
interpreted as given in Table II. It is virtually impossible to 
obtain these 16 unique events by visual observation of the 
waveforms shown in Fig.10. 

The fitness function method is then applied to the same 
data from the harmonic monitoring data as shown in Fig. 
11. The highest fitness function is 5, which suggest the 
optimum number of clusters should be 5. The reduction in 
the number of clusters is attributed to the correlation effects 
between attributes in the measurement data especially 
between the 5th and 7th harmonic currents. It is not unusual 
that the fitness function underestimates the number of 
clusters in correlated data since the fitness function 
equations assume that the attributes are independent [10].  
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Fig. 9: Exponential curve detect sixteen clusters of harmonic data 

IX.  CONCLUSION 
 

The optimal number of clusters in three different types 
of data sets was investigated using a proposed method 
based on the trend of the exponential difference in message 
length between two consecutive mixture models. The 
results of many tests using various two-weekly data sets 
from the harmonic monitoring data over three year period 
show that the suggested method is effective in determining 
the optimum number of clusters in harmonic monitoring 
data from a distribution system in Australia. A commonly 
used fitness function technique is found to produce 
underestimation because of the correlated natures of the 
attributes presented to the MML program. Correct 
determination of the number of system unique operating 
conditions is important in the diagnosis of power quality 
disturbances as well for prediction of these events in the 
future. 
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Fig. 10: Sixteen clusters superimposed on four sites (a) Substation, (b) Residential, (c) Commercial and (d) Industrial 

  
Table II the 16 clusters by exponential method 

Cluster Event 
s0 5th harmonic loads at Substation due to Industrial site 
s1 Off peak  load at Substation site 
s2 Off peak load at commercial site 
s3 Off peak at load Commercial due to Industrial  
s4 Off peak at Industrial site 
s5 Off peak at Substation site 
s6 and s7 Switching on and off  of capacitor at Substation site  
s8  Ramping load at industrial site 
s9 Switch on harmonic load at industrial 
s10 Ramping load at Residential site 
s11  Ramping load at commercial site 
s12  Switching on TV’s at Residential site 
s13 Switching on harmonic loads at industrial and residential 
S14 Ramping load at substation due to commercial 
S15  On peak load at substation due to commercial 
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Fig.11: Fitness function showing only five clusters as optimum number 
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