
University of Wollongong University of Wollongong 

Research Online Research Online 

Faculty of Engineering - Papers (Archive) Faculty of Engineering and Information 
Sciences 

1-1-2010 

QoS probability distribution estimation for web services and service QoS probability distribution estimation for web services and service 

compositions compositions 

Huiyuan Zheng 
Macquarie University 

Jian Yang 
Macquarie University 

Weiliang Zhao 
Macquarie University, wzhao@uow.edu.au 

Follow this and additional works at: https://ro.uow.edu.au/engpapers 

 Part of the Engineering Commons 

https://ro.uow.edu.au/engpapers/5209 

Recommended Citation Recommended Citation 
Zheng, Huiyuan; Yang, Jian; and Zhao, Weiliang: QoS probability distribution estimation for web services 
and service compositions 2010, 1-8. 
https://ro.uow.edu.au/engpapers/5209 

Research Online is the open access institutional repository for the University of Wollongong. For further information 
contact the UOW Library: research-pubs@uow.edu.au 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Research Online

https://core.ac.uk/display/36984979?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://ro.uow.edu.au/
https://ro.uow.edu.au/engpapers
https://ro.uow.edu.au/eis
https://ro.uow.edu.au/eis
https://ro.uow.edu.au/engpapers?utm_source=ro.uow.edu.au%2Fengpapers%2F5209&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/217?utm_source=ro.uow.edu.au%2Fengpapers%2F5209&utm_medium=PDF&utm_campaign=PDFCoverPages


QoS Probability Distribution Estimation for Web Services and Service Compositions

Huiyuan Zheng
Department of Computing

Macquarie University
Sydney, Australia

huiyuan.zheng@mq.edu.au

Jian Yang
Department of Computing

Macquarie University
Sydney, Australia

jian.yang@mq.edu.au

Weiliang Zhao
Department of Computing

Macquarie University
Sydney, Australia

weiliang.zhao@mq.edu.au

Abstract—In this paper, we propose an approach to model
the probability density function (PDF) of the QoS of a web
service (QoWS) based on non-parametric statistical method.
Mathematical formulas are designed to calculate the QoS distri-
butions for service compositions (QoCS). Experiment has been
done to show that the proposed QoWS distribution modeling
approach is much more accurate than exiting methods. An
accurate PDF estimation can be obtained for the QoCS if the
PDF of the component QoWSs are modeled by the proposed
method.

Keywords-QoS; Web service; service composition; probabil-
ity distribution;

I. INTRODUCTION

The nature of services creates the opportunity for building
composite services by combining existing elementary or
complex services (referred to as component services) from
different enterprises and in turn offering them as high-level
services or processes (referred to as service compositions).
QoS analysis becomes increasingly challenging and impor-
tant when complex and mission critical applications are built
upon services with different QoS. Thus solid model and
method support for QoS predication in service composition
become crucial and will lay a foundation in further analysis
of complexity and reliability in developing service oriented
distributed applications.

Describing QoWS accurately lays importance in the fol-
lowing aspects: (1) QoS needs to be reasonably specified in a
service contract between a service provider and a consumer
to guarantee the provider promised QoS; (2) The QoS of
a service composition needs to be estimated based on the
quality of individual web services to make sure that the
composition can satisfy the expectations of end users.

Some QoWS metrics, such as response time, dynamically
changes. Fixed value is not able to describe the QoWS
effectively. For example, two web services having the same
mean or maximum QoS value may have quite different QoS
probability distributions. A service consumer may choose
one web service over the other based on the QoS probability
distributions, for example, the distribution with the smaller
deviation would be preferred. A PDF is the best way to
reflect the dynamic feature of a QoWS metric. A PDF of a

QoWS is a function that describes the relative likelihood for
this QoWS to occur at a given QoWS value.

PDF represented QoS has already been used in service
level agreements (SLA) and service selections in service
compositions [1,2], which shows promising selection result
over traditional fixed QoS value methods. Standard sta-
tistical distributions such as T Location-scale and Normal
distributions are applied to represent the PDF distributions
for QoWSs. But as standard statistical distributions have
regular shapes, they can only model the main body of the
QoS distribution accurately. As is shown in the following
example, other part of a distribution though taking a small
proportion can generate a significant effect on the QoS
distribution of a service composition and therefore cannot
be ignored.

A. An Example

We will use the QoS metric response time as an example
to illustrate the necessity of accurate estimation of QoWS.
Figure 1 is the PDF distributions of the response time of four
web services WS1, WS2, WS3, and WS4. We will first talk
about the circumstance of one web service being invoked
in a service composition for multiple times. Then, we will
talk about the circumstance of multiple web services being
invoked in a service composition.

Figure 2 shows the response time distributions for WS1
being sequentially invoked from 2 to 5 times in a service
composition. It can be seen from the response time distri-
bution of WS1 (see Figure 1) that most observations of
response time are ranging between 0.5 × 104 to 1 × 104

ms (referred to as main part). There are some sparse
observations over the smaller (less than 0.5 × 104 ms) and
larger (more than to 1×104 ms) response time (referred to as
other part). These sparse observations only take quite
a small proportion of the whole response time observations.
When WS1 is invoked in a service composition, the more
times it is invoked, the smaller proportion the main part
of the PDF takes in the response time distribution of the
service composition (see Figure 2). It means that the effect
of the main part of the QoS distribution of WS1 on the
QoS distribution of the service composition decreases. It
can be seen from the top rightmost plot of Figure 2 that the



Figure 1. PDFs of Four Web Services
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Figure 2. Composition of WS1 2 to 5 Times

response time distribution becomes bimodal (the maximum
probability density is attained at two response time values)
when WS1 is invoked 5 times.

Figure 3 illustrates the response time distribution for web
services WS1, WS2, WS3, and WS4 being sequentially
invoked in a service composition. From Figure 3, it can be
seen that the distribution converges to zero density slowly.
There is a heavy tail from 2× 104 to 6× 104 ms and there
are three bumps in the tail. This tail takes a considerable
proportion of the whole response time observations and can
not be ignored.

Currently, QoWS are modeled as (1) single constant
values [3,4], such as the mean, the minimum, or the max-
imum QoS value; (2) probability mass function (PMF) [5].
For example, P (cost = 100dollars) = 0.4, P (cost =
200dollars) = 0.6 is a PMF for the cost of a web service;
and (3) standard statistical distributions [2,3], such as nor-
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Figure 3. Composition of WS1 to WS4

mal distribution and t location-scale distribution. From the
example shown through Figure 1, 2, and 3, the limitations
of exiting QoS modeling methods can be summarized as
follows:

•As the QoS of a web service changes dynamically,
single constant value-modeled QoS is not able to reflect this
variability;

•The values of some QoS metrics, such as response time,
range continuously. PMF-modeled QoS is not able to model
this characteristic;

•Standard statistical distribution modeling method can
only model distributions with regular shapes and smooth
tails. It is not able to model the minor part (i.e. the part takes
quite a small proportion in a distribution) of a distribution
precisely (proof can be seen in the experiment in Section V).
If the QoWS distributions of component web services are
not accurately modeled, the estimated QoS for the service
composition based on these component QoWSs would be
quite misleading. In addition, from the example discussed
before, we have already known that the minor part of a QoS
probability distribution cannot be ignored because it will
have a significant effect on the QoS probability distribution
of a service composition when one web service is kept
being invoked in a service composition (for example in a
loop pattern) or multiple web services are invoked together.
Therefore, standard statistical distributions are not suitable
for QoWS modeling.

B. Contributions of This Paper

In this paper, we use a non-parametric statistical method
to estimate the PDF for QoWS. This method is distribution
free, which do not rely on assumptions that the QoS data are
drawn from a given probability distribution. This property
makes this method more robust and accurate than the ones
used in existing work [2,6] on QoWS estimation.

A general QoS calculation approach for service compo-
sitions has been explored in this work. No matter the QoSs
of component web services are modeled into single values,
PMFs, or PDFs, the proposed method is able to calculate
the QoS for a service composition.

Simulation has been done to show that (1) the proposed
PDF modeling method can fit to the QoWS sample very
well and is more accurate than existing modeling methods;



(2) when PDFs of QoWSs are generated by the proposed
non-parametric method, the calculated PDF of QoCS can fit
to the simulated QoCS sample accurately.

The remainder of the paper is organized as follows:
Section II discusses the related work. In Section III, QoWS
modeling approaches are introduced in detail. Section IV
discusses a general QoS calculation method for a service
composition. Experiments are done in Section V to compare
different QoWS modeling approaches. Section VI concludes
the work.

II. RELATED WORK

A. QoS Modeling for Web Services

In [4], QoS metrics, such as execution duration and
reputation, are estimated as the mean value of the past
observation. QoS metrics, such as successful execution rate
and availability, are estimated statistically. For example, the
transmission time is estimated as the mean value of the
past observation of the transmission time, while the success
rate is estimated as the number of times that a service has
been successfully completed divided by the total number of
invocations.

In [3], the estimation of QoS metrics are divided into two
classes: basic and distributional. The basic estimation of QoS
metrics corresponds to the minimum, average, and maximum
QoS values associated with the execution of a task. The
distributional estimation corresponds to the specification of
a constant or of a standard statistical distribution function
(such as exponential, normal, Weibull, and uniform) which
statistically describes a task behavior at runtime. When a
distribution function is unpractical to be derived, a histogram
is recommended against an analytical formula.

In [5], QoS metrics, such as cost and reliability, may
have a set of QoS values and can be modeled as PMFs
naturally. For example, the execution of a web service may
cost differently which is: 100 dollars, 200 dollars, or 300
dollars. When the probability of each cost value is estimated,
the PMF for the cost of the web service is generated. For
QoS metrics, such as response time, the range of a QoS
metric can be divided into discrete subintervals. Then after
the probability for each subinterval is estimated, the PMF
for the QoS metric can be obtained.

In [2], the response time of web services are measured
and used as sample data. Parametric statistics is used to
make inferences about the parameters of the distribution.
Specifically, the distribution of a web service is assumed to
be a T Location-scale distribution. Based on the sample data
of each web service, the parameters of the T Location-scale
distribution are estimated. Then this distribution is treated
as the PDF of that web service.

In [1], a probabilistic approach is proposed to select web
services whose QoSs are modeled as probability distribu-
tions. The response time of a web service that is under a
certain load is supposed to follow a Normal distribution.

The response time of a web service is dependent on the load
which varies throughout the week. When the Normal distri-
butions of a web service under different load are known, the
distribution of the response time of the web service is the
aggregation of these Normal distributions which results in a
probability distribution following no obvious pattern.

B. QoS Calculation for Service Compositions

For single constant value represented QoS, aggregation
method [3,7] is proposed to calculate the composite QoS.
A composition can be regarded as being composed of
composition patterns. Formulas to calculate QoS for these
patterns are given. But these formulas can only be applied
to single values.

For QoS represented by PMF, the calculation method is
much the same as it is for single values [5]. The difference
is that the probability of each possible QoS value of the
composite service needs to be taken into account.

For standard statistical distribution represented QoS, sim-
ulation approaches are applied to compute the composite
QoS [2,8].

Mathematical formulas are developed in [9] to calculate
the throughput for composition patterns with execution time
represented by distributions.

[10] presents a tool for predicting composite QoS. Com-
ponent QoS can be modeled as single value or parameters
of standard statistical distribution. But this tool does not
support complex patterns such as loop.

III. APPROACH

In this section, we will first study the QoWS distribution
generation approach adopted by existing work. Then, we
will introduce the QoWS distribution generation method to
be used in this paper.

A. Distribution Generation Based on Parametric Statistical
Approach

One QoS value of a QoS metric can be obtained after per
execution of a web service. All these QoS values of per QoS
metric are stored in a log file of the web service and can be
used as a sample to generate a probability distribution for
the specific QoS metric of the web service.

Methods adopted in existing work [2,6] assume that a
sample comes from a type of a standard statistical distri-
bution which can be represented by several parameters. For
example, a Normal distribution can be represented by two
parameters which are the mean (μ) and the variance (σ2) of
the sample [11]. To get the QoS probability distribution, they
make inferences about the parameters of the distribution.
Since every probability distribution in this kind of methods
is assumed to be represented by a set of parameters, we refer
this kind of methods as parametric methods. The advantage
of parametric methods is that the parametric formulae are
often simple to write down and fast to compute. However,



parametric methods are not robust, because they make
more assumptions and if those assumptions are incorrect,
parametric methods can be very misleading [11].

Next we will study how to obtain the QoS probability
distribution from the QoS sample based on parametric
method [12].

1) Assumption of the type of the probability distribution
for the sample: The sample is assumed to follow a certain
distribution (such as Normal distribution), which is called
hypothesis H0. In general, the QoS distribution should be in
the form that it has a long tail and the very large values
have small frequency while the intermediate values have
large frequency. Distributions, such as log-logistic, gamma,
t location-scale, etc., have this characteristic.

2) Estimation of the parameters for a probability dis-
tribution: Given the sample and the hypothesis H0, there
are many estimation methods can be adopted to obtain
the parameters of the distribution. In this paper, maximum
likelihood estimation (MLE) [12] method is adopted. The
discussion of the estimation theory is out of the scope of
this paper.

When the parameters of the hypothesized distribution are
computed, the QoS distribution of a web service is obtained.

B. Distribution Generation Based on Non-Parametric Sta-
tistical Approach

We will use Gaussian Kernel Density estimation in this
paper to generate QoWS probability distribution. As Gaus-
sian Kernel Density estimation is a non-parametric way of
estimating the PDF of a random variable, we refer this
method as non-parametric method in the rest of the paper.

In this method, if x1, x2, ..., xn is an independent and
identically-distributed sample of a QoS metric of a web
service, then the approximation of the PDF of the sample is
[13]:

f̂(x) =
1

nh

n∑
1

1√
2π

e−
(x−xi)

2

2h2 (1)

where h is a smoothing parameter and can be calculated as
follows:

h = 1.06σn−1/5 (2)

where n is the size of the sample and σ is the standard
deviation of the sample.

C. Test the goodness of fit between the estimated QoS
distribution and the sample

In this paper, Chi-square Test is applied to compare the
difference between the estimated QoS distribution and the
sample. The formula of Chi-square test is as follows:

χ2 =
k∑

i=1

(fi − npi)
2

npi
(3)

where n is the size of the sample, k is the number of disjoint
intervals that the sample is divided into, fi is the observed
frequency that represents the number of sample that is within
the interval i (i=1,2,...,k), and pi is the probability within the
interval i according to the estimated PDF.

The value of χ2 represents the discrepancy between the
sample and the estimated PDF of QoWS. In the experiment
of this paper (Section V), χ2 will be used as a criterion to
measure the performance of the QoS distribution estimation
methods.

IV. A GENERAL QOS CALCULATION APPROACH FOR A
SERVICE COMPOSITION

A composite service is regarded as being constructed
based on four composition patterns, i.e. sequential, parallel,
conditional, and loop. The formal definitions and modeling
methods of these patterns and the regressive processing
method of a service process based on these basic patterns
have been discussed in [14].

In this section, we design a calculation approach which
can compute the QoS probability distributions for service
compositions. In this approach, we assume that the QoSs
of web services are independent of each other. The QoS
metric response time is taken as an example here. The QoS
calculation formulas for different composition patterns are
listed as follows:

A. Sequential Pattern

The response time of a Sequential Pattern is the sum of the
QoS of its component web services. The QoS of a Sequential
Pattern is the convolution of the PDFs of the component
QoWSs,i.e.

f(q) = (f1∗f2)(q) =
∫ q

0

f1(x)f2(q − x)dx (4)

where f(q) is the PDF of response time of a Sequential
Pattern, f1(q) and f2(q) are the PDFs of the component
QoWSs.

B. Parallel Pattern

The response time of a Parallel Pattern with synchronized
merge is the maximum response time of its component web
services. The probability distribution can be calculated as
follows:

F (q) =
n∏

i=1

Fi(q) (5)

f(q) =
n∑

i=1

fi(q)
∏

j=1,...,n&j �=i

Fj(q) (6)

where f(q) and F (q) are the PDF and Cumulative Distri-
bution Function (CDF) of the response time of a Parallel
Pattern; fi(q) and Fi(q) are the PDF and CDF of the
response time of component service i; and n is the number
of component services within this pattern.



C. Conditional Pattern

The response time of a Conditional Pattern is the proba-
bility weighted sum of the response time of its component
web services. The QoS distribution of a Conditional Pattern
can be calculated as follows:

f(q) =
n∑

i=1

pifi(q) (7)

where f(q) is the PDF of the response time of a Conditional
Pattern; n is the number of component services within this
pattern; fi(q) is the PDF of the QoS of component service
i; and pi is the execution probability for component service
i.

D. Loop Pattern

In [7], we have given detailed discussion on the structure
analysis method for an arbitrary Loop Pattern to compute
its QoS. To sum up the method in [7], statistically, a
Loop Pattern can be seen as a Conditional Pattern with a
Sequential Pattern in each path. With calculation formulas
for the execution probability of each path of the Conditional
Pattern given in [7] and the formulas of computing the
response time probability distribution of a Sequential Pattern
and a Conditional Pattern known (Formulas 4 and 7), the
distribution of the response time of a Loop Pattern can be
obtained.

E. Computational Complexity of the Proposed QoS Calcu-
lation Approach

The computation of convolution takes most time in cal-
culating the QoS of a service composition. If convolution
is computed directly, it is often too slow to be practical. In
this paper, with the help of the convolution theorem [15]
and the fast Fourier transform (FFT) [16], the complexity of
the convolution is reduced from O(n2) to O(nlogn) [15].
A convolution of f1 and f2 is calculated as follows:

f1∗f2 = �
−1{�{f1}·�{f2}} (8)

where � represents Fourier transform while �
−1 represents

inverse Fourier transform which can be performed by FFT
algorithm efficiently.

After the analysis of the complexity for convolution
computation, now we can get the computational complex-
ity for the proposed QoS calculation approach which is
O(mnlogn) (m is the number of web services in a service
composition and n is the number of discrete points in a QoS
distribution).

V. EXPERIMENT

A. QoS Distribution Generation for Web Services

In this subsection, we compare using parametric and
non-parametric approaches to estimate the QoS (response
time) distributions for two web services: Random Image and

Table I
CHARACTERISTIC RESPONSE TIME (MS)

mean CDF=90% CDF=95% CDF=99%

Random
S 1339.6 4345 5666 20255
K 1339.0 4394 5691 20255
T 645.8 24489 24489 24489
N 1935.5 24244 24244 24244

Dilbert
S 738.29 941 2855 5570
K 737.90 941 3084 5603
T 511.85 1284 16367 16367
N 914.29 9840 9840 9840

S: Sample. K: Non-parametric method. T: T location-scale distribution
N: Normal distribution

Dilbert. The QoS samples of the two web services are from
WS-DREAM dataset [17].

In Figure 4, histograms in Figure 4(a) and 4(c) represent
the QoS samples of web services Random Image and Dilbert
respectively, solid curves represent QoS distributions (PDF
or CDF) generated by non-parametric approach, dashed
curves represent T Location-scale distributions of the QoS
generated by parametric approach, and dash-dotted curves
represent Normal distributions of the QoS generated by
parametric approach. It can be seen that the solid curves
fit the QoS sample very well both in the main part and in
the tail part. Small bumps in the tail part are detected by the
non-parametric approach. The T Location-scale distributions
can only fit the main part of the QoS sample well. As for
the Normal distributions, their shapes are far from reflecting
the real distributions. Most importantly, it can be seen
from Figure 4(b) and 4(d) that the CDFs of T Location-
scale and Normal distribution are not 1 when response
time approaches infinity. This is because the variance of
the sample is so large that the left part of the PDF of
Normal and T Location-scale distributions goes to negative
x-axis which leads to the integration of the PDF over the
positive x-axis is less than 1. Therefore, it can be foreseen
that the QoS estimation for a service composition would be
quite misleading when the QoSs of its component services
are generated from parametric method. This will be further
proved by experiment in Section V-B.

So far, we have analyzed the distributions in Figure 4
visually. Next, we will analyze them quantitatively. First of
all, the discrepancies χ2 between the estimated distributions
and the sample have been indicated in Figure 4(a) and
4(c). It can be seen that the distributions estimated by non-
parametric approach have the smallest discrepancies with the
samples. The discrepancies generated by T Location-scale
and Normal distributions are quite large. Next, we evaluate
response time at four characteristic points (referred to as
characteristic response time in the following part) which
are the mean response time and the response time at three
CDF percentiles, i.e. 90%, 95%, and 99%. The quantitative
results are shown in Table I.

It can be seen that the QoS distribution generated by non-
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Figure 4. QoS Distribution Generation

parametric approach has the closest characteristic response
time as that of the sample. As to the T Location-scale
and Normal distributions, they are not even able to give
the approximate characteristic response time values. For
example, if the user requires that for 95% of chance the
response time of a web service should be less than 6000
ms. As is seen from Table I, web service Random Image
and Dilbert have a response time of less than 5666ms and
2855ms respectively (seen from the sample) for 95% of
chance. In fact, both of the two services meet the user
requirements on response time. This characteristic can be
reflected accurately by the QoS distribution obtained by
non-parametric approach. However, in parametric method
generated T Location-scale and Normal distributions, for
95% of chance the response time are all far more than
6000 ms for both web services. If these distributions were
used in SLA, it would lead to quite pessimistic contract and
cause the loss of the service provider. This further proves
that parametric approach is not suitable for QoS probability
generation for web services.

One thing to be noted is that the mean response time
getting from Normal distributions is not equal to the mean
response time of the QoS samples as expected. This is

�� ��
�� =

���

����

(a) Sequential

��
���

���

�	
�

���� �

�

���� �

�

 ��� �

�

 ��� �

(b) Parallel

��

���

���

1p

2p

���

���

(c) Conditional

��

21p

22mp2p

�����

1p

(d) Loop

Figure 5. Four Composition Patterns

because response time is all positive values and only the
positive part of the Normal distribution is taken into account
when the mean response time is calculated. When the
variance of the sample is large enough to make the Normal
distribution expand to the negative x-axis, the mean value
will of course shift rightwards, i.e. larger than it is supposed
to be.

To sum up, QoWS distributions obtained by non-
parametric approach are able to represent the real QoWS
distributions while standard statistical distributions do not
have this ability.

B. QoS Distribution Calculation for Different Patterns

In this subsection, we will show the accuracy of the
QoWS distributions obtained by non-parametric approach
from a service composition point of view. We use the



Table II
MEAN RESPONSE TIME OF DIFFERENT APPROACHES

Sequential Parallel Conditional Loop
S 2054.7 1681.0 1085.4 6997.7
M 2077.8 1339.6 1099.0 6926.1
K 2054.9 1688.1 1098.5 6736.5
T 1253.7 970.2 682.7 2248.1

S: Simulation; M: Mean; K: Non-parametric method; T: T Location-scale

two web services in Figure 4 as component web services
of a Sequential Pattern, a Parallel Pattern, a Conditional
Pattern, and a Loop Pattern respectively (see Figure 5).
Monte Carlo simulation method is used to simulate the
QoSs of the four composition patterns. For each time of
simulation, the response time of the two web services are
generated randomly from their QoS samples (see detailed
about these samples in Section V-A). The QoS for the
Sequential, Parallel, Conditional, and Loop Pattern is the
sum of response time, the maximum of response time, one
of the response time depending on which path is taken, and
the total aggregated response time depending on the times
that the loop takes in that particular simulation respectively.
The simulation is executed for 20,000 times and therefore
20,000 response time for each of the composition pattern is
obtained. The simulation results are shown as histograms
in Figure 6. Solid curves represent the calculated QoS
distributions of composition patterns when the component
QoWSs are non-parametric approach generated distributions.
Dashed curves represent the calculated QoS distributions of
composition patterns when the component QoWSs are T
Location-scale distributions. As Normal distributions are far
from accurate in representing QoWSs, we did not consider
Normal distributions here.

It can be seen from Figure 6 that the calculated QoS
distributions based on non-parametric approach generated
QoWS distributions represent the simulation results quite
well not only for the main part but also for the tail part of the
distributions. The calculated QoS distributions based on T
Location-scale QoWS distributions are not able to represent
the tale part accurately.

The quantitative results are shown in Table II and III for
different composition patterns.

Table II is the mean response time for Sequential, Parallel,
Conditional, and Loop Patterns. It can be seen that the mean
response time of the four patterns calculated based on both
mean value modeled QoWSs and non-parametric approach
generated QoWSs are quite close to the mean values of
the simulation results. The mean values of the calculation
results based on T Location-scale modeled QoWSs are quite
different from those of the simulation results.

Table III shows the response time of different patterns
at CDF = 90%, CDF = 95%, and CDF = 99%
respectively. It can be seen the calculated response time at
those characteristic points are quite close to the simulated

response time when the QoS distributions of component web
services are generated by non-parametric approach.

According to the above experimental results and analysis,
we can conclude that non-parametric approach modeled
QoWS distribution represents the QoS distribution of a web
service accurately and when it is used in representing QoS
of component web services, the calculated QoS distribution
of a service composition is trustable.

VI. CONCLUSION

In this paper, we introduce two statistical methods of
estimating the QoS distributions for web services: parametric
statistical method which has been used in some work and
non-parametric statistical method which is first proposed
to be used in QoWS distribution estimation in this paper.
Experimental results show that the non-parametric approach
can estimate QoWS distribution much more accurately and
is able to reflect the real QoWS distribution.

More and more services (i.e. service composition) are
developed upon the composition of existing web services. It
is meaningful to estimate the QoS of a service composition
at design time. We give a set of formulas for the calculation
of the QoS distribution of a service composition with its
component QoWSs modeled as PDFs. Simulation results
show that the QoS of a service composition can be accurately
estimated when its component QoWSs are represented by the
PDFs getting from the non-parametric statistical method.
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