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Sheikh A. Rezan, Guangqing Zhang and Oleg Ostrovski*

Phase Development in Carbothermal Reduction 
and Nitridation of Ilmenite Concentrates
Abstract: The phase development in the course of carbo-

thermal reduction and nitridation of ilmentie concen-

trates and synthetic rutile was studied in temperature pro-

grammed reduction (623–1873 K) and isothermal reduction 

experiments. Ilmenites and synthetic rutile were reduced 

in a tube reactor with continuously flowing hydrogen- 

nitrogen mixture or pure nitrogen. The rate and extent of 

reduction were monitored by online off-gas analysis. 

Samples reduced to different extent were subjected to 

XRD and SEM/BSE analyses. Pseudorutile and ilmenite 

were the main phases in ilmenite concentrates; rutile was 

the main phase in synthetic rutile. Pseudorutile was first 

converted to ilmenite and titania which occurred at tem-

peratures below 623 K; iron oxides in ilmenite were quickly 

reduced to metallic iron. Titania was reduced to titanium 

suboxides and further to titanium oxycarbonitride. Reduc-

tion of ilmenites and synthetic rutile in hydrogen-nitrogen 

mixture was much faster than in pure nitrogen. The rate of 

conversion of titanium oxides to oxycarbonitride was 

affected by iron content in the ilmenites. The rate of reduc-

tion increased with increasing iron content in ilmenite 

(decreasing grade) when ilmenites were reduced in the 

hydrogen-nitrogen gas mixture, but decreased with 

decreasing ilmenite grade in reduction experiments in 

nitrogen; reduction in nitrogen was the fastest for syn-

thetic rutile. The difference in the reduction behaviour 

was attributed to different chemical compositions and 

morphologies of ilmenites of different grades.
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1  Introduction
Production of titania white pigment and metal titanium 

include processing of titanium minerals to titanium 

 tetrachloride. Chlorination of titanium dioxide is carried 

out almost exclusively by fluidised-bed process, which 

requires high temperature of 1073–1373 K, and uses petro-

leum coke (0.25–0.4 kg/kg TiO2) as the reducing agent. 

Existing technology for titanium tetrachloride production 

requires minerals of high quality, with low impurities 

level, which are processed prior to chlorination to syn-

thetic rutile or TiO2-rich slag.

Titanium oxycarbonitride can be chlorinated at low 

temperatures. Mostert et al. [1, 2] reported that carboni-

tride produced by reduction/nitridation of titanium oxide 

from ilmenite and titanium slag was chlorinated at 473–773 

K. In the low temperature chlorination, impurity-oxides 

do not chlorinate or chlorinate very slowly [3–5]. This 

permits selective chlorination of titanium oxycarboni-

tride, decreases the chlorine consumption and waste gen-

eration, and makes the whole technology of ilmenite pro-

cessing more efficient and environmentally friendly.

This paper examines the carbothermal reduction of 

ilmenite concentrates of different grades in the H2-N2 gas 

mixture and pure N2 with main focus on understanding 

the development of phases and mechanisms of the reduc-

tion process.

2 Experimental
The raw materials investigated in this paper include 

primary and secondary ilmenite concentrates, HYTI 70 

and synthetic rutile; they were supplied by Iluka Resources 

Limited, Western Australia. Their chemical compositions 

were reported previously [6]. Ilmenite concentrates of 

 different grades are distinguished by titanium and iron 

contents: iron concentration was the highest (30.5 mass% 

Fe) and titanium concentration was the lowest (53.9 

mass% TiO2) in the primary ilmenite, while synthetic 

rutile contained only 2.80 mass% total iron and 92.5 

mass% TiO2.
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The XRD analysis showed that the main phases in 

primary ilmenite were ilmenite FeTiO3 and pseudorutile 

Fe2Ti3O9, while secondary and HYTI 70 ilmenites also 

 contained rutile. Rutile (TiO2) was the major phase in the 

synthetic rutile. Chemical analysis showed that synthetic 

rutile contained titanium suboxides equivalent to 12.1 

mass% Ti2O3. Some particles of synthetic rutile also 

 contained metallic iron, which was identified in optical 

images and confirmed by EDS analysis. The particle size 

for all ilmenite concentrates and synthetic rutile was 

in  the range of (50�400) � 10�6 m, with an average size 

of  152 � 10�6, 167 � 10�6, 180 � 10�6 and 181 � 10�6 m, for 

primary, secondary, HYTI 70 ilmenite concentrates and 

synthetic rutile, respectively.

As received ilmenites and synthetic graphite (99.5% 

purity, �20 � 10�6 m in particle size) were wet mixed and 

pressed into cylindrical pellets. The ilmenite-graphite 

mixtures contained extra graphite to the stoichiometric 

amount of carbon needed to reduce titanium oxides to 

titanium carbide, and iron and manganese oxides to 

metallic state. The contents of other oxides were very low, 

and they were considered to be unreducible under given 

experimental conditions. The pellets with a mass of 

about  2 � 10�3 kg were 8 � 10�3 m in diameter and about 

12 � 10�3 m high.

Reduction of ilmenite concentrates and synthetic 

rutile by graphite in H2-N2 and N2 gases were studied in a 

laboratory fixed bed reactor in a vertical tube electric 

furnace in the temperature programmed reduction (TPR) 

and isothermal reduction experiments. Experimental 

set-up and gas system were presented elsewhere [7, 8]. The 

gases used in the investigation were of 99.999% purity. 

The outlet gas was analysed online by an infrared CO/CO2/

CH4 analyser (Advanced Optima AO2020, ABB, Laden-

burgh, Germany).

The reduced pellets were analysed by XRD with 

Philips X’Pert-Pro MPD diffractometer (PANalytical, 

Lelyweg, Netherlands) and CuK� radiation. Oxygen, 

carbon and nitrogen contents in reduced samples were 

determined using LECO analyses (TC-436DR oxygen 

and  nitrogen analyser and CS-444 carbon and sulphur 

analyser).

The extent of reduction was defined as a fraction of 

oxygen in titanium, iron and manganese oxides removed 

in the course of reduction, and was calculated based on 

the gas composition and oxygen and carbon contents of 

reduced samples. The extent of nitridation was defined as 

the fraction of titanium in titanium oxycarbonitride which 

was present as nitride (TiN).

The errors in measurement of oxygen, nitrogen and 

carbon contents by LECO analyses were 2–3 wt%. The rel-

ative errors of calculated extents of reduction and nitrida-

tion were dependent on the contents of oxygen, nitrogen 

and carbon in the reduced samples. In general, the errors 

of calculated extents of reduction and nitridation were 

below 1% and 3% correspondingly.

3 Experimental results
Temperature programmed reduction (TPR) of ilmenite 

concentrates and synthetic rutile in the temperature 

 interval of 623–1823 K and isothermal reduction at 1373–

1573 K were studied in the 50 vol% H2-50 vol% N2 gas 

mixture and in nitrogen with gas flowrate 1.5 L.min�1. The 

experiments were stopped at different temperatures in 

TPR experiments, or reduction time in isothermal experi-

ments; the samples were quenched and then character-

ized to determine the sequence and mechanisms of reduc-

tion of the ilmenite concentrates.

3.1  Temperature programmed reduction in 
the H2-N2 gas mixture

In the temperature programmed reduction (TPR) experi-

ments with primary ilmenite in the H2-N2 gas mixture, the 

molar ratio of carbon to oxygen in titanium, iron and 

 manganese oxides (reducible oxides) was 1.43. The plot of 

oxygen removal rate (mol.kg�1.min�1) is shown in Figure 1. 

In this plot, H2O and CO evolutions are combined to give a 

reduction rate curve. Figure 2 presents H2O evolution in 

TPR of primary ilmenite in carbothermal reduction and in 

the absence of carbon in the H2-N2 gas mixture

Fig. 1: Temperature programmed reduction of primary ilmenite in the 
H2-N2 gas mixture. Temperature was ramped from 623 to 1873 K at 2 
K/min. Samples in the highlighted points were examined by LECO 
and XRD.
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Iron oxides of pseudorutile and ilmenite were pre-

dominantly reduced by hydrogen with evolution of water 

below 1223 K. The first peak on the H2O evolution curve 

corresponded to the reduction of Fe2O3 to wüstite, and the 

second peak was associated with the reduction of wüstite 

to metallic iron. Hydrogen was also involved in the reduc-

tion of titania to titanium sub-oxides, although to much 

less extent in comparison with reduction of iron oxides. In 

the reduction experiment with H2-N2 gas mixture in the 

absence of carbon, water vapor in the off-gas was detected 

at higher temperatures, up to 1518 K. This means that in 

the carbothermal TPR at temperatures above 1223 K, water 

reacted with carbon forming CO and hydrogen.

CO evolution started at 1063 K with formation of two 

peaks, at 1363 K and 1713 K. XRD analysis of samples taken 

at points shown in Figure 1 is presented in Figure 3.

Pseudorutile Fe2Ti3O9 was converted to ilmenite and 

rutile upon heating a sample to 623 K. Metallic iron was 

detected in the sample taken at 813 K. The formation of 

TiO2 and Ti4O7 was observed at 1123 K whereas Ti3O5 

appeared in the sample taken at 1233 K. Ti(O, C, N) was 

detected at 1363 K together with Ti3O5 and metallic iron. No 

titanium suboxide was observed when the sample tem-

perature reached 1533 K; this sample contained Ti(O, C, 

N), iron and excess carbon. Table 1 shows LECO analysis 

and phase composition of primary ilmenite reduced by 

hydrogen in the H2-N2 gas mixture in the absence of carbon 

upon heating to 1873 K. Iron oxides were reduced to 

Fig. 2: H2O evolution during temperature programmed reduction of 
primary ilmenite concentrate in the H2-N2 gas mixture at 623–1873 K.

Fig. 3: XRD patterns of primary ilmenite reduced in the H2-N2 gas 
mixture to the temperatures labeled in Figure 1.

Temperature, K Oxygen, mass% Nitrogen, mass% X, % XN, % Phases

298 24.9 0.0 0.00 0.00 Fe2Ti3O9 � FeTiO3

298–623 24.4 0.0 5.8 0.00 FeTiO3 � FeO � C
623–813 23.9 0.0 11.2 0.00 FeTiO3 � Fe � C
623–1123 21.7 0.0 24.7 0.00 TiO2 � Ti4O7 � FeTiO3 � Fe � C
623–1233 20.9 0.0 28.6 0.00 TiO2 � Ti3O5 � Fe � C
623–1363 9.9 5.5 70.6 60.7 TiOxCyNz ��Ti3O5 � Fe � C
623–1533 4.9 7.2 86.6 68.6 TiO0.27C0.05N0.69 � Fe � C
623–1733 1.3 8.5 96.7 75.4 TiO0.07C0.18N0.75 � Fe � C
623–1873 0.2 9.5 99.5 75.7 TiO0.01C0.23N0.76 � Fe � C
623–1873* 15.2 3.3 64.4 28.4 Ti3O5 � Fe � TiOxN1-x

* Reduced in absence of carbon.

Table 1: LECO analysis and phase composition of primary ilmenite after temperature programmed reduction to different temperatures in the 
H2-N2 gas mixture.
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 metallic iron; titania was converted to Ti3O5 and TiOxN1-x, 

although in a small amount (nitrogen content was 3.3 

mass%).

Secondary ilmenite and HYTI70 exhibited a similar 

reduction behavior to the primary ilmenite.

TPR of synthetic rutile was studied with the carbon to 

oxygen molar ratio of 1.30 and 1.45. In the first case, carbon 

was taken with slight deficit relative to carbon needed for 

conversion of titania to titanium carbide. TPR curves 

obtained in the reduction of synthetic rutile in the H2-N2 

gas mixture are presented in Figure 4. Reduction rate was 

higher for higher carbon to oxygen ratio. H2O evolution 

was observed only at low temperature as a result of 

removal of absorbed water. Iron in synthetic rutile was in 

the metallic state; reduction of rutile to titanium sub- 

oxides at temperatures below 1123 K was insignificant. CO 

evolution started at 1028 K. The peak of CO evolution was 

observed at 1453 K for C:O ratio 1.45 and 1543 K for C:O 

ratio 1.30. CO evolution peak was higher for C:O 	 1.45 

(oxygen removal rate was 0.39 mol.kg�1.min�1) in compari-

son with C:O 	 1.30 (0.28 mol.kg�1.min�1). XRD analysis of 

samples of synthetic rutile identified in Figure 4 is shown 

in Figure 5.

LECO analysis and phase composition of reduced syn-

thetic rutile are presented in Table 2. The change of carbon 

to oxygen molar ratio had a dramatic effect on the extent 

of nitridation (XN); it increased from 40% to 76% when 

Fig. 5: XRD patterns of synthetic rutile in the progress of 
temperature programmed reduction in the H2-N2 gas mixture to the 
temperatures labeled in Figure 3.

Temperature, K Oxygen, mass% Nitrogen, mass% X, % XN, % Phases

298 27.7 0.0 0.0 0.0 TiO2 � Ti3O5

623–813 27.5 0.0 1.6 0.0 Fe � Ti3O5 � TiO2 � C
623–1193 27.4 0.0 4.4 0.0 Fe � TiO2 � Ti3O5 � C
623–1233 26.7 0.0 9.7 0.0 Fe � TiO2 � Ti3O5 � C
623–1453 15.6 5.9 63.7 42.0 Fe � TiOxCyNz � Ti3O5 � C
623–1533 2.4 14.3 94.6 85.9 Fe � TiO0.11C0.03N0.86 � C
623–1698 0.5 14.2 98.9 78.9 Fe � TiO0.02C0.04N0.94 � C
623–1873 0.2 14.1 99.6 75.6 Fe � TiO0.01C0.06N0.93 � C
623–1873
(C:O 	 1.30)

2.4 8.2 95.4 39.9 Fe � TiO0.09C0.51N0.40

Table 2: LECO analysis and phase composition of synthetic rutile after temperature programmed reduction to different temperatures in the 
H2-N2 gas mixture (C:O 	 1.45)

Fig. 4: Temperature programmed reduction of synthetic rutile in the 
H2-N2 gas mixture. Temperature was ramped from 623 to 1873 K at 
2 K/min. Samples in the highlighted points were examined by LECO 
and XRD.
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carbon to oxygen ratio increased from 1.30 to 1.45. This 

was similar to the reduction of pure rutile. Ti(O, C, N) 

phase was detected in a sample heated to 1453 K whereas 

Ti(O, C, N) phase in the reduction of pure rutile appeared 

above 1533 K. As the temperature increased, extent of 

reduction and nitridation increased.

3.2  Temperature programmed reduction in 
nitrogen

Reduction curves obtained in the TPR of ilmenite concen-

trates and synthetic rutile in nitrogen are given in Figure 6. 

Contrary to the results obtained in the TPR experiments in 

the H2-N2 gas mixture, reduction of synthetic rutile was the 

fastest, while the reduction of primary ilmenite was the 

slowest. Two distinct CO peaks were observed, the first 

primary peak at 1523 K, and the second at 1773 K.

XRD analysis of samples obtained in the TPR in nitro-

gen showed that reduction of ilmenite concentrates in 

nitrogen in the TPR experiments was incomplete. Tita-

nium suboxides were not observed in the XRD spectra 

of  synthetic rutile reduced with excess carbon. Table 3 

presents LECO analysis and phase composition of these 

samples. Extent of nitridation (XN) decreased while extent 

of reduction (X) increased with increasing grade of ilmen-

ite. The highest X and XN values were obtained for syn-

thetic rutile. XRD analysis detected Ti3O5 in primary, sec-

ondary and HYTI70 ilmenite concentrates at 1873 K.

3.3  Isothermal reduction of ilmenite 
concentrates

Phase development was studied in the progress of reduc-

tion of ilmenite concentrates in the H2-N2 gas mixture (50 

vol% H2) at 1373 K and in nitrogen at 1573 K. XRD spectra 

of samples of primary ilmenite in the progress of reduc-

tion in the H2-N2 gas mixture are presented in Figure 7. 

LECO analysis and phase composition of these samples 

are given in Table 4. Reduction of iron oxides was fast; the 

XRD spectrum of the sample reduced for 13 minutes iden-

tified Ti3O5, Ti5O9, Ti4O7 and metallic iron. Titanium oxy-

carbonitride was detected in the reduced sample after 

17  min reaction. Ti5O9, Ti4O7 disappeared from the XRD 

spectra after 20 min reduction; while Ti3O5 was still 

detected in the sample reduced for 60 min. With the 

 extension of reaction to 100 min and further, the phases 

detected by XRD were titanium oxycarbonitride, iron and 

excess graphite. Extent of reduction and nitridation 

increased with time, while concentration of TiC in the oxy-

carbonitride decreased.

Reduction of secondary and HYTI70 ilmenite in the 

H2-N2 gas mixture and phase development at 1373 K were 

similar to those observed for the primary ilmenite.

Phase development in the progress of reduction of 

primary ilmenite in nitrogen at 1573 K is illustrated by the 

XRD spectra in Figure 8; results of LECO analysis and 

phase composition are given in Table 5. The reduction in 

nitrogen was much slower compared to the reduction 

in  the H2-N2 gas mixture. Titanium oxycarbonitride was 

Fig. 6: Temperature programmed reduction of ilmenite concentrates 
and synthetic rutile in N2. The temperature was ramped from 673 to 
1873 K at 2 K/min.

Concentrate Oxygen, mass% Nitrogen, mass% X, % XN, % Phases

Primary ilmenite 11.5 5.04 69.6 49.4 Fe � Ti3O5 � TiOxCyNz � C
Secondary ilmenite 10.6 5.2 75.7 46.1 Fe � Ti3O5 � TiOxCyNz � C
HYTI70 10.3 5.3 79.7 39.2 Fe � Ti3O5 � TiOxCyNz � C
Synthetic rutile
(C:O 	 1.30 )

5.6 14.0 85.5 93.7 Ti3O5 � TiOxCyNz � C

Synthetic rutile
(C:O 	 1.45)

1.6 14.7 96.2 88.1 TiO0.08C0.04N0.88 � Fe � C

Table 3: LECO analysis and phase composition of ilmenite concentrates and synthetic rutile subjected to temperature programmed reduction 
in nitrogen.
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Time, min. Oxygen, mass% Nitrogen, mass% X, % XN, % Phases

0 25.1 0.0 0.0 0.0 FeTiO3 � Fe2Ti3O9 
13 21.2 0.0 20.9 0.0 Ti3O5 � Ti5O9 � Ti4O7 � Fe � C
17 15.0 0.0 50.8 0.0 Ti3O5 ��Ti4O7 � TiOxCyNz � Fe � C
20 13.3 0.3 57.5 4.1 TiOxCyNz � Ti3O5 � Fe � C
40 10.8 3.1 66.5 36.2 TiOxCyNz � Ti3O5 � Fe � C
60 7.2 4.4 79.7 47.3 TiOxCyNz � Ti3O5 � Fe � C

100 5.6 6.5 85.2 67.1 Ti0.30C0.03N0.67 � Fe � C
140 5.0 7.2 87.3 72.9 Ti0.25C0.02N0.73 � Fe � C
180 4.9 8.1 88.6 76.5 Ti0.23C0.01N0.76 � Fe � C

Table 4: LECO analysis and phase composition of primary ilmenite in the progress of reduction in the H2-N2 gas mixture at 1373 K.

Time, min Oxygen, mass% Nitrogen, mass% X, % XN, % Phases

0 25.1 0.00 0.0 0.00 FeTiO3 � Fe2Ti3O9 � C
20 21.5 0.00 22.8 0.00 Fe � Ti3O5 � C
40 18.8 0.2 41.5 1.8 Fe � TiOxCyNz � Ti3O5 � C
52 17.1 2.0 49.1 21.9 Fe � TiOxCyNz � Ti3O5 � C

180 10.3 3.9 68.9 43.6 Fe � TiOxCyNz � Ti3O5� C

Table 5: LECO analysis and phase composition of primary ilmenite in the progress of reduction in nitrogen at 1573 K.

Fig. 7: XRD patterns of primary ilmenite in the progress of reduction 
in the H2-N2 gas mixture at 1373 K.

Fig. 8: XRD patterns of primary ilmenite in the progress of reduction 
in nitrogen at 1573 K.
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detected by XRD analysis after 40 min reduction; conver-

sion of Ti3O5 to Ti(O, C, N) in nitrogen at 1573 K was not 

completed in 3 hours.

4 Discussion

The major phases in primary ilmenite were ilmenite FeTiO3 

and pseudorutile Fe2Ti3O9, while secondary and HYTI70 

ilmenites also contained rutile. Titania was the major 

phase in the synthetic rutile. Reduction of ilmenites 

started with conversion of pseudorutile into ilmenite 

which was further reduced to titania and metallic iron [6]. 

Further reduction of titania followed the same sequence 

as pure rutile [9, 10].

Carbothermal reduction of pseudorutile and ilmenite 

in nitrogen proceeded through the gas phase by reaction 

with CO with formation of CO2 as presented by Reactions 
(1) and (2).

Fe2Ti3O9 � CO 
 2FeTiO3 � TiO2 � CO2 (1)

FeTiO3 � CO 
 Fe � TiO2 � CO2 (2)

CO was regenerated via Boudouard Reaction (3).

CO2 � C 	 2CO (3)

When ilmenite was reduced in the H2-N2 gas mixture, iron 

oxides in pseudorutile and ilmenite were reduced by 

hydrogen (Reactions (4) and (5)):

Fe2Ti3O9 � H2 
 2FeTiO3 � TiO2 � H2O (4)

FeTiO3 � H2 
 Fe � TiO2 � H2O (5)

Conversion of TiO2 to titanium oxycarbonitride followed 

the path of conversion of rutile presented elsewhere [9, 

10]. Reduction of iron oxide to metallic iron and conver-

sion of titania to titanium oxycabonitride in the H2-N2 gas 

mixture was faster than in nitrogen. The role of gas atmo-

sphere in carbothermal reduction of rutile was discussed 

previously [10]. Progress of reduction of ilmenites follows 

the sequence:

Fe2Ti3O9 � FeTiO3 
 FeTiO3 � TiO2 
 Fe � TiO2 


 Fe � Ti3O5 
 Fe � TiOxCyNz (6)

Reduction behaviour of ilmenites of different grades was 

similar to that observed in the synthesis of titanium oxy-

carbide by carbothermal reduction of ilmenites in hydro-

gen and helium [11]. The reduction rate increased with 

decreasing ilmenite grade in the reduction in the H2 or in 

H2-N2 gas mixture, and reduction rate decreased with 

decreasing ilmenite grade when reduction was in inert gas 

atmosphere or in nitrogen. Difference in the reduction of 

ilmenites of different grades was attributed to differences 

in iron content and morphology.

Optical and SEM analyses showed [11] that ilmenite 

concentrate of a higher grade had a higher porosity as a 

result of ilmenite weathering. The degree of weathering 

and particle porosity were the highest for synthetic rutile 

and lowest for primary ilmenite.

The morphology of ilmenite concentrates changed in 

the process of reduction; this change depended on the 

concentrate grade and the gas atmosphere. Reduction of 

iron oxides from ilmenite concentrates by hydrogen was 

very fast; fine iron grains were formed and a porous struc-

ture within the titanium oxide matrix was developed. 

Reduction of ilmenites in inert gases and nitrogen resulted 

in formation of coarse grains of metallic iron with a denser 

particle structure in comparison with reduction in H2 or 

H2-N2 gases. Originally most dense structure of primary 

ilmenite with the highest concentration of iron oxides, 

after reduction of iron oxides by hydrogen converted to 

the least dense structure. This positively affected the rate 

of conversion of titania to oxycarbide/oxycarbonitride. 

Reduction of synthetic rutile with a small amount of iron 

oxides was not affected. The higher was a content of iron 

oxide in the ilmenite concentrate, the higher was the rate 

of reduction in hydrogen.

Reduction of iron oxides from ilmenites in inert gases 

or nitrogen was relatively slow and proceeded at higher 

temperatures, producing coarse iron grains. In this case, 

the change in the particle structure was not significant; 

the original particle porosity was the major factor defining 

the conversion of ilmenite to iron and titanium  oxycarbide/

oxycarbonitride. This conversion was the fastest in the 

case of synthetic rutile which had the highest porosity.

5 Conclusions

Phase development in carbothermal reduction and nitri-

dation of ilmenite concentrates and synthetic rutile was 

studied in temperature programmed reduction and iso-

thermal experiments in the H2-N2 gas mixture and in 

 nitrogen. Ilmenite concentrates and synthetic rutile were 

reduced to metallic iron and titanium oxycarbonitride. 

The rate and extent of reduction and nitridation were 
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affected by temperature, gas atmosphere, composition of 

the ilmenite concentrates (concentration of iron and tita-

nium oxides) and concentrate morphology.

Carbothermal reduction of all titanium sources was 

faster in the H2-N2 gas mixture than in nitrogen. Rate and 

extent of conversion of titanium oxides to Ti(O, C, N) 

increased with increasing temperature.

Reduction of ilmenite concentrates in the H2-N2 gas 

mixture started with fast reduction of iron oxides in pseu-

dorutile and ilmenite to metallic iron by hydrogen.

Progress of reduction of ilmenites followed the 

sequence:

Fe2Ti3O9 � FeTiO3 
 FeTiO3 � TiO2 
 Fe � TiO2 


 Fe � Ti3O5 
 Fe � TiOxCyNz

In the temperature programmed and isothermal experi-

ments in the H2-N2 gas mixture, reduction rate increased 

with decreasing ilmenite grade; reduction of primary 

ilmenite was the fastest, while reduction of synthetic 

rutile was the slowest. The rate of reduction in nitrogen 

increased with increasing ilmenite grade; reduction of 

synthetic rutile was the fastest, while the reduction of 

primary ilmenite was the slowest. Difference in the 

 reduction behaviour of ilmenites of different grades was 

attributed to differences in iron content in the ilmenite 

concentrate and concentrate morphology, which changed 

in the progress of reduction.
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