

University of Wollongong [Research Online](https://ro.uow.edu.au/)

[Faculty of Engineering - Papers \(Archive\)](https://ro.uow.edu.au/engpapers) [Faculty of Engineering and Information](https://ro.uow.edu.au/eis) **Sciences**

1-1-2012

Synthesis of uniform TiO2@carbon composite nanofibers as anode for lithium ion batteries with enhanced electrochemical performance

Zunxian Yang Fuzhou University

Guodong Du University of Wollongong, gd616@uow.edu.au

Qing Meng University of Wollongong, qm982@uowmail.edu.au

Zaiping Guo University of Wollongong, zguo@uow.edu.au

Xuebin Yu Fudan University, xyu@uow.edu.au

See next page for additional authors

Follow this and additional works at: [https://ro.uow.edu.au/engpapers](https://ro.uow.edu.au/engpapers?utm_source=ro.uow.edu.au%2Fengpapers%2F5221&utm_medium=PDF&utm_campaign=PDFCoverPages)

Part of the [Engineering Commons](http://network.bepress.com/hgg/discipline/217?utm_source=ro.uow.edu.au%2Fengpapers%2F5221&utm_medium=PDF&utm_campaign=PDFCoverPages) https://ro.uow.edu.au/engpapers/5221

Recommended Citation

Yang, Zunxian; Du, Guodong; Meng, Qing; Guo, Zaiping; Yu, Xuebin; Chen, Zhixin; Guo, Tailiang; and Zeng, Rong: Synthesis of uniform TiO2@carbon composite nanofibers as anode for lithium ion batteries with enhanced electrochemical performance 2012, 5848-5854. https://ro.uow.edu.au/engpapers/5221

Research Online is the open access institutional repository for the University of Wollongong. For further information contact the UOW Library: research-pubs@uow.edu.au

Authors

Zunxian Yang, Guodong Du, Qing Meng, Zaiping Guo, Xuebin Yu, Zhixin Chen, Tailiang Guo, and Rong Zeng

Journal of [Dynamic Article Links](http://dx.doi.org/10.1039/c2jm14852h) Materials Chemistry

Cite this: *J. Mater. Chem.*, 2012, **22**, 5848

www.rsc.org/materials **PAPER**

Synthesis of uniform $TiO₂(a)$ carbon composite nanofibers as anode for lithium ion batteries with enhanced electrochemical performance†

Zunxian Yang,^{*a} Guodong Du,^b Qing Meng,^c Zaiping Guo,^{*bc} Xuebin Yu,^{*d} Zhixin Chen,^c Tailiang Guo^a and Rong \mathbf{Zeng}^b

Received 28th September 2011, Accepted 9th January 2012 DOI: 10.1039/c2jm14852h

Very large area, uniform $TiO₂(Qcarbon composite nanofibers were easily prepared by thermal pyrolysis)$ and oxidization of electrospun titanium(IV) isopropoxide/polyacrylonitrile (PAN) nanofibers in argon. The composite nanostructures exhibit the unique feature of having $TiO₂$ nanocrystals encapsulated inside a porous carbon matrix. The unique orderly-bonded nanostructure, porous characteristics, and highly conductive carbon matrix favour excellent electrochemical performance of the $TiO₂/Qc$ carbon nanofiber electrode. The TiO₂@carbon hybrid nanofibers exhibited highly reversible capacity of 206 mAh g⁻¹ up to 100 cycles at current density of 30 mA g⁻¹ and excellent cycling stability, indicating that the composite is a promising anode candidate for Li-ion batteries. **Dournal of**
 Materials Chemistry

Circ rise, *i. Motet, Chem, 2012, 22, 5843*

www.recorg/materials
 Synthesis of uniform TiO₂@carbon composite nanofibers as anode for lithium

ion batteries with enhanced electroch

Introduction

Titanium oxide, as one of the most studied semiconducting metal oxides, has attracted special attention due to its wide potential application in many fields, such as photocatalysis, $1-7$ sensors,^{8,9} solar cells,^{10–13} lithium-ion batteries,^{14–17} etc. Nevertheless, especially in lithium-ion battery (LIB) applications, of the four common polymorphs of $TiO₂$: rutile, anatase, brookite, and $TiO₂(B)$,¹⁸ anatase $TiO₂$ has been investigated longest as a prospective electrode material because of its special crystal structure with a tetragonal body-centered space group $I4_1/Imd$, and the TiO₆ octahedra sharing two adjacent edges with two other octahedra.^{19,20} This special three-dimensional (3D) architecture contains many open channels which facilitate the insertion/extraction of Li^+ during discharge/ charge.

Recently, a variety of one-dimensional $(1D)$ TiO₂ nanomaterials, such as nanotubes, $16,18$ nanowires, $21,22$ and nanorods,²³ have been prepared and used as electrode materials in lithium ion batteries because of the shorter path for Li+

transport and the higher surface area, which result in more side reactions with the electrolyte¹⁵ than for bulk TiO₂. However, there are still some obstacles to their practical application in lithium ion batteries, mainly owing to the low lithium ion and electronic conductivity of 1D TiO₂ nanomaterials $(\sim 10^{-12}$ S cm⁻¹).²⁴ Therefore, various strategies to improve the lithium ion and electronic conductivity of $TiO₂$ nanomaterials, such as decoration with high conductivity materials, e.g., Ag nanoparticles,¹⁸ or dispersion of such nanoparticles into the carbon matrix,^{24,25} have been reported. Furthermore, a way to improve the electrochemical lithium storage properties of 1D $TiO₂$ nanomaterials has been suggested, which is to enhance the porosity and surface area by forming mesopores or nanocavities,²⁶ and is possible due to the much shorter paths for $Li⁺$ transport and larger interior surface area. Until now, there have been many challenges to synthesize $1D TiO₂$ nanomaterials with mesopores or nanocavities.

Electrospinning is a simple method of forming continuous 1D nanofibers under electrostatic force of the charges on the surface of a liquid droplet in a sufficiently high electric field, which is applied between the capillary nozzle and the metal collector.^{27,28} Herein, a relatively simple and low-cost approach to prepare $TiO₂(Q_carbon composite nanofibers by a combination of elec$ trospinning and subsequent thermal treatments is presented. As well as combining the advantages of $TiO₂$ nanoparticles and carbon matrices, these $TiO₂(Q_c)$ carbon nanofibers have the unique advantages of porosity, one-dimensional nanostructure, and large surface-to-volume ratio. The $TiO₂(a)$ carbon nanofibers have been investigated in a preliminary way for their potential use as an anode material for lithium ion batteries and for this application have exhibited excellent cycling stability and rate capability.

^aNational & Local United Engineering Laboratory of Flat Panel Display Technology, Fuzhou University, Fuzhou, 350002, P. R. China. E-mail: yangzunxian@hotmail.com; Fax: +61 2 4221 5731; Tel: +61 2 4221 5225 ^bInstitute for Superconducting & Electronic Materials, University of Wollongong, NSW 2522, Australia. E-mail: zguo@uow.edu.au; Fax: +61 2 4221 5731; Tel: +61 2 4221 5225

^cSchool of Mechanical, Materials & Mechatronics Engineering, University of Wollongong, NSW 2522, Australia. E-mail: zguo@uow.edu.au; Fax: +61 2 4221 5731; Tel: +61 2 4221 5225

d Department of Materials Science, Fudan University, Shanghai, 200433, P. R. China. E-mail: yuxuebin@fudan.edu.cn; Fax: +61 2 4221 5731; Tel: +61 2 4221 5225

[†] Electronic supplementary information (ESI) available. See DOI: 10.1039/c2jm14852h

Experimental

Synthesis of $TiO₂(Q_c)$ carbon composite nanofibers

The procedures for preparing the electrospinning solution are similar to those described previously.²⁹⁻³¹ Simply, 0.7 g polyacrylonitrile (PAN, $MW = 150000$, Aldrich) was dissolved in 5.3 g N,N-dimethylformamide (DMF, 99.8%, Aldrich) at 80 °C with vigorous stirring for 2 h (solution No. 1). Then, 1.20 g titanium(IV) isopropoxide (97%, Aldrich) was mixed with 2.8 g anhydrous ethanol (solution No. 2). Afterwards, the No. 2 solution was added dropwise to the No. 1 solution at 80 \degree C with vigorous stirring. The mixed solution was then stirred at room temperature for 3 h. The polymer solution was transferred into a 10 ml syringe with a capillary tip (0.8 mm diameter). For spinning, the set-up was similar to that described previously.6,27,29–33 Typically, the collector was placed 9.5 cm from the spinneret to collect the nanofibers. A high voltage of 13.3 kV was applied between the spinneret and the collector by a directcurrent power supply (DW-P303-5ACCD, Tianjin Dongwen High Voltage Power Supply Co., China.). The solution was pushed out of the spinneret by a syringe pump (TS2-60, Baoding Lange Constant Flux Pump Co., China) at the rate of 0.3 ml h^{-1} . The collector was kept at 180 \degree C during electrospinning to evaporate the solvent. After spinning for more than 20 h, the nanofiber films were easily peeled off. The electrospun nanofibers were slowly decarbonized at 500 \degree C for 2 h in an air environment (heating rate: ≤ 1 °C min⁻¹), or carbonized at 500 °C for 2 h in argon atmosphere (heating rate: ≤ 1 °C min⁻¹), respectively. Finally, both a white film $(TiO₂)$ nanofibers) and a black film (TiO₂@carbon nanofibers) were obtained. **Experimental**
 Synthesis of TiO-gieanbon empedie nanelbers
 Synthesis of TiO-gieanbon empedie nanelbers
 Now local and the synthesis of Wollongong on 2012 Published and the synthesis of Wollongong on the procedure f

Materials characterization

Thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) of the PAN and the samples were carried out with a TGA/DSC1 type instrument (Mettler Toledo, Switzerland) at a heating rate of 10 °C min⁻¹ from 25 to 1000 °C in air. The morphology was evaluated using a JEOL 7500FA field emission scanning electron microscope (FE-SEM, JEOL, Tokyo, Japan). Transmission electron microscope (TEM) investigations were performed using a JEOL 2011F analytical electron microscope (JEOL, Tokyo, Japan) operating at 200 kV. The crystal structures of the TiO₂ nanofibers and TiO₂@carbon nanofibers were investigated by X-ray diffraction (XRD) phase qualitative analysis (MMA, GBC, Australia) with Cu-Ka radiation at 40 kV and 25 mA and 2 θ range from 5° to 90° (0.02° resolution). The composition of the fibers was characterized using TGA and EDX analysis. Energy dispersive X-ray spectroscopy (EDX) analysis was carried out on the JEOL 7500FA analytical electron microscope as well. X-ray photoelectron spectroscopy (XPS) experiments were carried out on a VG Scientific ESCALAB 220IXL instrument using aluminum $K\alpha$ X-ray radiation during XPS analysis.

Electrochemical characterization

Electrochemical properties were measured on electrodes prepared by compressing a mixture of as-prepared $TiO₂@carbon$ hybrid nanofibers or $TiO₂$ nanofibers, carbon black (Super P,

MMM, Belgium), and poly(vinyl difluoride) (PVDF) binder in a weight ratio of 70 : 15 : 15, mixing with suitable amount of N-methyl-2-pyrrolidone (NMP), and pasting the slurry on copper foil. Pure lithium metal foil was used as the counter and reference electrode. The electrolyte was LiPF_6 (1 M) in a mixture of ethylene carbonate (EC) and dimethyl carbonate (DMC) (1 : 1 v/v; Merck KgaA, Germany). Coin cells were assembled in a high-purity argon-filled glove box (Mbraun, Unilab, Germany). The galvanostatic method was used to measure the electrochemical capacity of the electrodes at room temperature with a LAND-CT2001A instrument and a charge-discharge current density of 30 mA g^{-1} . Additionally, the rate capability of electrode was investigated using a LAND-CT2001A instrument at different charge-discharge current densities of 25 mA g^{-1} , $125 \text{ mA } g^{-1}$, $250 \text{ mA } g^{-1}$, $500 \text{ mA } g^{-1}$, $1250 \text{ mA } g^{-1}$, respectively. The cut-off potentials of the $TiO₂(a)$ carbon hybrid nanofiber electrode for charge and discharge were set at 3.0 and 1.0 V versus Li⁺/Li, respectively. Cyclic voltammetry (CV) was performed on a ChI660B electrochemical workstation.

Results and discussion

Fig. 1 shows the X-ray diffraction patterns of the as-prepared $TiO₂$ nanofibers and $TiO₂(a)$ carbon nanofibers. As shown in Fig. 1, the X-ray diffraction (XRD) patterns of both samples reveal that the $TiO₂$ both in the pure $TiO₂$ nanofibers and in the TiO₂@carbon hybrid nanofibers is anatase TiO₂ with a tetragonal structure (JCPDS 73-1764), although much sharper peaks appear in the $TiO₂$ nanofiber sample (Fig. 1(a)) than in the TiO₂@carbon nanofiber sample (Fig. 1(b)), which is possibly owing to the relatively smaller crystal size in the composite and the interference of the high carbon content in the $TiO₂(Qcarbon)$ nanofibers according to the TGA results (Fig. S1(a)†). The anatase TiO₂ belongs to space group $I4_1$ /amd (141) with lattice parameters $a = 3.776$ Å and $c = 9.468$ Å. The heat treatment of titanium composite/PAN nanofibers (TCPNFs) at 500 °C in air or in argon successfully realized the conversion from TCPNFs into pure polycrystalline anatase $TiO₂$ phase (Fig. S1(b)†, further confirmed by HRTEM image and SAED pattern below) and anatase $TiO₂(Qcarbon composite nanofibers, respectively.$

Fig. 2 and Fig. S2† show field-emission scanning electron microscope (FE-SEM) images of the as-collected titanium

Fig. 1 X-ray diffraction patterns of as-prepared $TiO₂$ nanofibers and $TiO₂(Qcarbon nanofibers: (a) TiO₂ nanofibers with tetragonal structure)$ (JCPDS 73-1764), (b) $TiO₂(Qcarbon nanofibers with same structure)$ (JCPDS 73-1764), as indexed in the patterns.

Fig. 2 FE-SEM images of as-collected titanium composite/PAN nanofibers, TiO₂@carbon nanofibers and TiO₂ nanofibers: (a) titanium composite/PAN nanofibers, (b) as-pyrolyzed $TiO₂(Qcarbon nanofibers)$ and corresponding high magnification image (inset), (c) $TiO₂$ nanofibers and corresponding high magnification image (inset), (d) single $TiO₂(a)$ carbon composite nanofibers with porous surface structure.

composite/PAN nanofibers, $TiO₂(Qcarbon nanofibers, and TiO₂)$ nanofibers. As depicted in Fig. 2(a), the FE-SEM images clearly reveal an overview of the uniform titanium composite/PAN nanofibers with diameters of 100–150 nm and lengths extending to several tens of millimetres. After calcination in argon at 500 $^{\circ}$ C for 2 h, the nanofibrous morphology is maintained (see Fig. $S2(a-b)$ [†], Fig. 2(a), Fig. 2(b), and insets), and the titanium composite/PAN nanofibers have been transformed to fully carbonized TiO₂@carbon nanofibers with diameters of 80– 120 nm. These consist of orderly bonded anatase $TiO₂$ nanocrystals less than 10 nm in size, encapsulated in carbon matrices, which agrees well with the caculated average grain diameter $(\sim 2.3 \text{ nm})$ according to Debye–Scherrer formula from the (101) plane XRD of TiO₂. However, when calcined in air at 500 °C for 2 h, as shown in Fig. $S2(c-d)$ [†], Fig. 2(c–d), and insets, the ascollected titanium composite/PAN nanofibers were transformed to uniform $TiO₂$ nanofibers with diameters of 60–100 nm, consisting of orderly bonded pure anatase $TiO₂$ nanoparticles less than 15 nm in size, which is in good agreement with the caculated average grain diameter $(\sim 11.6 \text{ nm})$ according to Debye–Scherrer formula from the (101) plane XRD of $TiO₂$. Thus, to some extent, the $TiO₂(Qcarbon nanofibers can be viewed as an inter$ mediate product in the preparation of pure $TiO₂$ nanofibers, but with carbon filling between the $TiO₂$ particles. In addition, many holes/voids were left between the bonded $TiO₂(Q_carbon or TiO₂)$ particles in the nanofibers, arising from the pyrolysis of PAN. Furthermore, some mesoporosities between nanofibers are shown Fig. S2†, Fig. 2(b), and Fig. 2(b–d) and insets. The holes/ voids and mesoporosities formed in these nanofibers ensure a high electrode-electrolyte contact area in the hybrid nanofibers, so a large amount of lithium ions can be accommodated without any remarkable degradation of the structure during charge/ discharge cycling, which is favorable to both lithium ion storage and Li⁺ diffusion.

Transmission electron microscope (TEM) observations of the pyrolyzed TiO₂@carbon and pure TiO₂ nanofibers provides worthwhile structural and chemical information (Fig. 3). The high resolution TEM (HRTEM) images (Fig. 3(a)) clarify the crystal structure, as interplanar with spacing of approximately 0.36 nm between neighboring (101) planes of tetragonal $TiO₂$, as these planes were parallel to the electron beam. Only a few crystals have revealed clear lattice fringes in HRTEM, while other areas without lattice fringes are present. These areas could be carbon-filled regions or crystals whose orientation are not parallel to the electron beam. The crystal size of $TiO₂$ in these nanofibers is about $5-10$ nm. Fig. 3(b) and Fig. S3(a)† demonstrate that $TiO₂(Q_carbon nanofibers are composed of many$ nanoparticles bonded together to form a fibrous morphology, this is further confirmed by the corresponding selected area electronic diffraction (SAED) pattern (Fig. 3(b) inset) which reveals the fine microstructure of the $TiO₂(a)$ carbon nanofibers. The ring-shaped SAED pattern indicates that $TiO₂$ encapsulated in the $TiO₂(a)$ carbon nanofibers is in polycrystalline form, similar to that reported previously.³⁴ The obviously spotted diffraction rings from inside to outside can be indexed to the (101), (004), and (200) planes of anatase $TiO₂$, respectively (Fig. 3(b) inset). When calcined in air, the pure $TiO₂$ nanofiber sample in Fig. 3(c) displays the same crystal structure with the same interplanar spacing of approximately 0.36 nm between neighboring (101) planes of tetragonal TiO₂, but with a crystal size of \sim 10–15 nm, slightly larger than the $TiO₂(Q_c)$ carbon hybrid nanofibers, possibly due to carbon interference with the growth of $TiO₂$ crystals in the hybrid nanofibers. Fig. 3(d) and Fig. S3(b)†display a similar polycrystalline form of these $TiO₂$ nanofibers, which is further confirmed by the corresponding selected-area electronic diffraction (SAED) pattern (Fig. 3(d) inset), but only in that there are more obvious spotted diffraction rings. The rings from inside to outside can be indexed to the (101), (004), (200), and (105) planes of anatase $TiO₂$, respectively, which is in good agreement with the XRD results described above. The $TiO₂(Q_c)$ carbon nanofibers **Download by University of University of University of University of University of The Comparison Consumer 2012 on the state of University of Wolf and the Comparison Consumer 2012 on the Comparison Consumer 2012 on the Co**

Fig. 3 (a) HRTEM image of a section of a TiO₂@carbon composite nanofiber, (b) low-magnification TEM image and SAED pattern (inset) of TiO₂@carbon composite nanofibers, (c) HRTEM image of a section of a TiO₂ nanofiber, (d) low-magnification TEM image and SAED pattern (inset) of $TiO₂$ nanofibers.

include mainly the elements Ti, O, and C (Fig. S3(c)†), while the pure $TiO₂$ nanofibers are composed of the elements Ti and O (Fig. S3(d)†). The carbon content in the TiO₂@carbon nanofibers is 34.48% according to the EDX spectra (Fig. S3(c)†), agreeing well with the TGA results (Fig. S1†).

X-ray photoelectron spectroscopy (XPS) analysis of the $TiO₂(a)$ carbon and pure $TiO₂$ nanofibers was conducted from 0 to 1100 eV. Obvious C1s, O1s, and Ti2p peaks were detected, and their high-resolution spectra are shown in Fig. $4(a-e)$, respectively. The Ti2p spectrum (Fig. 4(a)) for the $TiO₂(@carbon)$ hybrid nanofibers comprises two symmetrical peaks with binding energies (BEs) of 458.90 eV and 464.65 eV, which are attributable to Ti2p3/2 and Ti2p1/2, respectively, and are slightly larger than those of the pure $TiO₂$ nanofiber sample (Fig. 4(b)). The separation between these two peaks is 5.75 eV, slightly larger than the energy splitting reported for $TiO₂^{35,36}$ and that of the pure $TiO₂$ nanofibers. The cause is possibly that encapsulation of the $TiO₂$ in the carbon matrix influences the BEs of Ti2p electrons. As shown in Fig. 4(c), the main portion of the response could come from $TiO₂$, as evidenced by the O1s binding energy (BE) peak at \sim 530.29 eV (Fig. 4(c)) and 529.91 eV(Fig. 4(d)),³⁷ while the peak at 531.61 eV (Fig. 4(c)) and 531.26 eV (Fig. 4(d)) may be due to the OH $⁻$ radical, adsorbed oxygen, or carbonyl.^{35,38} As for the</sup> high BE peak at 532.89 eV (Fig. 4(c)) and 532.23 eV (Fig. 4(d)), it possibly originates from absorbed H_2O . Similarly, encapsulation of $TiO₂$ in the carbon matrix possibly leads to the three fitted O1s peaks that are slightly larger for the $TiO₂(Q_c)$ carbon nanofibers than for the pure $TiO₂$ nanofibers. According to Fig. 4(e), the high resolution spectrum of the C1s region of as-prepared $TiO₂(Q_carbon hybrid nanofibers can be fitted to four peaks,$ Download interdstein match in the channel of the channel in the papel and the state of the channel of

Fig. 4 XPS high-resolution spectra of the C1s, O1s, and Ti2p regions of the as-prepared $TiO₂(Qcarbon)$ nanofibers and $TiO₂$ nanofibers, respectively.

including the large peak at 285.01 eV attributed to un-oxidized graphitic carbon.³⁸ The peak at 286.55 eV is attributed to disordered carbon or oxidant carbon, such as carbon in alcohols,^{35,38} which is in good accordance with the fitted O1s peaks. The remaining two small peaks at 288.05 eV and 289.24 eV possibly come from a trace amount of carboxyl in the hybrid sample.³⁸ From a combination of the XRD, FE-SEM, TEM, and XPS results, it is concluded that $TiO₂$ in these nanofibers exists in the form of polycrystalline $TiO₂$. Each $TiO₂$ particle is possibly one small crystal because of the low diffusion capability of $TiO₂$ in the nanofibers at the pyrolysis temperature. In addition, many hole/void nanopores are formed between the bound $TiO₂$ or $TiO₂(\hat{\omega})$ carbon particles in the nanofibers. This one-dimensional $TiO₂(\hat{a})$ carbon material would introduce unique advantages in lithium ion battery application,³⁹ such as high conductivity due to encapsulation of the $TiO₂$ nanocrystals in the high carbon content, improved Li⁺ and electrolyte transport in the nanofibers from the hole/void nanopores that exist between the bound $TiO₂(a)$ carbon particles in the nanofibers, and so on, all of which favor the enhancement of the electrochemical performance of the electrode as compared with pure $TiO₂$.

The electrochemical performance of $TiO₂(a)$ carbon nanofibers in the lithium ion battery has been characterized by galvanostatic discharge-charge cycling and cyclic voltammetry, as shown in Fig. 5. Cyclic voltammograms (CV) of TiO₂@carbon hybrid nanofibers from the first to the fifth cycle at a scan rate of 0.1 mV s^{-1} in the voltage range of 0.01–3.0 V were obtained and are presented in Fig. 5(a). The curves of the initial five cycles are different from the later ones, especially with respect to the subsequent gradual disappearance of some high voltage CV peaks, possibly owing to the gradual formation of an inactive solid/electrolyte interphase (SEI) on the surface of the active material, which is inclined to intercept reversible Li ion pathways in the discharge/charge processes. In the first cycle, the cathodic/ anodic peak pair at 0.012 V and 0.124 V is attributed to lithium ion insertion into and extraction out of the carbon material, while another cathodic/anodic peak pair at around 0.69 V and 1.3 V suggest the decomposition of solvent, with decomposition products acting as a SEI on the surface of the active materials.⁴⁰ There remain two obvious cathodic/anodic peak pairs at 1.40 V and 1.89 V, and 1.61 V and 2.06 V in the first cycle, although the two cathodic peaks merge and stabilize at 1.50 V and 1.89 V in subsequent cycles, which are probably attributable to lithium ion insertion into/extraction out of anatase $TiO₂$. However, there is one unknown peak at 2.37 V in the first cycle. This peak at 2.37 V disappears in the next few cycles, and the corresponding reaction of this peak is still not clear. Further experiments such as in situ or ex situ synchrotron or Raman analysis, need to be conducted in order to understand this in future.

Galvanostatic discharge/charge experiments on the $TiO₂(a)$ carbon nanofiber electrodes were carried out in the voltage range of 3.0-1.0 V (versus Li/Li⁺) at a constant current density of approximately 30 mA g^{-1} up to 100 cycles. Fig. 5(b) presents the voltage profiles of a $TiO₂(Q_carbon hybrid nanofiber electrode at$ the current density of 30 mA g^{-1} . The first discharge and charge steps deliver a specific capacity of 220.8 and 217.1 mAh g^{-1} , respectively, much higher than for pure $TiO₂$ nanofiber electrode, i.e. 182.7 and 178.5 mAh g^{-1} (Fig. 5(c)). The initial coulombic efficiency of the $TiO₂(a)$ carbon nanofibers electrode is above

Fig. 5 Electrochemical performance of TiO₂@carbon nanofiber and TiO₂ nanofiber electrodes cycled between 1.0 and 3.0 V vs. Li⁺/Li: (a) Cyclic voltammograms of TiO₂@carbon nanofiber electrode from the first cycle to the fifth cycle at a scan rate of 0.1 mV s⁻¹ in the voltage range of 0.0–3.0 V. (b) Voltage profiles for selected cycles of TiO₂@carbon nanofiber composite electrode at the current density of 30 mA g^{-1} . (c) Capacity *vs*. cycle number curves and coulombic efficiency from the first cycle to the 100th cycle for the TiO₂@carbon nanofibers and pure TiO₂ nanofibers at the current density of 30 mA g^{-1} . (d) Rate capabilities of TiO₂ and TiO₂@carbon electrodes at various currents.

98.324%, slightly higher than that of the pure $TiO₂$ nanofiber electrode (97.6%) and those of some reported pure $TiO₂$ nanotube electrodes.¹⁶ Fig. 5(c) shows the curves of discharge capacity versus cycle number for the $TiO₂(Q_carbon nanofiber and pure$ $TiO₂$ nanofiber electrodes at current density 30 mA $g⁻¹$. The $TiO₂(\partial \Omega)$ carbon composite electrode exhibits excellent cyclic performance and a high reversible specific capacity of over 200 mAh g⁻¹ in the first 50 cycles, and it maintains a reversible capacity after 100 cycles of approximately 206 mAh g^{-1} with high coulombic efficiency of nearly 100%, much higher than the specific capacity and coulombic efficiency of the pure $TiO₂$ nanofiber electrode and those reported pure $TiO₂$ nanotube electrode¹⁶ and TiO₂–carbon composite nanotube electrodes.²⁴ An additional advantage of the $TiO₂(a)$ carbon hybrid nanofiber electrode is the enhancement of rate capability due to the short $Li⁺$ diffusion paths and easy access of the electrolyte through interconnected pores, as well as the good electrical connectivity. The rate capability testing results are shown in Fig. 5 (d). Compared with the bare $TiO₂$ porous nanofiber electrode, the $TiO₂(a)$ carbon hybrid nanofiber electrode exhibits excellent rate performance; it delivers discharge capacity of over 220 mAh g⁻¹ at current density of 25 mA g⁻¹, 179.17 mAh g⁻¹ at $125 \text{ mA } g^{-1}$, 156.83 mAh g⁻¹ at 250 mA g⁻¹, 134.55 mAh g⁻¹ at 500 mA g^{-1} , finally around 100 mAh g^{-1} at current density of 1250 mA g^{-1} , respectively, which is better than those of reported pure $TiO₂$ nanotube¹⁶ and $TiO₂$ –carbon nanotube electordes.^{24,25} The improved initial capacity, coulombic efficiency, reversible discharge capacity, and rate capability of the $TiO₂(Qcarbon)$ nanofiber electrode were attributed to the small crystal size of the $TiO₂$ and the porous nature of the $TiO₂(a)$ carbon nanofibers (Fig. 2 and Fig. 3), as well as the high conductivity owing to the high carbon content in the composite (Fig. S3†).

As demonstrated in Scheme S1†, TiO₂@carbon nanoparticles, consisting of $TiO₂$ nanocrystals inside porous hard carbon, bond together in a nanofiber to form $TiO₂(a)$ carbon hybrid nanofiber, which possesses many hole/void nanopores due to pyrolysis of PAN during the heat treatment process. Although there are also

many nanopores between the $TiO₂$ nanofibers, which are also composed of $TiO₂$ nanoparticles bonded together in a nanofiber form, the relatively poor electrochemical performance of the $TiO₂$ nanofiber electrode should possibly be ascribed to its relatively lower conductivity. Accordingly, the porous $TiO₂(a)$ carbon nanofibers with relatively higher specific surface area compared to micron-sized particles ensure good electrode-electrolyte contact and short lithium ion diffusion pathways during discharge/charge cycling, and thus make a great contribution to lithium storage capacity. Additionally, the carbon matrix in the composite enhances the conductivity of the active materials during lithium intercalation/de-intercalation, which plays a critical role in the excellent lithium storage capacity and cyclability of the electrode.

Conclusions

In summary, under optimized synthesis conditions including the composition and concentration of electrospun solution and electrospun parameters such as temperature of collector, the distance between collector and spinet, pushing velocity of solution and applied voltage between spinet and collector and so on, very large area (4 cm \times 2.5 cm), uniform TiO₂@carbon and TiO₂ nanofibers consisting of orderly bonded nanoparticles were prepared by thermal pyrolysis and oxidization of titanium(IV) isopropoxide/polyacrylonitrile (PAN) nanofibers in argon via a simple electrospinning technology for the first time. As a potential anode material for lithium ion batteries, these $TiO₂(Q_carbon hybrid nanofibers display a high initial reversible$ capacity of 217.1 mAh g^{-1} with high coulombic efficiency of nearly 100% at the current density of 30 mA g^{-1} and deliver a high reversible specific capacity of over 200 mAh g^{-1} in the first 50 cycles, and further maintain a reversible capacity after 100 cycles of approximately 206 mAh g^{-1} with high coulombic efficiency of nearly 100%, much higher than that of the pure $TiO₂$ nanofiber electrode. This particular orderly-bonded nanoparticle composite architecture is characterized by many nanopores in the nanofibers. These nanopores facilitate lithium ion and electrolyte diffusion in the active materials during charge/discharge processes. Furthermore, the high carbon content matrix in the $TiO₂(a)$ carbon hybrid nanofibers acts to encapsulate the $TiO₂$ nanocrystals and enhance the conductivity of the active material, as compared with pure $TiO₂$ nanofibers. Therefore, the composite is a very promising potential anode material for LIBs, even though the composition and structure of these materials require further improvement.

Acknowledgements

Part of the work was funded by the Australian Research Council (ARC) through a Discovery project (DP1094261), the Postdoctoral Foundation Program of Fuzhou University (BSH-0601), the Natural Science Foundation Program of Fujian Province (2010J01332, A0510011), the Foundation Program of the Ministry of Education for Returned Exchange Personnel (LXKQ201101), and the Talent Foundation Program of Fuzhou University. The authors also would like to thank Dr Tania Silver at the University of Wollongong for critical reading of the manuscript and Mr. Darren Attard for his contribution. Download the manufacture of the state of the state of the state on 07 December 2012 Published at the state of December 2012 on the state of the state of the state of the state of University of Wolf Published on the state

References

- 1 Yang Bai, Wei Li, Chang Liu, Zhuhong Yang, Xin Feng, Xiaohua Lu and Kwong-Yu Chan, Stability of Pt nanoparticles and enhanced photocatalytic performance in mesoporous Pt-(anatase/TiO2(B)) nanoarchitecture, J. Mater. Chem., 2009, 19(38), 7055.
- 2 M. R. S. Castro, E. D. Sam, M. Veith and P. W. Oliveira, Structure, wettability and photocatalytic activity of CO2 laser sintered TiO2/ multi-walled carbon nanotube coatings, Nanotechnology, 2008, 19(10), 105704.
- 3 X. Y. Chen, S. X. Liu and X. Q. Zhang, Preparation and properties of activated carbon supported nitrogen doped visible-light response TiO2-xNy/AC photocatalysts, J. Inorg. Mater., 2008, 23(3), 464–470.
- 4 K. H. Ji, D. M. Jang, Y. J. Cho, Y. Myung, H. S. Kim, Y. Kim and J. Park, Comparative Photocatalytic Ability of Nanocrystal-Carbon Nanotube and -TiO2 Nanocrystal Hybrid Nanostructures, J. Phys. Chem. C, 2009, 113(46), 19966-19972.
- 5 C. H. Lin, J. H. Chao, C. H. Liu, J. C. Chang and F. C. Wang, Effect of calcination temperature on the structure of a Pt/TiO2 (B) nanofiber and its photocatalytic activity in generating H-2, Langmuir, 2008, 24(17), 9907–9915.
- 6 Zhaoyang Liu, Darren Delai Sun, Peng Guo and James O. Leckie, An Efficient Bicomponent TiO2/SnO2Nanofiber Photocatalyst Fabricated by Electrospinning with a Side-by-Side Dual Spinneret Method, Nano Lett., 2007, 7(4), 1081–1085.
- 7 Karran Woan, Georgios Pyrgiotakis and Wolfgang Sigmund, Photocatalytic Carbon-Nanotube-TiO2Composites, Adv. Mater., 2009, 21(21), 2233–2239.
- 8 G. Wang, Q. Wang, W. Lu and J. H. Li, Photoelectrochemical study on charge transfer properties of TiO2-B nanowires with an application as humidity sensors, J. Phys. Chem. B, 2006, 110(43), 22029–22034.
- 9 Hongnan Zhang, Zhenyu Li, Li Liu, Ce Wang, Yen Wei and Alan G. MacDiarmid, Mg2+/Na+-doped rutile TiO2 nanofiber mats for high-speed and anti-fogged humidity sensors, *Talanta*, 2009, 79(3), 953–958.
- 10 Jing-Hong Huang, Po Yu Hung, Shu-Fen Hu and Ru-Shi Liu, Improvement efficiency of a dye-sensitized solar cell using Eu3+ modified TiO2 nanoparticles as a secondary layer electrode, J. Mater. Chem., 2010, 20(31), 6505.
- 11 Kai Pan, Youzhen Dong, Chungui Tian, Wei Zhou, Guohui Tian, Baofeng Zhao and Honggang Fu, TiO2-B narrow nanobelt/TiO2 nanoparticle composite photoelectrode for dye-sensitized solar cells, Electrochim. Acta, 2009, 54(28), 7350–7356.
- 12 C. Rochford, Z. Z. Li, J. Baca, J. W. Liu, J. Li and J. Wu, The effect of annealing on the photoconductivity of carbon nanofiber/TiO2 core-

shell nanowires for use in dye-sensitized solar cells, Appl. Phys. Lett., 2010, 97.

- 13 Xia Wu, Gao Qing Lu and Lianzhou Wang, Shell-in-shell TiO2 hollow spheres synthesized by one-pot hydrothermal method for dye-sensitized solar cell application, Energy Environ. Sci., 2011, 4(9), 3565–3572.
- 14 M. Wagemaker, A. P. M. Kentgens and F. M. Mulder, Equilibrium lithium transport between nanocrystalline phases in intercalated TiO2 anatase, Nature, 2002, 418(6896), 397–399.
- 15 Da Deng, Min Gyu Kim, Jim Yang Lee and Jaephil Cho, Green energy storage materials: Nanostructured TiO2 and Sn-based anodes for lithium-ion batteries, Energy Environ. Sci., 2009, 2(8), 818.
- 16 J. Xu, C. Jia, B. Cao and W. Zhang, Electrochemical properties of anatase TiO2 nanotubes as an anode material for lithium-ion batteries, Electrochim. Acta, 2007, 52(28), 8044–8047.
- 17 G. Armstrong, A. R. Armstrong, P. G. Bruce, P. Reale and B. Scrosati, TiO2(B) Nanowires as an Improved Anode Material for Lithium-Ion Batteries Containing LiFePO4 or LiNi0.5Mn1.5O4 Cathodes and a Polymer Electrolyte, Adv. Mater., 2006, 18(19), 2597–2600.
- 18 B. He, B. Dong and H. Li, Preparation and electrochemical properties of Ag-modified TiO2 nanotube anode material for lithium–ion battery, Electrochem. Commun., 2007, 9(3), 425–430.
- 19 Jinyoung Kim and Jaephil Cho, Rate Characteristics of Anatase TiO [sub 2] Nanotubes and Nanorods for Lithium Battery Anode Materials at Room Temperature, J. Electrochem. Soc., 2007, 154(6), A542.
- 20 J. S. Chen, Y. L. Tan, C. M. Li, Y. L. Cheah, D. Y. Luan, S. Madhavi, F. Y. C. Boey, L. A. Archer and X. W. Lou, Constructing Hierarchical Spheres from Large Ultrathin Anatase TiO2 Nanosheets with Nearly 100% Exposed (001) Facets for Fast Reversible Lithium Storage, J. Am. Chem. Soc., 2010, 132(17), 6124–6130.
- 21 Y. Wang, M. Wu and W. Zhang, Preparation and electrochemical characterization of TiO2 nanowires as an electrode material for lithium-ion batteries, Electrochim. Acta, 2008, 53(27), 7863–7868.
- 22 A. R. Armstrong, G. Armstrong, J. Canales, R. Garcia and P. G. Bruce, Lithium-ion intercalation into TiO2-B nanowires, Adv. Mater., 2005, 17(7), 862.
- 23 H. Qiao, Y. Wang, L. Xiao and L. Zhang, High lithium electroactivity of hierarchical porous rutile TiO2 nanorod microspheres, Electrochem. Commun., 2008, 10(9), 1280–1283.
- 24 S. Yoon, B. H. Ka, C. Lee, M. Park and S. M. Oh, Preparation of Nanotube TiO2-Carbon Composite and Its Anode Performance in Lithium-Ion Batteries, Electrochem. Solid-State Lett., 2009, 12(2), A28–A32.
- 25 J. Xu, Y. Wang, Z. Li and W. Zhang, Preparation and electrochemical properties of carbon-doped TiO2 nanotubes as an anode material for lithium-ion batteries, J. Power Sources, 2008, 175(2), 903–908.
- 26 Q. J. Li, J. W. Zhang, B. B. Liu, M. Li, R. Liu, X. L. Li, H. L. Ma, S. D. Yu, L. Wang, Y. G. Zou, Z. P. Li, B. Zou, T. Cui and G. T. Zou, Synthesis of High-Density Nanocavities inside TiO2-B Nanoribbons and Their Enhanced Electrochemical Lithium Storage Properties, Inorg. Chem., 2008, 47(21), 9870–9873.
- 27 C. Kim, K. S. Yang, M. Kojima, K. Yoshida, Y. J. Kim, Y. A. Kim and M. Endo, Fabrication of Electrospinning-Derived Carbon Nanofiber Webs for the Anode Material of Lithium-Ion Secondary Batteries, Adv. Funct. Mater., 2006, 16(18), 2393–2397.
- 28 D. Li and Y. N. Xia, Electrospinning of nanofibers: Reinventing the wheel?, Adv. Mater., 2004, 16(14), 1151-1170.
- 29 Z. X. Yang, G. D. Du, C. Q. Feng, S. A. Li, Z. X. Chen, P. Zhang, Z. P. Guo, X. B. Yu, G. N. Chen, S. Z. Huang and H. K. Liu, Synthesis of uniform polycrystalline tin dioxide nanofibers and electrochemical application in lithium-ion batteries, Electrochim. Acta, 2010, 55(19), 5485-5491.
- 30 Z. X. Yang, G. D. Du, Z. P. Guo, X. B. Yu, Z. X. Chen, P. Zhang, G. N. Chen and H. K. Liu, Easy preparation of SnO2@carbon composite nanofibers with improved lithium ion storage properties, J. Mater. Res., 2010, 25(8), 1516–1524.
- 31 Z. X. Yang, G. D. Du, Z. P. Guo, X. B. Yu, S. A. Li, Z. X. Chen, P. Zhang and H. K. Liu, Plum-branch-like carbon nanofibers decorated with SnO2 nanocrystals, Nanoscale, 2010, 2(6), 1011– 1017.
- 32 H. Wang, Y. Wang, Y. Yang, X. Li and C. Wang, Photoluminescence properties of the rare-earth ions in the TiO2 host nanofibers prepared via electrospinning, Mater. Res. Bull., 2009, 44(2), 408–414.
- 33 Guoping Dong, Xiudi Xiao, Yingzhi Chi, Bin Qian, Xiaofeng Liu, Zhijun Ma, Song Ye, E. Wu, Heping Zeng, Danping Chen and Jianrong Qiu, Polarized Luminescence Properties of TiO2:Sm3 + Microfibers and Microbelts Prepared by Electrospinning, J. Phys. Chem. C, 2009, 113(22), 9595–9600. Downloaded by University of Wolfgong on 15 February 2012 Alexander 2012 Published on 15 February 2012 on the Contract Cont
	- 34 G. Wang, Y. Ji, X. R. Huang, X. Q. Yang, P. I. Gouma and M. Dudley, Fabrication and characterization of polycrystalline WO3 nanofibers and their application for ammonia sensing, J. Phys. Chem. B, 2006, 110(47), 23777–23782.
	- 35 Naofumi Ohtsu, Naoya Masahashi, Yoshiteru Mizukoshi and Hydrocarbon Decomposition a Hydrophilic TiO2Surface by UV Irradiation: Spectral and Quantitative Analysis Using in situ XPS Technique, Langmuir, 2009, 25(19), 11586–11591.
- 36 S. Ben Amor, G. Baud, M. Benmalek, H. Dunlop, R. Frier and M. Jacquet, Titania Coatings on Polyethylene Terephthalate: Adhesion and XPS Studies., *J. Adhes.*, 1998, 65(1), 307– 329.
- 37 Caixian Chang, Jiangfeng Xiang, Ming Li, Xiaoyan Han, Liangjie Yuan and Jutang Sun, Improved disordered carbon as high performance anode material for lithium ion battery, J. Solid State Electrochem., 2008, 13(3), 427–431.
- 38 XPS database on Web:http://www.lasurface.com/database/ elementxps.php (April 2011).
- 39 Liwen Ji and Xiangwu Zhang, Electrospun carbon nanofibers containing silicon particles as an energy-storage medium, Carbon, 2009, 47(14), 3219–3226.
- 40 Y. T. MatsuoFukutsuka, Y. Sugie, A. Takeshi, M. Inaba and Z. Ogumi, Surface modification of carbonaceous thin films by NF3 plasma and their effects on electrochemical properties, Molecular Crystals and Liquid Crystals, 2002, 388, 531–536.