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DC-Link Voltage Ripple Compensation for Multilevel
Active-Neutral-Point-Clamped Converters Operated

With SHE-PWM
Sridhar R. Pulikanti, Member, IEEE, Georgios Konstantinou, Graduate Student Member, IEEE, and

Vassilios G. Agelidis, Senior Member, IEEE

Abstract—This paper presents a dc-link voltage ripple com-
pensation method for �ying-capacitor (FC)-based active neu-
tral-point-clamped multilevel converters operating under selec-
tive harmonic elimination pulsewidth modulation. The method
is based on feedforward modi�cation of the modulation index
according to the ripple on the dc-link voltage, effectively altering
the switching control functions. The low-order harmonics in the
output due to the presence of the dc-link ripple are eliminated. In
addition, a control strategy that actively regulates the �ying capac-
itor voltages of each phase to the reference value and controls the
neutral point voltage deviation is implemented. The performance
of the dc ripple harmonic compensation method and regulation
strategies are evaluated through simulation and experimental
results from a three-phase, �ve-level laboratory prototype.

Index Terms—Active neutral point clamped converter (ANPC),
dc-ac power conversion, multilevel converter, selective harmonic
elimination, pulsewidth modulation.

I. INTRODUCTION

T HE development of new semiconductor devices, new con-
verter topologies, and advanced control and monitoring

methods over the last two decades has resulted in a signi�-
cant increase in the penetration of utility-grade voltage-source
converters (VSC) in the power system. Applications, such as
VSC-based high-voltage direct-current (HVDC) power trans-
mission, static synchronous compensators (STATCOMs), static
series compensators (SSSC), uni�ed and interline power-�ow
controllers (UPFC and IPFC) are becoming more common in
the modern power system [1].
Initial VSC-HVDC installations were based on the two-level

and later on the three-level neutral point clamped (NPC) con-
verter [1] while current and future installations utilize the mod-
ular multilevel ( [2] and [3]) converter. Both of
these con�gurations allow an extension to a large number of
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Fig. 1. Three-phase �ve-level FC-based ANPC converter.

levels in the output waveforms, minimizing �ltering and space
requirements but adding to the complexity to the overall system.
For medium-voltage (MV) applications (grid connection of

renewable energy sources and motor drives), typical multilevel
topologies, such as the NPC and the cascaded H-bridges (CHB)
converter [4], are typically employed. In recent years, hybrid
multilevel converters using different connections of basic
multilevel converter topologies have also been introduced [4].
Notable examples of these topologies include the �ve-level
H-bridge NPC (H-NPC) converter [5], the three-level NPC
converter with an H-bridge cell [6], the three-level active NPC
(ANPC) converter [7] with an H-bridge cell [8], the four-level
ANPC converter with a stacked multicell (SMC) converter
[9], and the three-level ANPC converter with a two-level cell
[10], [11]. The latter is referred to in this paper as the �ve-level
FC-based ANPC converter, shown in Fig. 1.
The �ve-level FC-based ANPC converter was proposed in

[10]. Various modulation methods have been proposed for
the operation of the topology, including level-shifted carrier
(LSC) pulse-width modulation (PWM) [10], phase-shifted
carrier (PSC) PWM [12]–[14], as well as selective harmonic
elimination (SHE) PWM [15].
In theory, modulation techniques assume a constant dc-link

voltage. However, modern converters experience a signi�cant

0885-8977/$31.00 © 2012 IEEE
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ripple in the dc-link voltage [16], which is exacerbated when
the converter is connected to the unbalanced or nonlinear loads
or when the input of the front-end recti�er is connected to a
weak or unbalanced ac grid. The ripple in the dc-link voltage
causes variations in the converter output which deteriorate the
quality of the converter output voltage introducing lower order
harmonics.
Compensation techniques dealing with the dc-link voltage

ripple have been reported for various converter topologies and
modulation techniques [17]–[20]. In [17], a feedforward com-
pensation method was implemented for a two-level converter
and a one-cycle control method was presented in [18]. A dc-link
voltage ripple compensation method for CHB converters under
space vector modulation was presented in [19] and a dc-link
voltage ripple compensation method using SHE-PWM, which
alters the modulation function of two-level converters, was pre-
sented in [20] and [21]. However, the topic of dc-link voltage
ripple on multilevel converters under SHE-PWM has not been
investigated.
Under SHE-PWM, the application of the method to mul-

tilevel converters varies. CHB converters utilize multiple dc
voltage sources as independent dc links in the con�guration of
the circuit. The effects of the variation of the dc link are local-
ized only in the bridge and phase where it occurs. However, the
�ve-level FC-based ANPC converter requires a single dc link
for the operation of the three-phase topology. Variation in the
dc-link voltage in combination with the presence of harmonic
ripple affects the operation of the converter and a combined
compensation approach is necessary.
The objective of this paper is to present a dc-link voltage

ripple compensation method for the �ve-level FC-based ANPC
converter under SHE-PWM. This method utilizes a feedforward
scheme that modi�es the modulation index according to the
dc-link voltage ripple. This modi�cation alters the switching
functions so that the low-order harmonics generated in the
output due to the dc-link voltage ripple are eliminated.
This paper is organized as follows. Section II describes the

operational principles and SHE modulation of the �ve-level
FC-based ANPC converter and voltage regulation for the
�ying capacitors and neutral point. Section III proposes the
dc-link voltage ripple compensation method for the �ve-level
FC-based ANPC and analyzes its application and limitations.
Sections IV and V provide simulation and experimental results
of the method and, �nally, the paper summarizes its conclusions
in Section VI.

II. FIVE-LEVEL FC-BASED ANPC CONVERTER

A. Operational Principles
The three-phase, �ve-level FC-based ANPC converter is

shown in Fig. 1 [10]. The phase leg of the �ve-level FC-based
ANPC converter consists of switches ( – ), where de-
notes the phase ( , or ), with antiparallel diodes ( – )
and a �ying capacitor . Assuming a constant voltage on the
dc link equal to , the voltage across each of the two dc-link
capacitors ( and ) is equal to . The voltage across the
�oating capacitor in order to generate �ve equal levels
is . The outer switches of the converter, which construct

TABLE I
SWITCHING STATES OF THE FIVE-LEVEL FC-BASED ANPC CONVERTER

cell-3 of Fig. 1, should withstand a voltage equal to and
typically two series-connected switches are considered in such
a topology [10].
One of the basic requirements of an FC-based ANPC con-

verter is to operate the outer switches with a switching fre-
quency equal to the fundamental [9]. Due to this requirement,
two distinct half-periods can be identi�ed where the converter
is reduced to a three-level FC converter [14].
The switching states of the �ve-level FC-based ANPC con-

verter are the combination of the switching states of the three-
level ANPC converter and of the two-level cell. In order to de-
crease the switching frequency of the switches – , only
four out of the six switching states of the three-level ANPC con-
verter are considered. Eight switching states in total are avail-
able to generate the �ve different voltage levels at the output as
shown in Table I.
Since the outer switches operate under fundamental fre-

quency, the line-to-neutral voltage is given by

(1)

The current through can then be expressed as

(2)

and variation in the voltage of the �oating capacitor is given by

(3)

The voltage across the �oating capacitors should be main-
tained at . Switching states , and affect the
voltage across the FCs. The available redundancies in obtaining

( and ) and ( and ) are utilized to regulate
the voltage across the FCs. During and , the neutral point

is connected to the load through the FC and both the volt-
ages of the FC and the neutral point are affected.
The relation between the ac- and dc-side parameters is deter-

mined by the switching functions of the switches. The currents
of the positive dc rail are given by (4) and similar equations
can be derived for the negative and neutral point of the converter
[13]

(4)

where denotes the switching function of the respective
switch. The dc current equations indicate that controlling the
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voltage ripple across the FC in�uences the current through the
neutral point. A proper control strategy is, therefore, necessary
so that the voltages across the FCs and the dc-link capacitors are
regulated at their reference voltage levels.

B. SHE-PWM for Five-Level Converters

SHE methods for multilevel PWM waveforms have been re-
ported in [22]–[24]. The �ve-level waveform with transitions
per quarter-period is precalculated in such a way that a number
of low-order harmonics are eliminated from the output
spectrum while the fundamental frequency component is con-
trolled to the required level.
A set of equations is solved to obtain solutions for the

switching transitions [23]. In a generalized form, the system of
equations is as follows:

(5)

(6)

where and is odd

(7)

If is the amplitude of the fundamental component to be gen-
erated, then

(8)

(9)

where is the modulation index and is the
number of switchings, or angles placed between 0- and 1-p.u.
levels and is the number of waveform transitions placed be-
tween 1- and 2-p.u. levels and is the th switching angle in
the quarter period of the waveform. By solving the system of
(5)–(6) with the constraint of (9), the required solutions can be
obtained.
For different distribution ratios , a different set of

equations describing new waveforms is solved [23], [24], pro-
viding multiple solutions. The multiple sets obtained, overlap
for different ratios over the range of modulation in-
dices. The multiple solutions available for the �ve-level case
are presented in [23].

C. Flying Capacitor Voltage Regulation

The charging and discharging of the FC takes place at the
middle voltage levels 1 p.u. when the load current �ows
through the FC and depends upon its direction. The voltage
across the FC, which should be maintained at p.u., is
affected by switching states , and and can be
regulated using the switching states that result in time intervals
of charging and discharging being equal over a fundamental
period. Due to symmetrical pulse patterns over the quarter of

the period, equal time intervals of charging and discharging
over a fundamental period can be achieved. A more detailed
explanation of the control strategy, the SHE-PWM implemen-
tation and gating signal generation, is given in [15].

III. VOLTAGE RIPPLE COMPENSATION

A. Effect of DC-Link Harmonic Ripple

The Fourier analysis of the converter phase voltages under a
constant dc-link voltage is

(10)

where the coef�cients of the th harmonic are calculated
through (5)–(6). Assuming a ripple harmonic frequency

and the magnitude of in the dc-link
voltage, given by (11), low-order harmonics are generated in
the output ac voltage due to the interaction of the spectral com-
ponents of the output voltage (10) and the dc-link harmonics

(11)

The harmonics due to the DC-link ripple are located at frequen-
cies and as sidebands to the spectral com-
ponents of the output voltage of (10). The amplitude of the har-
monics generated at and are in direct correlation
to the amplitude of the th harmonic and their normalized
amplitude given by .
The amplitudes of the harmonics are well de�ned through

the SHE-PWM formulation of (5) and (6) and the solutions used
in each application. These additional harmonics also vary in
terms of their sequence. The sequence of the spectral compo-
nents due to the terms in the output, along with the
DC-link voltage being common for all three-phases, remains the
same as in the th harmonic. However, the sequence of the spec-
tral components due to the terms depend on the values
of and . If , then the sequence of the components re-
mains the same with that of the th harmonic, but if , the
harmonics generated have inverted sequences and a positive-se-
quence th harmonic generates a negative-sequence th
harmonic, a negative sequence th harmonic (if present) gen-
erates a positive-sequence th harmonic while zero-se-
quence harmonics are not affected.
This can be a major issue as the interaction of low-order har-

monics with the fundamental frequency component (in which
case and ) generates quite signi�cant negative-se-
quence components in the output voltage. In addition, when

1, spectral components in the fundamental frequency
are generated, affecting the balancing of the phase voltages in
the output of the converter. These harmonics can be positive,
negative, or zero sequence depending on the combination of
and .
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B. ANPC Voltage Ripple Compensation
Themain difference in the application of ripple compensation

methods in the ANPC converter when compared to other multi-
level topologies is the common dc link for all three phases of the
converter and the redundancies in acquiring intermediate levels
of the waveform. Both of these differences need to be consid-
ered for the dc-link voltage ripple compensation method.
When the converter generates either the top or the bottom

level in the waveform and , the dc link appears directly in
the output of the phase and the waveform follows the waveform
of (11). However, when the levels appear in the output
and the dc link is connected to the output ( and ), the actual
level of the waveform is

(12)

Considering that the voltage of the �ying capacitor is regulated
to the reference voltage of , the dc-link ripple appears in the
output as double the amplitude of the level of the converter

(13)

The remaining states ( and ) for this level do not require
the dc-link voltage but are generated through the neutral point
of the converter and the �ying capacitor. The ripple of the dc link
does not affect this voltage level and, hence, no compensation
is required for these states.
The compensation method is based on a feedforward modi-

�cation of the switching function of the converter based on the
average and instantaneous values of the dc-link voltage [20].
The modulating function of the converter is modi�ed so that
the ripple in the dc link does not generate low-order harmonics
as

(14)

In the �ve-level FC-based ANPC converter, this is separated
in three distinct occasions. When the output of the converter is

, then the modulation index is modi�ed based on (12) and
the modulating waveform is

(15)

When the output of the converter is equal to , then when
the converter switching state connects the output to the neutral
point and the FC, then the converter switching function is not
modi�ed ( and ) and

(16)

whereas when the states that connect the dc link to the output
are used ( and ), the modi�ed modulation function is given
by

(17)

The switching signals are obtained by comparison of the
switching angles from the modi�ed modulation index with
triangular waveforms de�ning the fundamental frequency and

Fig. 2. Angle variation during the �rst half period of the waveforms. (a) Con-
stant dc and no compensation. (b) Full compensation [(15)–(17)]. (c) Compen-
sation based on (15).

phase angle . When the dc link is constant or no compensation
method is used, the solutions remain constant as shown in
Fig. 2(a). When the compensation method is used, the sets of
angles used from the lookup table are separated into the
�rst angles which are modi�ed through the application of (16)
or (17) and the remaining angles that are modi�ed through
(15) as shown in Fig. 2(b).

C. Limitations and Variations in the Implementation
The application of the ripple compensation technique in mul-

tilevel converters under SHE-PWM poses a number of limita-
tions. The percentage of ripple in the dc-link voltage, the oper-
ating point of the converter, and the solution pattern are limiting
factors in the application of the technique. The �rst limitation
appears through the variation of the angles where a dc-link
ripple of amplitude causes a variation in the modulating func-
tion of (17) that varies between

(18)
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Fig. 3. Limits of dc ripple compensation method. (a) Full compensation. (b)
Modi�ed compensation.

The continuity of available solutions and the operating point of
the converter can greatly vary the limits of (18), constraining
the overall application of the method. In order to overcome this
problem, all angles are chosen to vary based on the compensa-
tion of the top level given by (15). This is illustrated in Fig. 2(c).
In this case, the limits of compensation are

(19)

Outside these limits, the application of the method can no
longer fully compensate for the dc-link ripple, and low-order
harmonics will appear in the output. However, these harmonics
will be of much lower amplitude than in the case of uncompen-
sated waveforms.
The limits of the application are illustrated in Fig. 3(a) and

(b). If we consider the operating point under constant dc-link
voltage to be given by the solid line in Fig. 3(a) and (b), a ripple
on the dc link will result in a variation of the operating point for
the and angles as shown in Fig. 3(a) and described by
(15)–(17). As the lower angles have a higher compensation
factor, they reach the limits in the continuity of the solution ear-
lier than the upper angles .
The modi�cation of the switching function, as proposed in

(15), extends the operation of the compensation method as
shown in Fig. 3(b). For the same operating point, the converter
can operate with 5% ripple and the limits are reached when a

Fig. 4. Simulation and experimental setup of the �ve-level ANPC converter.

harmonic component with approximately 10% for the particular
operating point of the converter, is present in the dc link.
In addition, when the waveform is switching between the

and levels, the selection of angle modi�cation
should be between (15)–(17) since the dc-link ripple is involved
in multiple ways. In order to reduce the complexity of the selec-
tion scheme and to avoid multiple transitions between the levels,
the modi�cation of (15) is only applied to the angles as shown in
Fig. 2(b). The angle modi�cation of (15) lies always in between
those of (16) and (17) and presents a valid compromise between
the compensation requirements and the increased complexity of
the selection scheme.

IV. SIMULATION RESULTS
The dc-link voltage ripple compensation method for the �ve-

level ANPC converter is simulated with MATLAB [27] and the
PLECS toolbox [28]. A three-phase, �ve-level FC-based ANPC
converter (Fig. 4) is simulated under a second harmonic dc-link
ripple with an amplitude equal to 5% of the dc-link voltage. The
converter is initially simulated with the ripple in the dc link and
without the compensation method in Fig. 5(a). The presence of
the second harmonic ripple generates low-order harmonics as
well as a negative-sequence fundamental component resulting in
unbalanced output voltage waveforms. The harmonic spectrum
of the output voltage is shown in Fig. 5(b) and the phase currents
of the converter are shown in Fig. 5(c)where the unbalance in the
currents caused by the dc-link voltage ripple can be observed.
The operation of the �ve-level ANPC under the dc-link com-

pensation method is shown in Fig. 6. The angles are modi�ed
based on the method of Section III-B with the switching an-
gles being modi�ed as shown in Fig. 3(a). Fig. 6(a) shows the
output phase voltages and Fig. 6(b) shows the corresponding
phase voltage harmonic spectra. The low-order harmonics as
well as the unbalance due to the second harmonic ripple on the
dc link are eliminated from the application of the compensa-
tion method. The additional harmonics that appear in the spectra
around the noneliminated harmonics are due to the modi�cation
of the switching angles from the method which slightly modi�es
the quarter-wave symmetry assumed in the waveform formula-
tion. The phase currents are given in Fig. 6(c).
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Fig. 5. Simulations results with 5% second harmonic ripple on the dc with no
compensation. (a) Phase voltages. (b) Corresponding harmonic spectra. (c) Load
currents.

Fig. 6. Simulations results with 5% second harmonic ripple on the dc with full
compensation. (a) Phase voltages. (b) Corresponding harmonic spectra. (c) Load
currents.

Fig. 7(a) and (b) shows the phase voltages and corresponding
harmonic spectra of the method under the modi�ed compensa-
tion of the method. The observed variance in the harmonic spec-
trum is acceptable and themodi�edmethod provides satisfactory

Fig. 7. Simulations results with 5% second harmonic ripple on the dc with
modi�ed compensation. (a) Phase voltages. (b) Corresponding harmonic
spectra.

Fig. 8. Upper and lower dc-link capacitor voltages with dc-link voltage ripple.
The compensation method is enabled at 0.6 s.

Fig. 9. Simulations results with 5% second and 5% sixth harmonic ripple on the
dcwithout compensation. (a) Line-to-line voltages. (b) Corresponding harmonic
spectra.

compensation of the dc-link ripple harmonicswhen the full com-
pensation method reaches its limits. The low-order harmonics
present in the output current also affect the voltages of the dc link
and result in deviation between the dc-link capacitors voltages.
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Fig. 10. Simulations results with 5% second and 5% sixth harmonic ripple on
the dc with modi�ed compensation. (a) Line-to-line voltages. (b) Corresponding
harmonic spectra.

TABLE II
SPECIFICATIONS OF THE EXPERIMENTAL PROTOTYPE

The application of the compensation method also facilitates the
balancing of the dc-link capacitors as shown in Fig. 8. Enabling
the dc-link voltage ripple compensation method minimizes the
drift between the upper and lower dc-link capacitor voltage and
maintains the neutral point deviation to a minimum [26].
The system is also simulated for the simultaneous presence of

a 5% second and a 5% sixth harmonic on the dc link. Fig. 9(a)
shows the line-to-line voltages when no compenstation is used
in the modulation scheme. The resulting low-order harmonics
and unbalances in the fundamental frequency components can
be observed in Fig. 9(b). The application of the compensation
methods eliminates the unbalance and mitigates the harmonics
to higher orders as shown in Fig. 10(a) and (b).

V. EXPERIMENTAL RESULTS

A three-phase �ve-level ANPC converter system was built in
the laboratory to validate the presented FC control strategy. The
control strategy was developed using MATLAB/SIMULINK
and implemented with the dSPACE DS1104 board. The exper-
imental results consider a second harmonic in the dc link with
an amplitude equal to 5% of the dc-link voltage and a combi-
nation of a 5% second and 5% sixth harmonics simultaneously
present on the dc-link voltage. The parameters of the laboratory

Fig. 11. Experimental results with 10% second harmonic ripple in dc-link
voltage and compensation. (a) Phase voltage and associated harmonic spectrum.
(b) Upper and lower dc-link capacitor voltages. (c) Output current (Channel2),
current through FC (Channel4), and voltage ripple across the FC (Channel3).

prototype �ve-level ANPC converter used for the experimental
veri�cation of the dc-link voltage ripple are given in Table II.
A second harmonic on the dc link is initially considered. Due

to the second harmonic in the dc-link voltage, a negative-se-
quence fundamental frequency component and a third harmonic
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Fig. 12. Experimental results with 5% second and 5% sixth harmonic. Line-to-
line voltages (a) without compensation and (b) with compensation.

are present in the output. The negative sequence generates un-
balances in the waveform, and the third harmonic is present
in the output of the converter since it is not of zero sequence.
Fig. 11(a) shows the phase-output voltage and corresponding
harmonic spectrum under the application of the compensation
method when the dc-link voltage of Fig. 11(b) is imposed in the
upper and lower capacitors. Fig. 11(b) shows that although the
second-order harmonic in present on the dc link, the voltage of
the two dc-link capacitors is balanced through the compensation
method and, hence, the deviation of the neutral point is minimal.
Typical harmonics present in the dc-link voltage are lower

order even harmonics [16], and the �nal case investigates the
effect of a combined second and sixth harmonic in the dc link.
When the compensation method was not applied, harmonics on
the line-to-line voltage were present as shown in Fig. 12(a),
and the application of the method successfully eliminates the
low-order harmonics and the unbalance of the fundamental fre-
quency component as shown in Fig. 12(b).

TABLE III
ABBREVIATIONS USED IN THIS PAPER

VI. CONCLUSION
The presence of lower order harmonics in the dc-link voltage

results in low-order harmonics in the output voltage which
deteriorates the output voltage. This paper proposes a dc-link
voltage ripple compensation method for the �ve-level FC-based
ANPC converter under SHE-PWM. The method compensates
for the dc-link ripple through a feedforward modi�cation of the
switching function of the converter.
The main difference with previous methods is that the com-

pensation is speci�c to the levels of the waveform providing a
variable modi�cation for each of the converter levels. In addi-
tion, the waveform is modi�ed based on the selection of redun-
dant states which also regulates the neutral point voltage devi-
ation. However, the method is limited by the range of solutions
of the SHE-PWM technique. For this reason, a modi�cation in
the compensation method is proposed in order to extend the op-
erating limits of the application. The results for bothmethods are
veri�ed through simulations. Experimental results from a three-
phase laboratory prototype con�rm the theoretical analysis.

APPENDIX A
Table III summarizes all of the abbreviations used in this

paper.
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